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Random Phase Textures: Theory and Synthesis

B. Galerne∗, Y. Gousseau†and J.-M. Morel∗

Abstract

This paper explores the mathematical and algorithmic properties of two sample-based micro-
texture models: random phase noise (RPN ) and asymptotic discrete spot noise (ADSN ). These
models permit to synthesize random phase textures. They arguably derive from linearized ver-
sions of two early Julesz texture discrimination theories. The ensuing mathematical analysis
shows that, contrarily to some statements in the literature, RPN and ADSN are different
stochastic processes. Nevertheless, numerous experiments also suggest that the textures ob-
tained by these algorithms from identical samples are perceptually similar. The relevance of
this study is enhanced by three technical contributions to micro-texture synthesis from samples.
A solution is proposed to three obstacles that prevented the use of RPN or ADSN to emulate
micro-textures. First, RPN and ADSN algorithms are adapted to color images. Second, a pre-
processing is proposed to avoid artifacts due to the non-periodicity of real-world texture samples.
Finally, the method is extended to synthesize textures with arbitrary size from a given sample.

Keywords: texture synthesis, random phase, shot noise, spot noise

Online resources: An online demo is available for the RPN algorithm discussed in this pa-
per at http://mw.cmla.ens-cachan.fr/megawave/demo/random_phase_noise/. Also, the web-
site http://mw.cmla.ens-cachan.fr/megawave/algo/random_phase_noise/ contains many ex-
amples and counterexamples as well as an ANSI C source code.

1 Introduction

1.1 Texture Perception Axioms and their Formalization

Oppenheim and Lim [1] state that “spectral magnitude and phase tend to play different roles” for
digital images and that, in some situations, the phase contains many of the important features of im-
ages. However when it comes to textures, perception theory suggests that some of the main texture
characteristics are contained in their Fourier magnitude. In his early work on texture discrimination
Julesz [2] demonstrated that many texture pairs having the same second-order statistics could not
be discerned by human preattentive vision. This hypothesis is referred to as the first Julesz axiom
for texture perception [2]. As a consequence, textures having the same second-order statistics share
a common auto-covariance and therefore a common Fourier magnitude. Even though counterexam-
ples to the first Julesz axiom exist [2, 3, 4], it is believed that Fourier magnitude is more important
than phase for the perception of textures [5]. This conclusion is still considered valid by several
more recent contributions [6, 7]. For example, working on texture classification, Tang and Stew-
art [6] conclude that “the Fourier transform magnitudes contain enough texture information for
classification” whereas “the Fourier phase information is a noise signal for texture classification.”
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Thus, a weak form of the first Julesz assumption is that the perception of a texture is charac-
terized by its Fourier modulus. Under this assumption, its perception should not vary when the
texture phase is randomized. This fact turns out to be true for a large class of textures which we
shall call in the sequel micro-textures. More generally, any two images obtained by randomizing the
phase of any given sample image are perceptually very similar. As the experiments displayed here
show, this is true regardless of whether the sample image is a texture or not. We shall call in the
sequel random phase texture any image that is obtained by a phase randomization.

The second Julesz approach to texture preattentive discrimination theory introduced the notion
of textons (blobs, terminators, line crossings, etc.) [3]. The texton theory assumes that the density
of local indicators (the textons) is responsible for texture preattentive discrimination: images with
the same texton densities should not be discriminated. A main axiom of the texton theory is
that texture perception is invariant to random shifts of the textons [3]. The shift invariance of this
second Julesz theory can be made into a synthesis algorithm building a texture from initial shapes by
random shifts. In the Julesz toy algorithm used in his discrimination experiments, this construction
was a mere juxtaposition of simple shapes on a regular grid, with random shifts avoiding overlap.
This random shift principle can be used to make realistic textures provided a linear superposition
is authorized, by which the colors of overlapping objects are averaged. Textures obtained by the
combined use of random shifts and linear superposition will be called random shift textures. We
shall discuss thoroughly their relation to random phase textures.

Random phase and random shift textures belong to a linear world where the superposition
principle dominates. A sound objection is that linear superposition is not always adapted for
natural image formation. Several authors prefer an occlusion principle yielding the stochastic dead
leaves model [8, 9, 10]. Indeed, most visible objects do not add up visually in the image ; they hide
each other.

However, thin, small, or semitransparent objects obey an additive superposition principle due to
the blur inherent to image formation. More generally, all homogeneous image regions made of small
objects, when seen at a distance where individual shapes vanish, obey the linear superposition
principle. Indeed, when individual texture constituents are close to pixel size, the camera blur
linearly superposes their colors and geometric features. Thus, many homogeneous regions in any
image should be micro-textures obeying the linear superposition principle and the random shift
principle. Fig. 1 shows an example. Five rectangles belonging to various homogeneous regions were
picked in a high resolution landscape (1762 × 1168 pixels). These textures are displayed in pairs
where on the left is the original sub-image and on the right is a simulation obtained by the RPN
algorithm elaborated in this paper. These micro-textures are reasonably well emulated by the RPN
algorithm. This success encourages RPN simulation attempts on the homogeneous regions of any
image. Yet, many images or image parts usually termed textures do not fit to the micro-texture
requisites. Typically, periodic patterns with big visible elements, such as brick walls, are not micro-
textures. More generally, textures whose building elements are spatially organized, such as the
branches of a tree, are not micro-textures (see Fig. 13). Nonetheless, each textured object has a
critical distance at which it becomes a micro-texture. For instance, as illustrated in Fig. 2, tiles at
a close distance are a macro-texture, and are not amenable to phase randomization. The smaller
tiles extracted from the roofs in Fig. 16 can instead be emulated.

1.2 Random Phase and Random Shift Algorithms

The two texture models under study have been used either to create new textures from initial spots,
or to analyze texture perception. Emulating real texture samples by these algorithms requires the
solution of several technical obstacles which will be treated in Section 5. Here, we first sketch the
mathematical and algorithmic discussion.

Random phase textures are produced by random phase noise (RPN) which is a very simple
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Figure 1: Some examples of micro-textures taken from a single image (water with sand, clouds, sand, waves
with water ground, pebbles). The emplacements of the original textures are displayed with red rectangles.
Each micro-texture is displayed together with an outcome of the RPN algorithm to its right. These micro-
textures are reasonably well emulated by RPN. Homogeneous regions that have lost their geometric details
due to distance are often well simulated by RPN

(a) Input (b) RPN ×1.5 (c) Input (d) RPN ×1.5

(e) Input (f) RPN ×1

Figure 2: The first two inputs are rectangles taken from the tiled roofs in Fig. 16. The third input is again
a piece of tiled roof taken at a shorter distance. RPN does well on tiles viewed at a distance at which they
make a micro-texture. RPN fails instead on the third sample, which is a macro-texture
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Julesz theory Texture model Algorithm(s)

1st Random phase RPN
2nd (textons) Random shift (A)DSN

Figure 3: Julesz theories, corresponding linear texture types, and the algorithms generating them. RPN
stands for random phase noise and (A)DSN for (asymptotic) discrete spot noise

algorithm performing phase randomization. Random shift textures correspond to a classical model
in signal processing called shot noise [11]. Spot noise, the two-dimensional shot noise, was introduced
by van Wijk [12, 13] to create new textures from simple spot images (Fig. 4). In this paper we call
discrete spot noise (DSN) the corresponding discrete model.

Van Wijk [12] claimed that the asymptotics of discrete spot noise (DSN) is obtained by uniformly
randomizing the phases of all Fourier coefficients. In short, it is claimed that the DSN asymptotic
process is the random phase noise (RPN ). Our first result here is that the limit of DSN is not RPN
but is another process, which we shall call asymptotic discrete spot noise (ADSN). The difference
between the two models lies in the modulus of the Fourier transform of their outcomes. For RPN,
it is given by the Fourier magnitude of the spot whereas for ADSN, it is subject to pointwise
multiplication by a Rayleigh noise.

The two investigated algorithms and the corresponding Julesz theories and texture models are
summarized in the table of Fig. 3.

It will be shown that ADSN and RPN, in spite of their theoretical differences, give perceptually
similar results and therefore justify van Wijk’s approach [12] (see Fig. 6 and 11). These experiments
show that the perception of random phase textures is actually robust to the pointwise multiplication
of the Fourier magnitude by a Rayleigh noise. By contrast, natural images containing macroscopic
structures are in no way robust to this same perturbation (Fig. 16). Hence the perceptual invariance
of random phase textures to a multiplicative noise on their magnitude possibly characterizes this
kind of texture.

In short, mathematical arguments clarify the asymptotics of DSN and also establish a link
between Julesz’s first and second texture perception theories: their linearized versions give percep-
tually equivalent textures.

This mathematical and experimental study is completed by three important improvements of
the texture synthesis algorithms that stem from both considered randomization processes. The
ADSN and RPN algorithms are first extended to color images by preserving the phase coherence
between color channels (Fig. 7). Second, artifacts induced by the non periodicity of the input sample
are avoided by replacing the input sample with its periodic component [14]. Eventually, a natural
extension of the method permits to synthesize RPN and ADSN textures with arbitrary size.

The resulting algorithms are fast algorithms based on fast Fourier transform (FFT). They can
be used as powerful texture synthesizers starting from any input image. As explained above, the
algorithms under consideration do not reproduce all classes of textures: they are restricted to the
so-called micro-textures. Exemplar-based methods like those of [15] and the numerous variants
that have followed, see e.g. [16], successfully reproduce a wide range of textures, including many
micro- and macro-textures. However, these methods are also known to be slow, highly unstable,
and to often produce garbage results or verbatim copy of the input (see Fig. 14). In contrast, RPN
and ADSN are limited to a class of textures, but are fast, non iterative and parameter free. They
are also robust, in the sense that all the textures synthesized from the same original sample are
perceptually similar. Speed and stability are especially important in computer graphics, where the
classical Perlin noise model [17] has been massively used for almost 25 years. Similarly to ADSN,
the Perlin noise model (as well as its numerous very recent variants [18, 19, 20]) relies on stable
and fast noise filters.
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(a) n = 102 (b) n = 103 (c) n = 104 (d) n = 105

Figure 4: Outcomes of the DSN associated with the binary image of a small disk for different values of n.
As n increases the random images fn converge towards a stationary texture

The plan of the paper is as follows. The two discrete mathematical models corresponding to
Julesz first and second axioms are presented in Sections 2 and 3. The mathematical difference
between these two processes is emphasized in Section 4. The corresponding micro-texture synthesis
algorithms are introduced in Section 5, and their performance illustrated in Section 6.

2 Asymptotic Discrete Spot Noise

2.1 Discrete Spot Noise

We consider the space R
M×N of discrete, real-valued and periodic rectangular images. The compo-

nents of an image f ∈ R
M×N are indexed on the set Ω = {0, . . . ,M − 1} × {0, . . . , N − 1}, and by

periodicity f(x) = f(x1 mod M,x2 mod N) for all x = (x1, x2) ∈ Z
2.

Let h be a real-valued image and let Xp, p = 1, 2, . . . be independent identically distributed
(i.i.d.) random variables (RV), uniformly distributed on the image domain Ω. We define the discrete
spot noise (DSN) of order n associated with the spot h as the random image

fn(x) =
n∑

p=1

h(x−Xp), x ∈ Ω.

Fig. 4 shows several realizations of the DSN for several values of n where the spot h is the binary
image of a small disk. It appears clearly that as n increases the random images fn converge towards
a texture-like image. Our purpose is to rigorously define this limit random texture and determine
an efficient synthesis algorithm.

2.2 Definition of the Asymptotic Discrete Spot Noise

In order to define an interesting limit to the DSN sequence we need to normalize the images fn.
As fn is the sum of n i.i.d. random images, the normalization is given by the central limit theorem.
This limit will be called the asymptotic discrete spot noise (ADSN) associated with h.

Let X be a uniform RV on Ω and let H(x) = h(x−X). A direct computation shows that the
expected value of H is E(H) = m1 where m denotes the arithmetic mean of h and 1 is the image
whose components are all equal to 1. Similarly the covariance of the random image H is shown to
be equal to the autocorrelation of h, that is for all (x, y) ∈ Ω2

Cov (H(x), H(y)) = Ch(x, y),

where

Ch(x, y) =
1

MN

∑

u∈Ω
(h(x− u)−m) (h(y − u)−m) . (1)

5



The central limit theorem ensures that the random sequence n−1/2 (fn − nm1) converges in
distribution towards the MN -dimensional normal distribution N (0, Ch), yielding the following def-
inition.

Definition 1. (Asymptotic discrete spot noise)
With the above notations, the asymptotic discrete spot noise (ADSN) associated with h is the
normal distribution N (0, Ch).

2.3 Simulation of the ADSN

It is well known that applying a spatial filter to a noise image results in synthesizing a stochastic
texture, the characteristic features of which are inherited from the filter and from the original
noise [21, 22]. In this section we show that the ADSN associated with h can be simulated as a
convolution product between a normalized zero-mean copy of h and a Gaussian white noise. We
recall that the convolution of two (periodic) images f, g of RM×N is defined by

(f ∗ g) (x) =
∑

u∈Ω
f(x− u)g(u), x ∈ Ω.

Theorem 2. (Simulation of ADSN)
Let Y ∈ R

M×N be a Gaussian white noise, that is, a random image whose components are i.d.d.
with distribution N (0, 1). Let h be an image and m be its arithmetic mean. Then the random image

1√
MN

(h−m1) ∗ Y (2)

is the ADSN associated with h.

Proof. Denote

h̃ :=
1√
MN

(h−m1)

and Z := h̃∗Y the random image defined by Equation (2). Since the convolution product is a linear
operator, Z is Gaussian and E(Z) = h̃ ∗ E(Y ) = 0. Besides, for all (x, y) ∈ Ω,

Cov (Z(x), Z(y)) = E (Z(x)Z(y))

= E

[(∑

u∈Ω
h̃(x− u)Y (u)

)(∑

v∈Ω
h̃(y − v)Y (v)

)]

=
∑

u∈Ω
h̃(x− u)h̃(y − u),

since E (Y (u)Y (v)) = 1 if u = v and 0 otherwise. Using Equation (1) and the definition of h̃, we
obtain Cov (Z(x), Z(y)) = Ch(x, y). Hence Z is Gaussian with distribution N (0, Ch).

3 Random Phase Noise

In this section we analyze a stochastic process, the random phase noise (RPN) which was used
by van Wijk and his co-workers as a technique to synthesize stationary textures [12, 23]. Using a
random phase to obtain a texture from a given Fourier spectrum was first evoked by Lewis in [24].

The RPN associated with a discrete image h is a random real image that has the same Fourier
modulus as h but has a random phase. We first define a uniform random phase, which is a uniform
random image constrained to be the phase of a real-valued image.

6



Definition 3. (Uniform random phase)
We say that a random image θ ∈ R

M×N is a uniform random phase if

1. θ is odd: ∀x ∈ Ω, θ(−x) = −θ(x),

2. each component θ(x) is either uniform on the interval ]−π, π] if x /∈
{
(0, 0) ,

(
M
2 , 0

)
,
(
0, N2

)
,
(
M
2 ,

N
2

)}
,

or uniform on the set {0, π} otherwise,

3. for every subset S of the Fourier domain which does not contain distinct symmetric points,
the family of RV {θ(x)|x ∈ S} is independent.

Definition 4. (Random phase noise)
Let h ∈ R

M×N be an image. A random image Z is a random phase noise (RPN) associated with
h if there exists a uniform random phase θ such that

Ẑ(ξ) = ĥ(ξ)eiθ(ξ), ξ ∈ Ω.

It is equivalent to define RPN as the random image Z such that Ẑ(ξ) =
∣∣∣ĥ(ξ)

∣∣∣ eiθ(ξ), where
θ is a uniform random phase. This is because if φ is the phase of a real-valued image and θ is a
uniform random phase then the random image (θ + φ) mod 2π is also a uniform random phase.
One of the assets of this second definition is to emphasize that the RPN associated with an image
h only depends on the Fourier modulus of this image. However, as developed in Section 5.1, the
first definition permits to extend RPN to color images.

4 Spectral Representation of ADSN and RPN

The ADSN associated with an image h is a convolution of a normalized zero-mean copy of h with
a Gaussian white noise whereas the RPN is obtained by multiplying each Fourier coefficient of h
by a uniform random phase.

ADSN is easily described in the Fourier domain. A white Gaussian noise image has a uniform
random phase, its Fourier modulus is a white Rayleigh noise and its Fourier phase and modulus are
independent [25, Chapter 6]. Consequently, the convolution theorem ensures that the phase of the
ADSN is a uniform random phase whereas its Fourier modulus is the pointwise multiplication of
the Fourier modulus of h by a Rayleigh noise.

Thus the phases of ADSN and RPN are both uniform random phases. However, the Fourier
modulus of the two processes have different distributions: The Fourier modulus of the RPN is by
definition equal to the Fourier modulus of the original image h whereas the Fourier modulus of
the ADSN is the modulus of h degraded by a pointwise multiplication by a white Rayleigh noise
(see Fig. 5). This characteristic of the limit process is clearly visible on Fig. 3 and 4 of the recent
paper [20] where the noisy Fourier spectra of some spot noise textures are displayed.

To highlight the differences between ADSN and RPN, consider the effect of both processes on
a single oscillation h(x) = sin(λx1 + µx2). Because of the phase shift, the RPN associated with
h is a random uniform translation sin(θ + λx1 + µx2) of h whereas the ADSN associated with
h is a random uniform translation of h multiplied by a random Rayleigh amplitude R that is
R sin(θ + λx1 + µx2). In the same way, if h is the sum of two oscillations then the RPN is still a
translation of h whereas the ADSN may favor one of the two frequencies as illustrated by Fig. 6.

5 Texture Synthesis Algorithms

Theorem 2 and Definition 4 yield two fast synthesis algorithms based on FFT. To preserve the mean
of outcomes, the mean value m of the input image is added to the ADSN outcomes, while for RPN,
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(a) Gaussian spot (b) ADSN (c) (d)

Figure 5: ADSN 5(b) associated with a Gaussian spot 5(a) and their respective Fourier modulus 5(d)
and 5(c) represented on logarithmic scale. The modulus of the ADSN is the pointwise multiplication of the
modulus of h by a white Rayleigh noise

(a) Input (b) RPN (c) ADSN (d) ADSN

Figure 6: Differences between the outcomes of the RPN and the ADSN associated with the bisinusoidal
image6(a). The RPN 6(b) is always a translation of the original image 6(a) whereas the ADSN randomly
favors one of the two frequencies (two different realizations are displayed in 6(c) and 6(d))

the condition θ(x) = 0 is enforced if x = 0. Observe that both processes can produce values outside
the initial range. These values are usually very few and are simply cut off. An alternative yielding
visually similar results is to stretch the histogram of outcomes.

Two important practical points for the simulation of ADSN and RPN associated with non
periodic color images are addressed next, and then we consider the issue of synthesizing ADSN and
RPN textures having larger size than their initial sample.

5.1 Extension to Color Images

Color RPN : As we saw in Section 3, the RPN process for gray level images is synthesized either
by adding a uniform random phase to the phase of the input image or by replacing the phase of
this input image by a uniform random phase. The first option allows one to simply use an RGB
representation of the image to perform color synthesis. Indeed, adding the same random phase to
the original phases of each color channel preserves the phase displacement between channels. This
is important as it permits to create new textures without creating false colors, as Fig. 7 shows.

Note that this procedure is much simpler than a classical approach to color texture synthesis
relying on a PCA transform of the color space [26, 22], which for some images leads to color mixing.

Color ADSN : The mathematical analysis of Section 2 is easily extended to color images using
the linearity of the RGB representation. The ADSN associated with a color image is thus obtained
by convolving each color channel with the same realization of a white Gaussian noise. As for the
color RPN, the phase of each color channel of the color ADSN is random whereas the initial phase
displacement between color channels is preserved.
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(a) Input (b) RPN (c) Wrong RPN

(d) Input (e) RPN (f) Wrong RPN

Figure 7: RPN associated with color images: The RPN 7(b) and 7(e) of the RGB color images 7(a) and 7(d)
are obtained by adding the same random phase to each phase of the three color channels. If one imposes
the same random phase to each color channel one obtains images 7(c) and 7(f), the colors of which are not
consistent with the original images

5.2 Avoiding Artifacts Due to Non Periodicity

Since both ADSN and RPN are based on FFT the periodicity of the input sample is a critical
requirement. A digital image can always be considered as a periodic image but this results in
creating artificial discontinuities at its boundary. In our case it is not possible to avoid this problem
using a symmetrization of the image because this would change the features of the output, for
example by creating new characteristic directions.

The goal here is to slightly change the input sample h to enforce its periodicity. This is done by
replacing h with its periodic component p = per(h) as introduced in [14]. In the original paper [14],
p is defined as the solution of a variational problem. One can in fact show that p is the unique
solution of the Poisson problem {

∆p = ∆ih

mean(p) = mean(h)
(3)

where ∆ is the usual discrete periodic Laplacian and ∆i is the discrete Laplacian in the interior of
the domain. For a periodic image f , these discrete operators are defined by

∆f(x) = 4f(x)−
∑

y∈Nx

f(y)

and
∆if(x) = |Nx ∩ Ω| f(x)−

∑

y∈Nx∩Ω
f(y),

where Nx ⊂ Z
2 denotes the 4-connected neighborhood of x and |Nx ∩ Ω| the number of those

neighbors that are in Ω. Note that ∆f and ∆if only differ at the boundary of the image domain.
As a consequence (3) ensures that p and h have a similar behavior inside the image domain. In
particular if h is constant at its boundary we have p = h.
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(a) Input h (b) p (c) s+mean(h)

(d) ADSN (h) (e) ADSN (p) (f) s+ADSN (p)

Figure 8: First row: periodic and smooth component of the input sample h = p+ s [14]. The mean of h is
added to the smooth component s for visualization. Second row: ADSN associated with the original texture
sample h and ADSN associated to its periodic component p. In 8(d) the vertical stripes are due to the
change of lighting between the left and the right sides of the input sample 8(a). When using the preprocessed
decomposition (8(e)) this artifact due to the non periodicity of the input sample does not appear (results are
similar for the RPN algorithm). Note that for rendering purpose one can add back the smooth component
s to the ADSN associated with p

In the general case p is computed directly by the classical FFT-based Poisson solver [27] since
in the Fourier domain (3) becomes

{(
4− 2 cos

(
2ξ1π
M

)
− 2 cos

(
2ξ2π
N

))
p̂(ξ) = ∆̂ih(ξ), ξ ∈ Ω

p̂(0) = ĥ(0).

The definition of p given by (3) is preferable, in the context of this paper, to the original one of [14].
Indeed it enables the direct computation of the Fourier transform of p, which is useful in view of
the synthesis algorithm.

Using the periodic component p in place of the initial image h permits to avoid strong artifacts
due to the non periodicity of the input samples, as illustrated by Fig. 8. From now on, this
preprocessing will be used in all numerical experiments.

Observe that other solutions exist in the literature for finding a “good” periodic representative of
h, especially for solving the periodic tiling problem (see [28] for example). Nevertheless the periodic
component p is particularly adapted to our problem since it has been defined to eliminate the “cross
structure” present in the Fourier transform [14].

5.3 Synthesizing Textures With Arbitrary Sizes

So far both discussed algorithms synthesize output textures which have the same size as the original
input sample. However, an important issue in texture synthesis is to synthesize textures with
arbitrary large size from a given sample. In this section we propose a practical method which solves
this problem for ADSN and RPN textures (see Fig. 10).
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Figure 9: Cross section and gray-level representation of the smooth transition function ϕα used to attenuate
the spot along the border of the image. On the intervals [0, α] and [1 − α, 0] the function decreases as a
Gaussian function with standard deviation σ = α/4 (here α = 0.2). To preserve the variance of the spot, ϕα

is normalized so that its L2-norm equals 1

Given a spot h of size M1 × N1 and an output size M2 × N2, with M2 > N1 and N2 >
N1, we synthesize ADSN (resp. RPN ) textures of size M2 × N2 by computing the ADSN (resp.
RPN ) associated with an extended spot h̃ ∈ R

M2×N2 which represents suitably the original spot
h ∈ R

M1×N1 . The extended spot h̃ ∈ R
M2×N2 is constructed by pasting a normalized copy of the

periodic component p of h in the center of an image constant to m. More precisely:

h̃(x) = m+

√
M2N2

M1N1
(p(x)−m)✶R1

(x), (4)

where ✶R1
denotes the indicator function of R1, the centered rectangle of size M1 × N1 included

in Ω2 = {0, . . . ,M2 − 1} × {0, . . . , N2 − 1}. As defined by Equation (4), h̃ has the same mean and
variance as p, and the autocorrelation of both spots is close for small distances. However h̃ has
discontinuities along the border of R1 which is undesirable since, as illustrated by Fig. 8, those
discontinuities can lead to artifacts after randomization.

In order to wear off this brusque transition the inner spot p−m is progressively attenuated at
its border. This is done by multiplying p − m by a smooth transition function ϕα. The function
ϕα, which is precisely described in Fig. 9, is constant at the center of the domain and decreases
smoothly to zero at the border, similarly to a Gaussian function. All experiments in this paper are
performed using α = 0.2.

The resulting spot extension technique is illustrated in Fig. 10. In this example α = 0.2. Ex-
periments show that the value of this parameter is not critical and that for most images α = 0.2
seems a good compromise between wave artifact correction and information loss.

Summary of the synthesis method: To conclude this section we summarize the whole
procedure for both ADSN and RPN texture synthesis algorithms. The input of both algorithms is
a color input sample h of size M1 ×N1, the size M2 ×N2 of the output texture and (optionally) a
value for the parameter α involved in the smooth transition function ϕα.

1. Compute the periodic component p of h.

2. Extends p into h̃ using Equation (4) and the pointwise multiplication by the smooth transition
function ϕα.

3. • ADSN : Simulate a Gaussian white noise Y and return Z = m + 1√
M2N2

(
h̃−m

)
∗ Y ,

the convolution being applied to each color channel of h̃−m.
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(a) Spot h (b) Extended Spot h̃ (c) RPN (h) (d) RPN

(

h̃
)

Figure 10: Spot extension technique: the original spot h 10(a) is extended into the spot 10(b) by copying its
periodic component p in the center, normalizing its variance (see Equation (4)), and smoothing the transition
at the border of the inner frame by multiplying by the function ϕα (here α = 0.2). The RPN associated to
the extended spot is visually similar to the RPN associated with the original spot and has an higher size.
Results are similar for the ADSN algorithm

• RPN : Simulate a random phase θ with θ(0) = 0 and compute Z by adding θ to the
phase of each color channel of h̃.

Note that step 1) and step 3) are based on FFT whereas step 2) has linear complexity. Eventually
both algorithms have a complexity of O (M2N2 log (M2N2)). The slight advantage of RPN is that
it only necessitates the generation of about M2N2

2 uniform variables versus the M2N2 Gaussian
variables necessary for the ADSN. Moreover, with RPN the Fourier modulus of the original sample
is conserved.

6 Numerical Results

6.1 Perceptual Similarity of ADSN and RPN

Even though the two processes ADSN and RPN have different Fourier modulus distributions (see
Section 4), they produce visually similar results when applied to natural images as shown by Fig. 11.
In order to better illustrate this perceptual similarity, we display for each input image the corre-
sponding ADSN and RPN to which the same uniform random phase was imposed. Recall that it
was shown in Fig. 6 that perceptual similarity does not hold in the case of images having a sparse
Fourier spectrum.

6.2 RPN and ADSN as Micro-Texture Synthesizers

This section investigates the synthesis of real-world textures using RPN. As mentioned above, ADSN
produces visually similar results.

Fig. 12 and Fig. 11 show that the RPN algorithm can be used to synthesize micro-textures
similar to a given original sample, whereas Fig. 13 illustrates that it gives poor results with macro-
textures. For this kind of texture, resampling algorithms (e.g. [15] or [29]) can give impressive
results if the parameters (window or patch size, initialization, scanning order, . . . ) are well-chosen
for each input image. However, as said in the introduction, these algorithms are also known for their
tendency to sometimes produce erratic results or to excessively use verbatim copying (see Fig. 14),
not to mention their computational cost. Recent inpainting algorithms [30, 16] partially solve these
issues, but instabilities remain in the case of texture synthesis.
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Figure 11: ADSN (middle) and RPN (right) associated with several input textures (left): stone, carpet,
pink concrete. In order to compare the results the same uniform random phase is imposed to both ADSN
and RPN. Observe that there is nearly no perceptual difference between the outcome of both algorithms.
This perceptual similarity has been observed for every ADSN and RPN outcomes associated with natural
textures, showing that random phase and random shift textures are perceptually the same class of texture
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Figure 12: Examples of well-reproduced textures: RPN (right) associated with different input textures
(left): wood, indoor wall, stone wall, wallpaper, pinewood, dirt, water. All these textures are satisfyingly
reproduced by the RPN algorithm, which indicates that they are random phase textures

Figure 13: Examples of failures: RPN (right) associated with different input textures (left): cat fur, salmon,
thuja, bricks. All input textures are, to some extent, not well reproduced by the RPN algorithm and therefore
are not random phase textures. On the second line are displayed two highly structured textures to which the
algorithm is clearly not adapted
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(a) Input
image

(b) w = 9 (c) w = 15 (d) w = 21 (e) RPN

Figure 14: Illustrations of the limitations of exemplar-based algorithms. The pinewood texture 14(a) of
size 256× 256 pixels was used to synthesize twice larger textures using the Efros-Leung algorithm [15] with
several values for the window width w (14(b), 14(c), and 14(d)). These algorithms are prone to grow garbage
at times, as well as to produce verbatim copies of the input textures. In contrast, as illustrated by 14(e), the
RPN algorithm is stable

In contrast RPN (as well as ADSN ), despite being limited to the synthesis of specific textures,
is parameter-free and non iterative. Besides, it is very fast with a complexity of O(MN log(MN)).
Last but not least, RPN (as well as ADSN ) produces visually stable results: for any given image it
always produces perceptually similar results, as illustrated by Fig. 15. As said in the introduction,
this property is important in view of an automatic use in the context of computer graphic appli-
cations and explain why older and very simple synthesis procedures such as Perlin noise [17], also
relying on noise filtering, are still popular today [18, 19, 20].

6.3 A Perceptual Robustness of Phase Invariant Textures

In Section 4 we showed that the ADSN associated to a spot can be obtained from its RPN by a
pointwise product of the Fourier modulus with a Rayleigh noise. Hence the observed visual similarity
of the outcomes of the ADSN and the RPN (see Fig. 11) leads us to claim that the perception of
random phase or random shift textures is actually robust to pointwise multiplication of the Fourier
modulus by a Rayleigh noise.

One can wonder wether this robustness is also observed for every image. The answer is no and
Fig. 16 illustrates that non random phase images are damaged by this multiplication. Thus, the
perceptual invariance of random phase textures to a multiplicative noise on their magnitude may
be a characteristic of this kind of texture.

7 Conclusion

This article presented a mathematical analysis of spot noise texture models and synthesis methods.
Two texture perception models stemming from Julesz’s theories were recalled. The first one is
the random phase model, which leads exactly to the RPN algorithm. The second one is the shift
invariant texton model. When applied in conjunction with the superposition principle, we have seen
that this last model yields a stationary texture model which we called ADSN. Experimental evidence
has shown that random phase textures and random shift textures generated from the same sample
are indistinguishable. Consequently, an unexpected additional perceptual invariance property of
random phase textures was uncovered: random phase textures are perceptually invariant under a
multiplicative noise on the Fourier modulus. To the best of our knowledge, this surprising fact had
never been pointed out.

As for the texture synthesis algorithms, three significant technical points have been developed
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Figure 15: Several outcomes of the RPN associated with the same input image (top left). RPN (as well as
ADSN ) is a visually stable algorithm: indeed even though the output images are locally quite different they
are always visually similar

Figure 16: Effect of the pointwise multiplication of the Fourier modulus by a Rayleigh noise. The non random
phase images (left and middle) are damaged whereas the random phase texture (right) is perceptually robust
to this transformation
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permitting the synthesis of textures from real-world texture samples. Numerical results have shown
that ADSN and RPN reproduce satisfyingly well a relatively large range of textures, namely the
micro-textures. The algorithms are ideally fast and produce visually stable results, two properties
which are crucial for computer graphics applications.

Several new perspectives open up. First, a similar study should be conducted on perceptually
based texture synthesis methods relying on wavelet decompositions, following the seminal work
of [26]. Second, a strong limitation of the models discussed here is the exclusive use of a lin-
ear superposition principle, and it is therefore of interest to investigate asymptotic properties of
more elaborate generative texture models involving an occlusion principle or random transparent
templates.
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[7] Mingshi Wang and André Knoesen. Rotation- and scale-invariant texture features based on
spectral moment invariants. J. Opt. Soc. Am. A, 24(9):2550–2557, 2007.
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