

001011 Cryptoplexity Cryptography & Complexity Theory Technische Universität Darmstadt www.cryptoplexity.de

Random Oracles in a Quantum World

ISG Research Seminars 2011/2012

Özgür Dagdelen, Marc Fischlin (TU Darmstadt) Dan Boneh, Mark Zhandry (Stanford University) Anja Lehmann (IBM Zurich) Christian Schaffner (CWI)

Cryptography in Real World

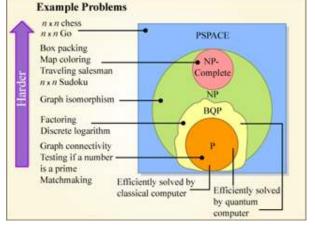
(All) Cryptosystems based on Factorization and Discrete Logarithm Problem are **based** and the size of the size of

Post Quantum Cryptography

Not all (number-theoretic) problems are easy for quantum computers

- Hash-based Cryptography (e.g. Merkle's hash-trees signatures)
- Code-based Cryptography (e.g. McEliece, Niederreiter)
- Lattice-based Cryptography (e.g. NTRU)
- *Multi-variate-quadratic-equations* Cryptography

Cryptographic systems that run on conventional computers, are secure against attacks with conventional computers, and remain secure under attacks with quantum computers are called **post-quantum cryptosystems**.



Source: Quantum Complexity Theory, Lecture Notes Fall 2010

Quantum-Resistant Primitives ... with RO?

quantum-resistant primitive / protocol

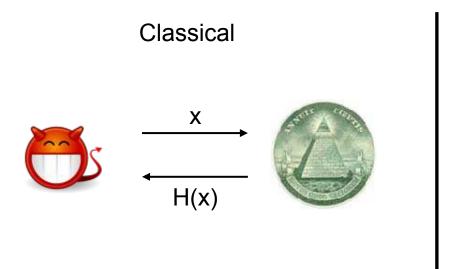
random oracle

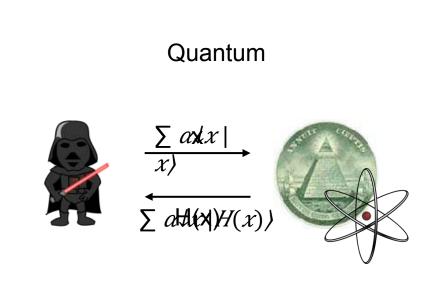
quantum adversary

Examples:

- Signatures [GPV08,GKV10,BF11]
- Encryptions [GPV08]
- Identification Schemes [CLRS10]

Quantum-Accessible Random Oracles





Idea: Instantiate Random Oracle by "strong implementation" minimal requirement: quantum adversary may query RO about quantum states

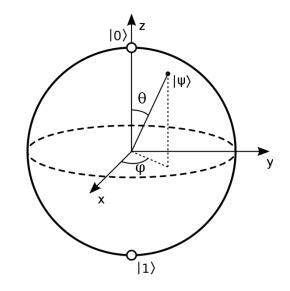
Outline

(1) Introduction to Quantum Theory

(2) Separation Result

(3) Positive Examples

(4) Open Problems



Introduction to Quantum Theory

Transmission of Entropie

Fodaye:

Bitubit $\| q \partial \neq 1 \alpha | 0 \rangle + \beta | 1 \rangle$ qlassstaat channel

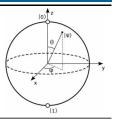
 $\alpha, \beta \in \mathbb{C}$ are probability amplitudes

• **i.e.**, $|\alpha|/2 + |\beta|/2 = 1$

alternative: $|\psi\rangle = \sin(\theta/2)e^{1} - i\phi/2 |0\rangle + \cos(\theta/2)e^{1}i\phi/2 |1\rangle$

 $|1\rangle$

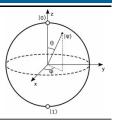
10>



Quantum System A

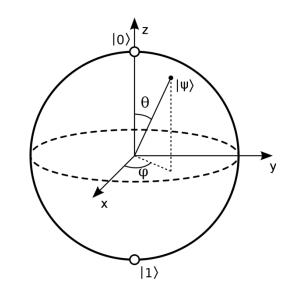
- complex Hilbert space H_A with inner product ··
- quantum state $|\varphi\rangle \in H \downarrow A$ with $||/\varphi\rangle|| = \sqrt{\varphi \varphi} = 1$
- joint quantum system $H \downarrow A \otimes H \downarrow B$
- $|\varphi\rangle = \sum x \in \{0,1\} \hat{n} \hat{n} |x\rangle$ with $\sum x \in \{0,1\} \hat{n} \hat{n} |x\rangle$ $\alpha \downarrow x | \hat{n}^2 = 1$

Quantum Computations

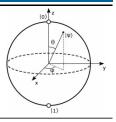


Transformations

- only unitary transformations U
 - $U \uparrow U = I \downarrow n$
 - det(U) = ± 1
- physically seen: only rotations are allowed



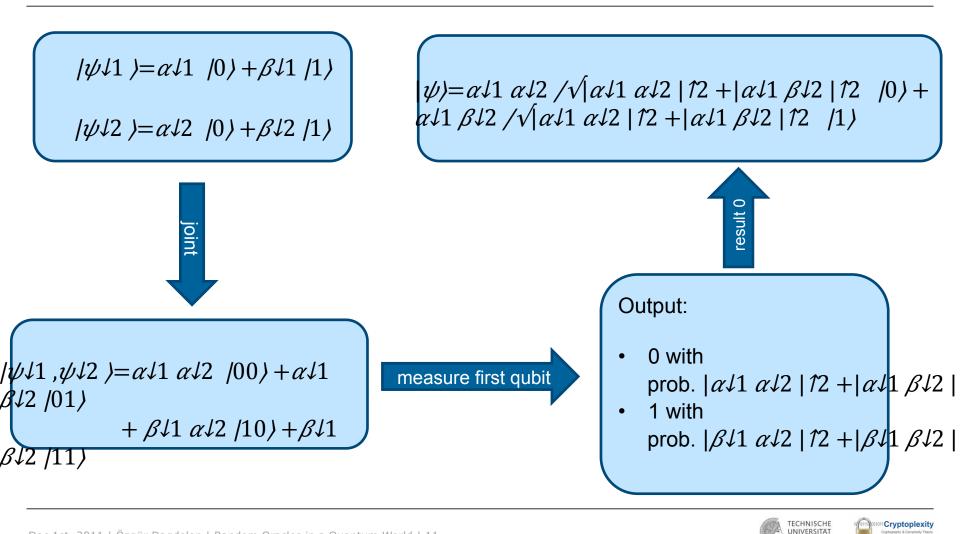
Quantum Computations



Measurements M={M↓i }

- Q-system collapses to classical state
- positive semi-definite operator $M \downarrow i$ s.t. $\sum i \uparrow M \downarrow i = I \downarrow n$
- outcome *i* with prob $p \downarrow i = \varphi M \downarrow i \varphi$
- partial measurements possible

Toy Example



DARMSTAD

Power of Quantum Computing

 $|x,y\rangle \xrightarrow{O} |x,y \oplus \uparrow | = O(x) \rangle$

Problem I: Given an integer N, find its prime factors. Classical Solution: General Number Field Sieve needs time $O(e^{1\sqrt{3}\&7\log N})$ (loged up $\log N)^2$) Quantum Solution: Shor's Algorithm solves in $O((\log N)^{13})$ running time

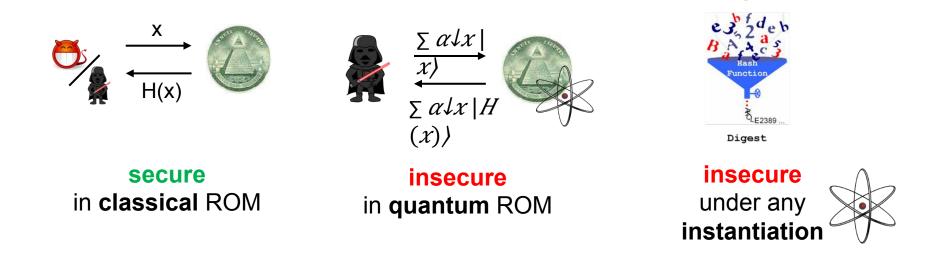
Problem II: Search in an unstructured database with N entries Classical Solution: requires $\Omega(N)$ look up queries Quantum Solution: *Grover's Algorithm* needs only $O(\sqrt{2\&N})$ queries Quadratic

Problem III: Collision Search for function f (r-to-1) with domain size N Classical Solution: requires $\Theta(\sqrt{N/r})$ executions of f Quantum Solution: Brassard et al.'s Algorithm needs only $O(\sqrt{3}\&N/r)$ Quadratic Speed up

Separation (RO vs QRO)

Is there any difference? Absolutely !!

We present a cryptosystem which is

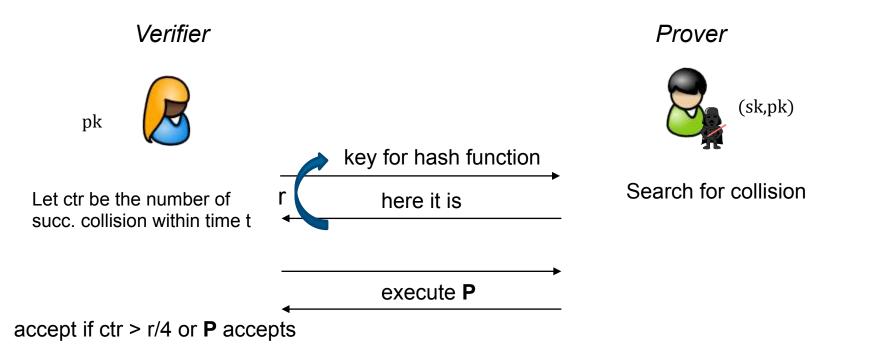


Input

Separation

Identification Protocol P*:

- (Informal Definition) Prover 'convinces' a Verifier that it knows something
- based on quantum-immune ID protocol P



Security of ID – Protocol P*

Recall:

Problem III: Collision Search for function f (r-to-1) with domain size N Classical Solution: requires $\Theta(\sqrt{N/r})$ executions of f Quantum Solution: *Brassard et al.'s Algorithm* needs only $O(\sqrt{3}\&N/r)$

Idea:

Define t in **P*** exactly between $\sqrt{N/r}$ and $\sqrt{3}\&N/r$ executions of hash function

Classical adversaries are too slow *Quantum* adversaries are fast enough

(win only when sk is known \swarrow) (succeed w/o knowing sk μ)

Security in classical RO

Theorem: **P*** is secure against any efficient adversary in the classical random oracle model.

Proof sketch: $\Pr[Adv breaks P1*] \leq \Pr[ctr > r/4] + \Pr[Adv breaks P]$

Let *r* be the number of collision rounds. Let *l* be the bit size of the digest *l* random oracle and *n* the security parameter. We choose l = log n.

Probability of Adv outputting collision with $q = \alpha \sqrt{3} \& 2 \hbar l$ queries is $q(q-1)/2N \le \alpha \hbar 2/2$ $\sqrt{3} \& 2 \hbar l \le \alpha \hbar 2/2 \sqrt{3} \& n$

 $\rightarrow Chernoff-bound \perp \Pr[ctr > r/4] \le \exp(-r\alpha \hat{1}^2/2\sqrt{3} \& n (\sqrt{3} \& n - 2\alpha \hat{1}^2/2\alpha \hat{1}^2)$ $\hat{1}^2 1/4) \le \exp(-r\sqrt{3} \& n/32\alpha \hat{1}^2)$

Security against Q-adversaries

Theorem: The protocol **P*** is insecure in quantum-accessible RO model.

Proof sketch: $\Pr[Adv \ breaks \ P1*] \leq \Pr[ctr > r/4] + \Pr[Adv \ breaks \ P]$

Let *r* be the number of collision rounds. Let *l* be the bit size of the digest *l* random oracle and *n* the security parameter. We choose l = log n.

Probability of Adv outputting collision with $q = \sqrt{3\&2 l}$ queries is $\geq 1/2$ (Brassard et al.)

 \rightarrow Chernoff-bound- $\Pr[ctr < r/4] \le \exp(-r/2(1/2)t^2 1/2) \le \exp(-r/16) \le 0.94 tr$

Thus, Adv makes V* accept with prob $\geq 1 - \Pr[ctr < r/4]$ which is non-negligible.

Consequences

All Post-Quantum Cryptosystems proven in the Random Oracle Model needs to be revisited.

We prove security for a class of cryptosystems *against quantum adversaries* in the *Quantum Random Oracle* model.

- Digital Signature Schemes
- Encryption Schemes

Revisiting Security of Signature Schemes

Definition:

Let A be a classical PPT adversary against signature scheme **S**. If there exists PPT adversary B against hard problem **P**, then **S** has a <u>history-free reduction</u> from hard problem **P**.

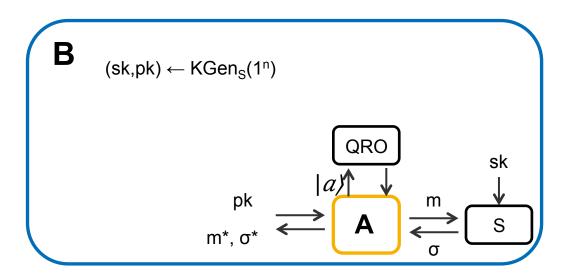
B is defined by the following algorithms: Let x be an instance of P

- **START(x)** \rightarrow (pk,z)
- INSTANCE(pk) $\rightarrow x$
 - distribution of INSTANCE is negl. close to distribution of Game_P
- RAND^{oc}(r,z) simulates O(r)
 - for fix z: $|x,y\rangle \rightarrow |x,y \oplus RAND \uparrow O \downarrow c (x,z)\rangle$ is indis. from random oracle
- **SIGN**^{oc}(m,z) simulates S(sk,m)
 - either aborts or distribution of SIGN is negl. close to S
 - probability that none of the queries aborts is non-negligible
- **FINISH**^{Oc}(m,σ,z) \rightarrow solution to x.
 - with non-negl. probability

Theorem 1. Let S = (G, S, V) be a signature scheme. Suppose that there is a history-free reduction that uses a classical PPT adversary A for S to construct a PPT algorithm B for a problem P. Further, assume that P is hard for polynomial-time quantum computers, and that quantum-accessible pseudorandom functions exist. Then S is secure in the quantum-accessible random oracle model.

Proof Sketch:

Game 0: Standard quantum signature Game Assume A has non-negligible advantage

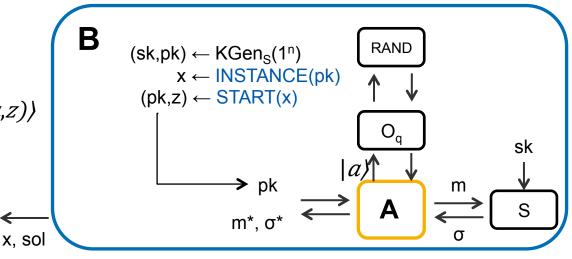


Theorem 1. Let S = (G, S, V) be a signature scheme. Suppose that there is a history-free reduction that uses a classical PPT adversary A for S to construct a PPT algorithm B for a problem P. Further, assume that P is hard for polynomial-time quantum computers, and that quantum-accessible pseudorandom functions exist. Then S is secure in the quantum-accessible random oracle model.

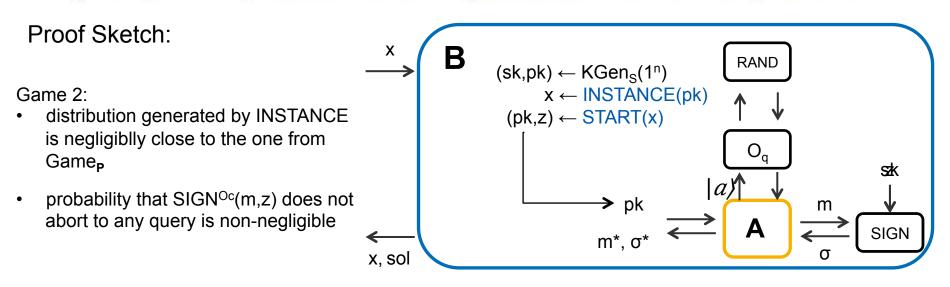
Proof Sketch:

Game 1:

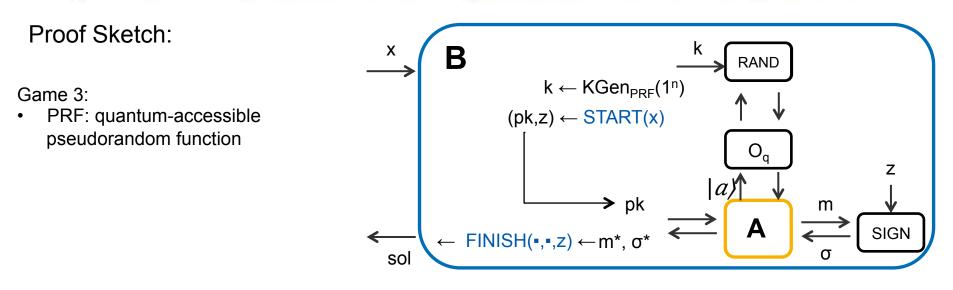
- $O_q: (a,b) \mapsto (a, b \oplus RAND \uparrow O \downarrow c (a,z))$
- history-freeness of RAND guarantees {O_q} ≈ {QRO}



Theorem 1. Let S = (G, S, V) be a signature scheme. Suppose that there is a history-free reduction that uses a classical PPT adversary A for S to construct a PPT algorithm B for a problem P. Further, assume that P is hard for polynomial-time quantum computers, and that quantum-accessible pseudorandom functions exist. Then S is secure in the quantum-accessible random oracle model.



Theorem 1. Let S = (G, S, V) be a signature scheme. Suppose that there is a history-free reduction that uses a classical PPT adversary A for S to construct a PPT algorithm B for a problem P. Further, assume that P is hard for polynomial-time quantum computers, and that quantum-accessible pseudorandom functions exist. Then S is secure in the quantum-accessible random oracle model.



Signatures secure in QRO Model

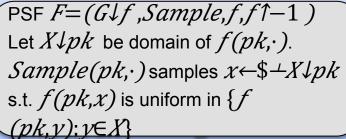
We show history-free reductions for signatures from

- Preimage Sampleable Trapdoor Functions [Gentry, Peikert, Vaikuntanathan 08]
- Claw-Free Permutations [Goldwasser, Micali, Rivest 88]
- Full-Domain-Hash variant [Katz, Wang 03]

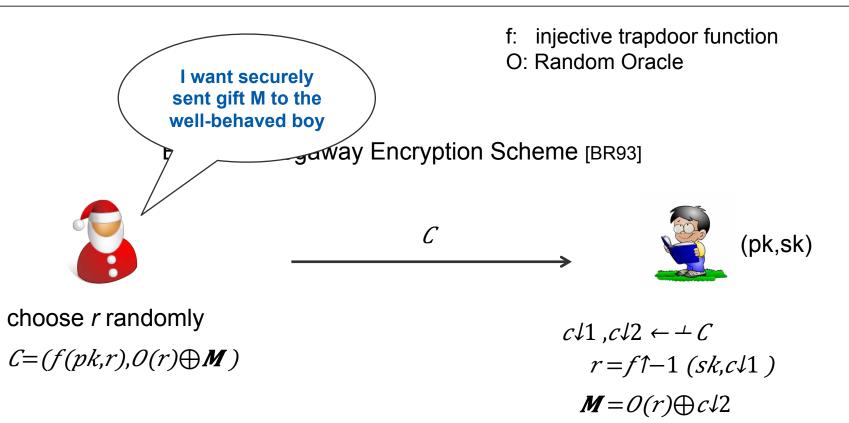
Definiton Full Domain Hash:

Let $\mathbf{F} = (G \downarrow f, f, f \uparrow -1)$ be a trapdoor permutation, and O a hash function whose range is the same as the range of f. The full domain has signature scheme is $\mathbf{S} = (G, S, V)$ History-Free Reduction: PSE $F = (G \downarrow f, Sample f, f \uparrow -1)$

- •• S&ART(pk) := (pk,pk)
- •• INSTANCE pk(X, O(m))
- •• $\mathsf{RIAND}(\mathcal{P}(\mathbf{r},\mathbf{p},\mathbf{k})) := \{\mathsf{m}(\mathbf{k}, \mathsf{Sainfple}(\mathbf{k}); \mathsf{O}_{\mathsf{c}}(\mathbf{p})\}, \sigma\}$
- SIGN^{Oc}(m,pk) := *Sample*(1ⁿ;O_c(m))
- FINISH^{Oc}(m,σ,pk) := (Sample(1ⁿ;O_c(m)), σ)



Encryption Schemes in QRO



We show CPA and CCA security in the quantum-accessible random oracle model.

Dec 1st, 2011 | Özgür Dagdelen | Random Oracles in a Quantum World | 25

Worrying Observations

Adaptive Programmability

 adversary could query oracle on exponentially many values right from the beginning

Extractability / Preimage Awareness

- classical case: simulator knows preimage, image pair
- quantum case: query is hidden in a superposition

Efficient Simulation

Iazy-sampling does not carry over to the quantum setting

Rewinding / Partial Consistency

Unnoticed changing of hash values difficult

Interesting Questions

Negative Examples

Are there real-world examples which are supposed to be secure against quantum adversaries but insecure in the quantum-accessible random oracle model ?

Positive Examples

- Security of signatures derived by Fiat-Shamir paradigm
- More encryption examples
- Answers to the aforementioned worrying observations
- Is history-freeness merely sufficient or even necessary

Thank You!

By the way ... I am still looking for an accommodation this night ;-)

