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RANDOM POINT FIELDS ASSOCIATED WITH CERTAIN
FREDHOLM DETERMINANTS II: FERMION SHIFTS

AND THEIR ERGODIC AND GIBBS PROPERTIES

BY TOMOYUKI SHIRAI1 AND YOICHIRO TAKAHASHI2

Tokyo Institute of Technology and Kyoto University

We construct and study a family of probability measures on the con-
figuration space over countable discrete space associated with nonnegative
definite symmetric operators via determinants. Under a mild condition they
turn out unique Gibbs measures. Also some ergodic properties, including the
entropy positivity, are discussed in the lattice case.

1. Introduction. The fermion point processes or point fields have been stud-
ied from several viewpoints by many authors, for example, [1, 2, 17, 22, 24] since
Macchi [13, 14], and we formulated it in terms of the Laplace transform together
with boson point fields and others in our previous papers [17, 18]. Let R be a
locally compact Hausdorff space, λ a Radon measure on R and K an integral op-
erator on the L2-space L2(R,λ). We continue to assume that K is symmetric as
in [17, 18] although the non-symmetric case is also studied in [1]. A probability
Borel measure µ on the locally finite configuration space Q over R is called a
fermion point field or a fermion point process associated with the operator K if its
Laplace transform is given by the Fredholm determinant:∫

Q
µ(dξ)e−〈ξ,f 〉 = det

(
I − (1 − e−f )1/2K(1 − e−f )1/2)(1.1)

for every nonnegative continuous function f with compact support where
〈ξ, f 〉 =∑

i f (xi) if ξ =∑
i δxi

.
In the present paper we focus on the case where R is a countable discrete

space, λ is the counting measure and so L2(R,λ) = �2(R) and investigate its
basic properties, especially some ergodic properties and the Gibbs property, as we
announced in [17]. The condition on K for the existence of µ is the same as before:
Spec(K) ⊂ [0,1]. But we take another equivalent definition, (1.2) and another
method of the proof which fit for the discrete structure. Since the fermion processes
have no multiple points, we can take the product space {0,1}R as the configuration
space Q. Moreover, a configuration ξ ∈ Q = {0,1}R will often be identified with
a countable subset of the base space R and then 〈ξ, f 〉 =∑

x∈ξ f (x).
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THEOREM 1.1. Let R be a countable discrete space and K be a bounded
symmetric operator on �2(R) and assume that its spectrum Spec(K) is contained
in the closed unit interval [0,1]. Then there exists a unique probability Borel
measure µ = µK on Q = {0,1}R such that for any finite subset �

µ({ξ ∈ Q | ξ ⊃ �}) = det(K(x, y))x,y∈�.(1.2)

Moreover, (1.2) is equivalent to (1.1) and the formula∫
Q

µ(dξ)e−〈ξ,f 〉 = det
(
I − (1 − e−f )K

)
(1.3)

holds whenever the support of a function f is finite even if it is complex valued.

Theorem 1.1 will be proved in Section 2 by dividing it into Theorems 2.1
and 2.4. Although we only state the case of symmetric operators, the proof works
in the case of hermitian operators without any essential changes.

The following fact may justify the naming of the fermion process.

EXAMPLE 1.2. Let H be a bounded symmetric operator on �2(R) with
Spec(H) ⊂ [0,1]. Assume that H belongs to the trace class and let

H(x,y) =
∞∑
i=1

λiψi(x)ψi(y)(1.4)

be its eigenexpansion. Then, it follows from Proposition 2.8 that

µH

(
ξ(xi) = 1 (1 ≤ i ≤ k); ξ(x) = 0 otherwise

)
= ∑

1≤n1<···<nk<∞

( ∏
i∈{n1,...,nk}

λi

∏
j∈{n1,...,nk}c

(1 − λj )

)

× ∣∣det
(
ψni

(xj )
)
i,j∈{1,...,k}

∣∣2.
(1.5)

If we interpret H as a Hamiltonian and consider the Fermi–Dirac statistics, the
wave functions of many body system are given by so-called Slater determinants
�n1,...,nk

(x1, . . . , xk) = det(ψni
(xj ))i,j=1,...,k according to the Pauli exclusion

principle. Thus, the fermion process µH describes the probability of this many
body system.

The discrete and determinantal structure also brings out some interesting
properties, as are shown in Section 2. In particular, the image measure of µ under
the exchange of 0 and 1 at each site is the fermion process associated with the
operator I − K instead of K .

In Sections 3–5 we focus mainly on the case where R = Zd and K is a
symmetric convolution operator. We consider the shifts σi by unit vectors on Zd
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and call the dynamical systems (Q,µ,σi,1 ≤ i ≤ d) fermion shifts in the present
paper. It is always ergodic, a fortiori, mixing. It should be noted that Szegö’s first
theorem on Toeplitz matrices is a special case of a large deviation result stated
as Theorem 3.6.

In Section 4 we give two estimates for the metric entropy or the Kolmogorov–
Sinai entropy h(µ) of fermion shifts (Theorem 4.1). As a consequence, we obtain
the following:

THEOREM 1.3. The metric entropy of a fermion shift is positive unless K = O

or I .

Let us denote by 0�01�1 the cylinder set {ξ ∈ Q | ξ(x) = 0 on �0 and ξ(x) = 1
on �1}. In Lemma 5.5 of Section 5 we show a uniform estimate for the ratio of
measures:

1 − 2γ

(∑
i∈�

∑
j∈�′

k(i − j)2

)1/2

≤ µ(0�0∪�′
01�1∪�′

1)

µ(0�01�1)µ(0�′
01�′

1)
≤ expγ

(∑
i∈�

∑
j∈�′

k(i − j)2

)1/2

.

(1.6)

The estimate (1.6) follows from an estimate of det(I + T ) for certain trace class
operators on Hilbert spaces (Lemma 5.1). As a consequence we get the following:

THEOREM 1.4. The fermion point process µ is always tail trivial whenever
the spectrum of K in contained in the open unit interval (0,1).

Also, the weak Bernoulli property of each of the shifts σi follows from (1.6)
under the condition that

∑
n∈Zd |n||k(n)|2 < ∞ (Theorem 5.8).

In the final Section 6 we show the Gibbs property (Theorem 6.2) of the fermion
point fields.

THEOREM 1.5. Assume that Spec(K) ⊂ (0,1). Set

J = (I − K)−1K(1.7)

and denote by Jξ the restriction of J to the set ξ . Then the fermion process µ is
the unique Gibbs measure for the formal Hamiltonian

H(ξ) = − log detJξ .(1.8)

Precisely, it is the Gibbs measure for the potential

U({x1, . . . , xn} | ξ) = − log det
(
J (xi, xj ) − 〈J−1

ξ j
xi

ξ , j
xj

ξ 〉)ni,j=1(1.9)

for any ξ ∈ Q and any finite subset {x1, . . . , xn} of R \ ξ and jx
ξ = (J (x, y))y∈ξ .
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Concerning the proof of Theorem 1.5 we would like to emphasize two things.
The Gibbs property will be shown as Theorem 6.2. The crucial key to its proof

is the relationship, stated as Theorem 6.3, between the infimum of a quadratic
form on a subspace {e + f ;f ∈ D1} of a pre-Hilbert space Re ⊕ D1 ⊕ D2 and
the infimum of its dual quadratic form on the subspace {e + g;g ∈ D2} when e is
a unit vector orthogonal to both of D1 and D2. This fact together with upper and
lower estimates enables us to compute the potential U(x|ξ) as the limit of the ratio
of measures of cylinder sets. It seems to the authors that the above fact has been
unknown even in finite dimensional cases except for some trivial cases.

The uniqueness of Gibbs measures for U will be shown as Theorem 6.8. In
its proof we compute the limits of determinants of infinite matrices by reducing
them to the convergence problem of certain quadratic forms thanks to the positive
definiteness of those matrices. This idea was suggested by a technique used by
Szegö in [25] (cf. [6]).

2. Fermion point field over a discrete space. Let R be a countable discrete
set, λ be the counting measure on R, and Q = Q(R) = {0,1}R. We regard
an element ξ ∈ Q as a function ξ :R → {0,1} and sometimes identify it
with the subset {x ∈ R; ξ(x) = 1}. Throughout this paper, we assume that the
bounded operator K :�2(R) → �2(R) is symmetric and the spectrum set, denoted
by Spec(K), is contained in the unit closed interval [0,1]. We denote K ≥ O

if K is nonnegative definite and K1 ≥ K2 if K1 − K2 is nonnegative definite.
The condition (1.2) is equivalent to the following as is seen from the inclusion–

exclusion formula:

µ(0�01�1) = det
(
P�0(I� − K�) + P�1K�

)
(2.1)

for any mutually disjoint finite subsets �0 and �1 with union � = �0 ∪ �1
where P� stands for the orthogonal projection to the subspace �2(�) and K� =
P�KP�. The kernel of the operator K will be denoted by K(x,y), x, y ∈ R and
we sometimes identify K� with the matrix (K(x, y))x,y∈� as is already done
in (2.1).

Thus, to prove the former half of Theorem 1.1 it suffices to show the following:

THEOREM 2.1. Let R be a countable discrete set and K be a bounded
symmetric operator on �2(R) with Spec(K) ⊂ [0,1]. Then there exists a unique
Borel probability measure µ = µK on the configuration space Q = Q(R) =
{0,1}R which satisfies the condition (2.1).

We need the following simple fact.

LEMMA 2.2. Let A and B be N by N matrices and P� be the projection to a
subset � of {1,2, . . . ,N}, that is, the N by N diagonal matrix with entries

P�(i, i) =
{

1, if i ∈ �,
0, if i ∈ �c.

(2.2)
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Then

det(A + B) = ∑
�⊂{1,2,...,N}

det(P�A + P�cB).(2.3)

Moreover, if A and B are nonnegative definite matrices and commute each other,
then

det(P�A + P�cB) ≥ 0,(2.4)

for any � ⊂ {1,2, . . . ,N}.

PROOF. The formula (2.3) is almost trivial, again, by the inclusion–exclusion
formula. If A and B commute and are positive definite, then the matrix AB−1 =
B−1/2AB−1/2 is also positive definite and so

det(P�A + P�cB) = detB det(P�AB−1 + P�c)

= detB det(AB−1)�(2.5)

≥ 0.

Hence, the second assertion (2.4) holds by continuity. �

REMARK. In the context of the previous paper [17], the formula (2.3)
with B = I may be expressed by using traces of exterior products as

det(I + A) =
N∑

n=0

tr(∧nA)(2.6)

and

tr(∧nA) = ∑
|�|=n

〈∧nAe�, e�〉

= ∑
|�|=n

detA�

(2.7)

where e� is defined as follows by taking the canonical basis ei = (0,0, . . . ,0,
i

1̆,0, . . . ,0):

e� = ei1 ∧ · · · ∧ eik , � = {i1, . . . , ik},1 ≤ i1 < · · · < ik ≤ n.(2.8)

Also, whenever the matrix

J [�] = (I� − K�)−1K�(2.9)

or its inverse J [�]−1 = K−1
� − I� is well defined, one may write

µ(0�01�1) = det(I� − K�)det (J [�])�1
(2.10)
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or

µ(0�01�1) = detK� det(J [�]−1)�0,(2.11)

respectively.

PROOF OF THEOREM 2.1. Define the family of set functions {µ�}�⊂R

on {0,1}� by

µ�(�0) = det
(
P�0(I� − K�) + P�1K�

)
,(2.12)

where � = �0 ∪ �1 with �1 = �\�0. Since K is a symmetric operator
with 0 ≤ K ≤ I , it follows from Lemma 2.2 that the set function µ� defines
a probability measure on {0,1}� for each finite set � and {µ�} satisfies the
Kolmogorov consistency condition. Hence there exists a unique probability
measure µ = µK on Q satisfying (2.1). �

The following is obvious from (2.1).

COROLLARY 2.3. Let K be a bounded symmetric operator on �2(R)

with Spec(K) ⊂ [0,1]. Then the operator I − K defines a probability measure µ

which is obtained from µ by interchanging 0 and 1 at all sites of R.

Now we show that the Laplace transform of µ is given by (1.1).

THEOREM 2.4. Let K be a bounded symmetric operator on �2(R)

satisfying Spec(K) ⊂ [0,1]. Then, for any nonnegative function f on R with com-
pact support, we have ∫

Q
e−〈ξ,f 〉µ(dξ) = det(I − Kϕ),(2.13)

where 〈ξ, f 〉 = ∑
x∈R ξ(x)f (x) and Kϕ = √

ϕK
√

ϕ with ϕ(x) = 1 − e−f (x)

as before.

PROOF. Let suppf = �. Using Lemma 2.2, we get∫
Q

e−〈ξ,f 〉µ(dξ)

= ∑
�1⊂�

e
−∑x∈�1

f (x)
µ(0�01�1)

= ∑
�1⊂�

e
−∑x∈�1

f (x) det
(
P�0(I� − K�) + P�1K�

)
= ∑

�1⊂�

det
(
P�0(I� − K�) + P�1e

−f K�

)
= det(I� − K� + e−f K�) = det(I − Kϕ).

(2.14)

�
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PROOF OF THEOREM 1.1. The former half of Theorem 1.1 is already proved
as Theorem 2.1. From Theorem 2.4 we obtain the latter half for nonnegative
f ’s because det(I − Kϕ) = det(I − (1 − e−f )K) in (1.3). By the analyticity,
(1.3) remains valid for any complex valued f . �

From the formula (2.13) one can easily compute the moments and correlation
functions as is done in [17, 18]. The following is the easiest one.

COROLLARY 2.5. The mean of 〈ξ, f 〉 is given by∫
Q

µ(dξ)〈ξ, f 〉 = ∑
x∈R

K(x, x)f (x).(2.15)

In particular, the mean number of 1’s in a finite set � equals

tr(K�) = ∑
x∈�

K(x, x).(2.16)

PROOF. Set tf in place of f in (2.13) and differentiate it at t = 0. �

The formula (2.13) also shows that the degeneracy of I� − K� yields particles
in �.

COROLLARY 2.6. If the operator K� admits 1 as its eigenvalue with
multiplicity m ≥ 1, then

µK{ξ(�) ≥ m} = 1(2.17)

and

µK{ξ(�) = m} = det
(
I� − (K� − E�(1)

))
(2.18)

where E�(λ) stands for the projection to the eigenspace associated with
eigenvalue λ.

PROOF. Let α > 0 and 0 ≤ λ1 ≤ · · · ≤ λN−m < λN−m+1 = · · · = λN = 1 be
the eigenvalues of K� counting the multiplicity. Then,∫

Q
µK(dξ)e−αξ(�) = det

(
I − (1 − e−α)K�

)
=

N∏
i=1

(
1 − (1 − e−α)λi

)
(2.19)

≤ (
1 − (1 − e−α)

)m = e−mα.
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Letting α → ∞, one finds µ{ξ(�) ≤ m − 1} = 0. Then it is immediate to see

µK{ξ(�) = m}
= ∏

λ=λ1,...,λN−m �=1

(1 − λ) = det
(
I� − (K� − E�(1)

))
.(2.20) �

Now let us show two of interesting properties brought from the discrete and
determinantal structure. The first inequality in (2.21) below indicates that fermion
processes are repulsive in contrast with that Ising and similar models are attractive.

PROPOSITION 2.7. Let K be a bounded symmetric integral operator on �2(R)

with Spec(K) ⊂ [0,1]. Then for any mutually disjoint subsets �0 and �1 of R,
there hold the inequalities

µ(0�0)µ(1�1) ≤ µ(0�01�1) ≤ (µ(0�0)µ(1�1)
)1/2

.(2.21)

Besides,

µ(0�0∪�1) ≤ µ(0�0)µ(0�1) and µ(1�0∪�1) ≤ µ(1�0)µ(1�1)(2.22)

and, in particular,

µ(0�0) ≤ ∏
i∈�0

(
1 − K(i, i)

)
and µ(1�1) ≤ ∏

i∈�1

K(i, i).(2.23)

PROOF. The left-hand-side inequality in (2.21) follows from the inequality

det
(

A B

−B∗ C

)
≥ detA detC(2.24)

which holds if A and C are nonnegative definite symmetric square matrices of
size |�0| and |�1|, respectively, and B is a |�0| by |�1| matrix. This inequality
can be proved, for instance, from the direct computation in the special case: the
eigenvalues of the matrix (

I B

−B∗ I

)
are of the form 1 ± √−1β with β real eigenvalues of (B∗B)1/2 except possibly
for β = 0.

Note that by a similar argument one may prove the well-known Fischer in-
equality

det
(

A B

B∗ C

)
≤ detA detC(2.25)

if A and C are nonnegative definite. Indeed, the eigenvalues of(
I B

B∗ I

)
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are of the form 1±β with β eigenvalues of B∗B except possibly for β = 0. Hence,
we get (2.22) and also

det
(

A B

−B∗ C

)(
A −B

−B∗ C

)
≤ det(A2 + BB∗)det(C2 + B∗B).(2.26)

Now set A = P�1K�P�1 , B = P�1K�P�0 = −P�1(I − K�)P�0 and C =
P�0(I − K�)P�0 . Then,

A2 + BB∗ = P�1K
2
�P�1 ≤ P�1K�P�1(2.27)

and

C2 + B∗B = P�0(I − K�)2P�0 ≤ P�0(I − K�)P�0 .(2.28)

Consequently, we obtain

det
(
P�0(I − K�) + P�1K�

)2 ≤ det(K�1)det(I − K�0),(2.29)

which is nothing but the desired inequality (2.21).
Finally, (2.23) follows from (2.22) by induction or, directly, from the Hadamard

determinant theorem. �

In the above proof, we abused the notation I for I�. Hereafter we omit the
suffix � for simplicity so far as no confusion occurs.

The next proposition shows that the measure µ� is a mixture of Bernoulli
measures defined by eigenvalues of K�. It is also useful to give an estimate on the
metric entropy in Section 4. For each finite subset � of R let us define a Bernoulli
measure ν(�) by

ν(�)(0�01�1) = ∏
i∈�0

(1 − λi)
∏

j∈�1

λj ,(2.30)

where λi, i ∈ � are the eigenvalues of K� indexed by the set � in an arbitrary but
fixed manner.

PROPOSITION 2.8. For each finite subset � of R, there exists a 2|�| by 2|�|
doubly stochastic matrix Q = (QI,J )I,J⊂� such that

µ�(0�01�1) = ∑
�′

1⊂�, |�′
1|=|�1|

Q�1,�
′
1
ν(�)(0�′

01�′
1
)

(2.31)

for each �1 ⊂ �, where �′
0 = �\�′

1.

PROOF. By the continuity of determinants it suffices to consider the case
where K� does not admit 1 as its eigenvalues. Since µ�(0�01�1) = det(I� −
K�)det(J [�])�1 by (2.10), it suffices to show the existence of a doubly stochastic
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matrix Q such that

det(J [�])�1 = ∑
�′

1⊂�, |�′
1|=|�1|

Q�1,�′
1

∏
i∈�′

1

(
λi

1 − λi

)
.(2.32) �

Formula (2.32) is obvious from the following lemma.

LEMMA 2.9. Let T = (Tij )
n
i,j=1 be an Hermitian matrix with eigenvalues

α1, . . . , αn. Then there exists a 2n by 2n doubly stochastic symmetric matrix
Q = (QI,J ) indexed by subsets I, J of {1, . . . , n} such that

detTI = ∑
|J |=|I |

QI,J

(∏
i∈J

αi

)
(2.33)

for each subset I of {1, . . . , n}, where TI = (Tij )i,j∈I .

PROOF. Take a unitary matrix P = (pij )
n
i,j=1 which diagonalizes T and write

PT P ∗ = diag(α1, . . . , αn). Set

QI,J =
{ |det(pij )i∈I,j∈J |2, if |I | = |J |,

0, otherwise,
(2.34)

for each subsets I and J of {1, . . .n}. Let

eI = ei1 ∧ · · · ∧ eik , I = {i1, . . . , ik}, 1 ≤ i1 < · · · < ik ≤ n(2.35)

as before. Then if |I | = k one finds

detTI = 〈∧kT eI , eI 〉
= 〈∧k

(
P ∗diag(α1, . . . , αn)P

)
eI , eI

〉
= 〈∧kdiag(α1, . . . , αn)(∧kP )eI , (∧kP )eI 〉
= ∑

J⊂{1,2,...,n}
〈∧kdiag(α1, . . . , αn)(∧kP )eI , eJ 〉〈eJ , (∧kP )eI 〉

= ∑
J⊂{1,2,...,n}, |J |=|I |

(∏
i∈J

αi

)
|〈∧kP eI , eJ 〉|2,

(2.36)

where |〈∧kP eI , eJ 〉|2 is nothing but QI,J . Moreover, it is immediate to see the
double stochasticity: ∑

J⊂{1,...,n}
QI,J = ∑

J⊂{1,...,n}
QJ,I = 1(2.37)

for each I ⊂ {1, . . . , n}. Hence we obtain the lemma. �
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REMARK. Let � = {1,2, . . . , n} for simplicity. If e1, e2, . . . , en are the
normalized eigenvectors of K� then the matrix P = (pij ) in the proof of
Lemma 2.9 can be given by pij = ei(j). Hence, (2.31) is rewritten as

µ�(0�01�1)

= 1

n0!n1!
∑
τ

∏
i∈�1

λτ(i)

∏
j∈�0

(1 − λτ(j))
(

det(eτ(i)(j))i,j∈�1

)2(2.38)

where τ runs over the permutations of � and ni = |�i |, i = 0,1. As easily seen,
(2.38) remains valid even if �0 is infinite when K itself is a trace class operator. In
particular, formula (1.5) in Example 1.2 holds. Similarly, (2.38) holds even if �1 is
infinite when I −K is a trace class operator. Formula (2.38) also gives a refinement
of Corollary 2.6.

3. Fermion shifts associated with convolution kernels. Now we restrict
ourselves to the lattice case where translations act.

LEMMA 3.1. Let R = Zd and K be a bounded symmetric operator on �2(Zd)

satisfying Spec(K) ⊂ [0,1]. When K is a convolution operator, the condition
Spec(K) ⊂ [0,1] is equivalent to the condition that the convolution kernel k of K

is the Fourier transform of an even measurable function k̂ with values in [0,1]:

k(n) =
(

1

2π

)d ∫
Td

k̂(θ)einθ dθ, n ∈ Zd, with 0 ≤ k̂(θ) ≤ 1.(3.1)

The proof is obvious.
From now on we focus on the case where K is a symmetric convolution operator

on �2(Zd) with kernel k. Then the probability measure µ = µK defines a shift
({0,1}Zd

,µ,σi), where σi’s stand for the shift defined by (σiξ)(n) = ξ(n + ei)

(n ∈ Zd), where {ei}di=1 is the standard basis of Zd .

PROPOSITION 3.2. Let K be a symmetric convolution operator on �2(Zd)

with kernel k given by (3.1). Then the shift dynamical system ({0,1}Zd
,µ,σi) is

mixing.

PROOF. Let σn be the translation by n = (n1, . . . , nd) ∈ Zd : σn = σ
n1
1 · · ·σnd

d .
It suffices to show that µ(C ∩σ−nC′) → µ(C)µ(C′) as |n| → ∞ for any cylinder
sets C and C′, or equivalently, that

det
(
P�0∪(�′

0+n)(I − K)P�∪(�′+n) + P�1∪(�′
1+n)KP�∪(�′+n)

)
→ det

(
P�0(I − K)P� + P�1KP�

)
det
(
P�′

0
(I − K)P�′ + P�′

1
KP�′

)(3.2)

as |n| → ∞ for any finite subsets �0,�1,�
′
0, and �′

1 provided that �0 ∩ �1 = ∅,
�′

0 ∩ �′
1 = ∅, � = �0 ∪ �1, and � = �′

0 ∪ �′
1. But since we assume (3.1),
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k(n) → 0 as |n| → ∞ by the Riemann–Lebesgue theorem. Hence, it is easy to
see that, as |n| → ∞,[

P�0(I − K)P�∪(�′+n) + P�1KP�∪(�′+n)

]
P�′+n → 0(3.3)

and [
P�′

0+n(I − K)P�∪(�′+n) + P�′
1+nKP�∪(�′+n)

]
P� → 0.(3.4)

Consequently, (3.2) holds and the shift is mixing. �

REMARK. The totally mixing property or the mixing property of any
multiplicity has been shown for the flow case in [22]. The assertion for the shift is
also immediately obtained by the same argument as above.

The following two propositions are discrete versions of the propositions proved
in our previous paper [18] and found in a somewhat more general setting in [23].
Our proofs can be done by standard arguments and in a manner easier than the
proof of Theorem 3.6 below, so we only state the results here.

PROPOSITION 3.3 (Law of large numbers). Let f be a bounded continuous
function on Rd with compact support. Then〈

ξ,
fN

Nd

〉
→
∫

Rd
f (x)k(0) dx, µ-a.e. and in L1(Q,µ),(3.5)

where fN(·) = f (·/N).

PROPOSITION 3.4 (Central limit theorem). Let f be a bounded continuous
function on Rd with compact support and

∫
Rd f (x) dx = 0. Then

lim
N→∞

∫
Q

µ(dξ) exp
(
i

〈
ξ,

fN

Nd/2

〉)
= exp

(
− 1

2
σ(K)2‖f ‖2

2

)
,(3.6)

where we set

σ(K)2 = k(0) − ∑
n∈Zd

k(n)2(3.7)

=
(

1

2π

)d ∫
Td

k̂(θ)
(
1 − k̂(θ)

)
dθ(3.8)

and fN(·) = f (·/N).

REMARK. The factor σ 2(K) in the limiting variance of 〈ξ, fN〉 vanishes, for
instance, when kernel k is a sine kernel k(n) = sinnα/n since it is the Fourier
transform of the indicator function of an interval in T1. In this case the variance
of 〈ξ, fN〉 is of order logN and the central limit theorem also holds for suitable
test functions but under this, appropriate scaling [4, 21]. The shifts associated with
such kernels are special among fermion shifts, and similar phenomena appear also
in the next large deviation results.
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The third of the basic limit theorems is the large deviation principle. Our
large deviation result stated below is a natural generalization of the following
(multidimensional version of) classical result [9, 26]:

THEOREM 3.5 (Szegö’s first theorem). Let φ be a nonnegative continuous
function on Td and φ̂(n) be its Fourier coefficients. Denote the Toeplitz matrices by

TN [ϕ] = (
ϕ̂(n − m)

)
0≤n,m≤N, N ≥ 1.(3.9)

Then the following limit exists and in equal to the geometric mean of ϕ:

lim
N→∞(detTN [ϕ])1/(N+1) = exp

{(
1

2π

)d ∫
Td

logϕ(θ) dθ

}
.(3.10)

It might be interesting to note here that Theorem 3.5 and its generalizations are
regarded as results of mean field theory by mathematical physicists. It is obvious
that Theorem 3.5 follows from the following large deviation result.

THEOREM 3.6 (Large deviation). Let f be a nonnegative bounded continuous
function on Rd with compact support. Then

lim
N→∞

1

Nd
log
∫
Q

µ(dξ) exp (−〈ξ, fN 〉)

=
(

1

2π

)d ∫
Rd

dx

∫
Td

dθ log
(
1 − k̂(θ) + k̂(θ)e−f (x)

)
,

(3.11)

where fN(·) = f (·/N).

PROOF. Since formula (3.11) is stable under monotone limits, it suffices to
show it in the case where f is continuous. Let ϕ = 1 − exp(−f ),
ϕN = 1 − exp(−fN) and � = suppf . Note that KϕN

= √
ϕNKN�

√
ϕN , and we

obtain

tr(Kn
ϕN

) ≤ ‖ϕN‖n∞‖KN�‖n−1 tr(KN�)

≤ ‖ϕ‖n∞k(0)Nd |�|
(3.12)

and

tr(Kn
ϕN

) = ∑
x1,...,xn∈Zd

k(x1 − x2) · · ·k(xn − x1)ϕN(x1) · · ·ϕN(xn)

= ∑
y1,...,yn−1∈Zd

k(y1) · · ·k(yn−1)k(−y1 − · · · − yn−1)

× ∑
x1∈Zd

ϕ

(
x1

N

)
ϕ

(
x1 + y1

N

)
· · ·ϕ

(
x1 + y1 + · · · + yn−1

N

)
(3.13)
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= ∑
y1,...,yn−1∈Zd

k(y1) · · ·k(yn−1)k(−y1 − · · · − yn−1)

×
{
Nd

∫
Rd

ϕ(x)ϕ

(
x + y1

N

)
· · ·ϕ

(
x + y1 + · · · + yn−1

N

)
dx + o(Nd)

}
= Nd

∑
y1,...,yn−1∈Zd

k(y1) · · ·k(yn−1)k(−y1 − · · · − yn−1)

×
{∫

Rd
ϕ(x)n dx + o(1)

}

= Nd

(
1

2π

)d ∫
Td

k̂(θ)n dθ

{∫
Rd

ϕ(x)n dx + o(1)

}
.

By the dominated convergence theorem, we get

lim
N→∞

1

Nd
log det

(
I − KϕN

)
= − lim

N→∞

∞∑
n=1

1

n

1

Nd
tr
(
Kn

ϕN

)
= −

∞∑
n=1

1

n

(
1

2π

)d ∫
Td

dθ k̂(θ)n
∫

Rd
ϕ(x)n dx

=
(

1

2π

)d ∫
Td

dθ

∫
Rd

dx log
(
1 − k̂(θ)ϕ(x)

)
.

(3.14)

�

REMARK. As a matter of fact, the Hessian of the right-hand side of (3.11) is
related to the covariance in the central limit theorem:

∂2

∂f 2 [the RHS of (3.11)]
∣∣∣∣
f =0

[g,g] = σ(K)2‖g‖2.(3.15)

4. Metric entropy. In this section we continue to assume that K is a
symmetric convolution operator on �2(Zd) and gives upper and lower estimates
for the metric entropy

h(µ) = lim
�→Zd

1

|�|H�(µ)(4.1)

where

H�(µ) = − ∑
�1⊂�

µ(0�01�1) logµ(0�01�1).(4.2)
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Let k be the convolution kernel of K and k̂ be its Fourier transform. Note that k is
symmetric: k(−n) = k(n) since K is so. Set

H0 = −k(0) logk(0) − (1 − k(0)
)
log
(
1 − k(0)

)
(4.3)

and

H1 =
(

1

2π

)d ∫
Td

{− k̂(θ) log k̂(θ) − (1 − k̂(θ)
)

log
(
1 − k̂(θ)

)}
dθ.(4.4)

Then, by the concavity of −x logx − (1 − x) log(1 − x), there holds the inequality

0 ≤ H1 ≤ H0.(4.5)

THEOREM 4.1. Let K be a symmetric convolution operator on �2(Zd) with
kernel k and Spec(K) ⊂ [0,1]. Then the following estimates hold for the metric
entropy h(µ):

max
{1

2H0,H1
}≤ h(µ) ≤ H0.(4.6)

Before giving the proof we show an immediate consequence of Theorem 4.1.

COROLLARY 4.2. The metric entropy of the fermion shift ({0,1}Zd
,µK,σi)

is positive whenever K is nontrivial in the sense that K �= O,I . In the trivial cases
the metric entropy is zero.

PROOF. Theorem 4.1 implies that h(µK) = 0 if and only if H0 = 0. And it is
immediate to see that K = O or I if and only if k(0) = 0 or 1. �

PROOF OF THEOREM 4.1. The upper estimate in (4.6) is obvious since

h(µ) = inf
�⊂Zd

1

|�|H�(µ) ≤ H{0} = H0.(4.7)

Next let us show the inequality

h(µ) ≥ 1
2H0.(4.8)

To this end, we use (2.21) and (2.23) in Proposition 2.7:

H�(µ) = ∑
�1⊂�

−µ(0�01�1) logµ(0�01�1)

≥ ∑
�1⊂�

−µ(0�01�1)
1

2

{
logµ(0�0) + log µ(1�1)

}
≥ −1

2

∑
�1⊂�

µ(0�01�1)
{|�0| log

(
1 − k(0)

)+ |�1| logk(0)
}

= −|�|
2

{(
1 − k(0)

)
log
(
1 − k(0)

)+ k(0) logk(0)
}

= |�|
2

H0.

(4.9)
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Hence we obtain (4.8).
Finally, we show the inequality

h(µ) ≥ H1.(4.10)

Let η(x) = −x logx. Then η is a concave function and it follows from Lemma 2.9
and Jensen’s inequality that

− ∑
�1⊂�

µ(0�01�1) logµ(0�01�1)

= ∑
�1⊂�

η

( ∑
�′

1⊂�

Q�1,�
′
1
ν(�)

(
0�′

01�′
1
))

≥ ∑
�1⊂�

∑
�′

1⊂�

Q�1,�
′
1
η
(
ν(�)

(
0�′

01�′
1
))

= ∑
�′

1⊂�

η
(
ν(�)

(
0�′

01�′
1
))

,

(4.11)

where �′
0 = �\�′

1. By the definition of ν(�) we get∑
�′

1⊂�

η
(
ν(�)

(
0�′

01�′
1
))

=∑
i∈�

{
η(λi(K�)) + η

(
1 − λi(K�)

)}
= tr

(
η(P�KP�)

)+ tr
(
η
(
P�(I − K)P�

))
≥ tr

(
P�η(K)P�

)+ tr
(
P�η(I − K)P�

)
.

(4.12)

Here we used Berezin’s inequality [20]: if K is a self-adjoint operator and P is a
projection operator on a Hilbert space, then

tr
(
Pϕ(K)P

)≥ tr(ϕ(PKP ))(4.13)

for each convex function ϕ. Hence, we obtain

h(µ) = lim
�→Zd

− 1

|�|
∑

�1⊂�

µ(0�01�1) logµ(0�01�1)

≥ lim
�→Zd

1

|�| tr
(
P�

(
η(K) + η(I − K)

)
P�

)
= η(K)(0,0) + η(I − K)(0,0)

= H1.

(4.14)

Consequently, we get (4.10). �
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5. Tail triviality and weak Bernoulli property. In this section we discuss
about the tail triviality and a uniform mixing property of the fermion point process.
The key lemma is the following.

LEMMA 5.1. Let T be a bounded operator on a Hilbert space H , P1 be an
orthogonal projection on H and P2 = I − P1. Assume

P1T P1 = 0, P2T P2 = 0.(5.1)

Moreover, assume (P1T
∗P2T P1)

1/2 and (P2T
∗P1T P2)

1/2 are trace class opera-
tors and

α =√
tr(P1T ∗P2T P1) +√tr(P2T ∗P1T P2) < 1.(5.2)

Then T is a trace class operator and satisfies the inequalities

1 − α ≤ det(I + T ) ≤ eα/2.(5.3)

PROOF. Write

T =
(

O B

C O

)
with B = P1T P2 and C = P2T P1. Since (B∗B)1/2 = (P2T

∗P1T P2)
1/2 and

(C∗C)1/2 = (P1T
∗P2T P1)

1/2 are of trace class, so is T , and the eigenvalues of T

are not greater than 1 in modulus since α < 1. Now let

A = (I + C∗C)−1/2(B + C∗)(I + B∗B)−1/2.(5.4)

Then

(I + T )∗(I + T )

=
(

I + C∗C O

O I + B∗B

)1/2(
I A

A∗ I

)(
I + C∗C O

O I + B∗B

)1/2

.
(5.5)

Let us show

tr(A∗A) ≤ α2.(5.6)

Observe that

tr
(
(I + B∗B)

−1/2
B∗(I + C∗C)

−1
B(I + B∗B)

−1/2)
= tr

(
(I + C∗C)−1(I + BB∗)−1BB∗)

≤ ‖(I + C∗C)−1‖‖(I + BB∗)−1‖ tr(BB∗)
≤ tr(BB∗) = tr(B∗B)

(5.7)

and similarly that

tr
(
(I + B∗B)−1/2C(I + C∗C)−1C∗(I + B∗B)−1/2)≤ tr(C∗C).(5.8)
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Then we have, by the Schwarz inequality,∣∣ tr ((I + B∗B)−1/2C(I + C∗C)−1B(I + B∗B)−1/2)∣∣2
= ∣∣ tr ((I + B∗B)−1/2B∗(I + C∗C)−1C∗(I + B∗B)−1/2)∣∣2
≤ tr(B∗B) tr(C∗C).

(5.9)

From (5.7)–(5.9), we get

tr(A∗A) ≤ tr(B∗B) + tr(C∗C) + 2
√

tr(B∗B) tr(C∗C) = α2.(5.10)

Hence (5.6) holds.
Now from (5.5) it follows that

det(I + T )2 = det(I + B∗B)det(I + C∗C)det
(

I A

A∗ I

)
≤ det(I + B∗B)det(I + C∗C)(5.11)

≤ exp
(

tr(B∗B) + tr(C∗C)
)≤ eα

since α2 < α < 1. On the other hand, we have

det(I + T )2 ≥ det
(

I A

A∗ I

)
= det(I − A∗A)(5.12)

≥ 1 − tr(A∗A) ≥ 1 − α2.

Here we used the fact that the inequality
∞∏
i=1

(1 − ai) ≥ 1 −
∞∑
i=1

ai(5.13)

holds if 0 ≤ ai < 1 for any i = 1,2, . . . . Consequently, again by using α < 1, we
obtain

1 − α ≤
√

1 − α2 ≤ det(I + T ) ≤ eα/2.(5.14) �

We need the following elementary facts.

LEMMA 5.2. Let T be a bounded operator with bounded inverse T −1 on a
Hilbert space H , P1 be an orthogonal projection on H and P2 = I − P1. Write

T =
(

A B

C D

)
(5.15)

if

A = P1T P1 :P1H → P1H, B = P1T P2 :P2H → P1H,

C = P2T P1 :P1H → P2H, D = P2T P2 :P2H → P2H.
(5.16)
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Then

T −1 =
(

(A − BD−1C)
−1 −A−1B(D − CA−1B)

−1

−D−1C(A − BD−1C)
−1

(D − CA−1B)
−1

)
.(5.17)

Hereafter, ‖ · ‖ stands for the operator norm. Note that the operator norm of a
nonnegative definite symmetric operator is equal to the maximum of its spectrum.

COROLLARY 5.3. Let T be a positive definite bounded symmetric operator
on �2(R) with bounded inverse T −1 and P� be the orthogonal projection
onto �2(�) for any subset � of R. Then,

(P�T P�)−1 ≤ P�T −1P�.(5.18)

In particular,

‖(P�T P�)−1‖ ≤ ‖P�T −1P�‖.(5.19)

PROOF. The proof is obvious from Lemma 5.2. �

From now on we always assume that the spectrum of K is contained in the open
interval (0,1).

LEMMA 5.4. Let K be a symmetric operator on �2(R) with Spec(K) ⊂ (0,1),
and set γ = sup{Spec(K−1) ∪ Spec((I − K)−1)}. Then for any � ⊂ R and any
choice of �0 ⊂ �, we have∥∥(P�0(I − K)P� + P�1KP�

)−1∥∥≤ γ.(5.20)

PROOF. As is stated in the proof of Proposition 2.7, the eigenvalues of the
matrix (

I B

−B∗ I

)
are 1 ± √−1β with β real eigenvalues of (B∗B)1/2. Thus∥∥∥∥∥

(
I B

−B∗ I

)−1
∥∥∥∥∥≤ 1(5.21)

and, hence,∥∥∥∥∥
(

A B

−B∗ C

)−1
∥∥∥∥∥=

∥∥∥∥∥
(

A−1/2 O

O C−1/2

)(
I B̃

−B̃∗ I

)−1 (
A−1/2 O

O C−1/2

)∥∥∥∥∥
≤ max{‖A−1‖,‖C−1‖},

(5.22)

where B̃ = A−1/2BC−1/2.
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From Corollary 5.3, it follows that if T is an invertible symmetric operator
on �2(R) with Spec(T −1) ⊂ (0, γ ] then

‖(P�T P�)−1‖ ≤ γ(5.23)

for any � ⊂ R. By our assumption and (5.23), we obtain

max
{∥∥(P�0(I − K)P�0

)−1∥∥,∥∥(P�1KP�1

)−1∥∥}≤ γ(5.24)

for any � ⊂ R and for any �0,�1 ⊂ �. Consequently, we obtain (5.20). �

LEMMA 5.5. Let K be a symmetric operator with Spec(K) ⊂ (0,1), and
�0,�1,�

′
0 and �′

1 be mutually disjoint finite subsets of R. Set � = �0 ∪ �1
and �′ = �′

0 ∪ �′
1. Then there exists a constant γ depending only on K such that

1 − 2γ

(∑
x∈�

∑
y∈�′

K(x,y)2

)1/2

≤ µ(0�0∪�′
01�1∪�′

1)

µ(0�01�1)µ(0�′
01�′

1)
≤ expγ

(∑
x∈�

∑
y∈�′

K(x,y)2

)1/2
(5.25)

whenever 2γ (
∑

x∈�

∑
y∈�′ K(x,y)2)1/2 < 1.

PROOF. Given �0, �1, �′
0 and �′

1. Write

L = (
P�0∪�′

0
(I − K) + P�1∪�′

1
K
)
P�∪�′ =

(
L�� L��′
L�′� L�′�′

)
(5.26)

where L�� = (P�0(I −K)+P�1K)P� :�2(�) → �2(�), L��′ = (P�0(I −K)+
P�1K)P�′ : �2(�′) → �2(�) and so on.

Then, we have

µ(0�0∪�′
01�1∪�′

1)

µ(0�01�1)µ(0�′
01�′

1)
= det

(
I +

(
O L−1

��L��′
L−1

�′�′L�′� O

))
.(5.27)

Since Spec(K) ∪ Spec(I − K) ⊂ (0,1), by Lemma 5.4 there exists a constant γ

such that

‖L−1
��‖ ≤ γ(5.28)

for any � ⊂ R and for any choice of �0 ⊂ �.
Set Q� = P�1 − P�0 and Q�′ = P�′

1
− P�′

0
. Then,

Q2
� = P�, Q2

�′ = P�′,

L��′ = Q�K��′ and L�′� = Q�′K�′�.
(5.29)
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Thus L∗
��′L��′ does not depend on �0 and �1 though L��′ does (and also

L��′L∗
��′ does):

L∗
��′L��′ = K�′�Q�Q�K��′ = K�′�K��′(5.30)

and so

tr(L∗
��′L��′) = tr(K�′�K��′) = ∑

x∈�

∑
y∈�′

K(x,y)2.(5.31)

By using an inequality tr(ST ) ≤ ‖S‖ tr(T ), we get

tr
(
(L−1

��L��′)∗(L−1
��L��′)

)≤ γ 2
∑
x∈�

∑
y∈�′

K(x,y)2.(5.32)

Similarly,

tr
(
(L−1

�′�′L�′�)∗(L−1
�′�′L�′�)

)≤ γ 2
∑
x∈�

∑
y∈�′

K(x,y)2.(5.33)

Consequently, we obtain the desired estimate (5.25) from Lemma 5.1. �

THEOREM 5.6. Let K be a symmetric operator on �2(R) with kernel k.
Assume that Spec(K) ⊂ (0,1). Then µ is tail trivial.

PROOF. Let B be a finite set of R and FB be the σ -algebra generated by
{ξ(x);x ∈ Bc}. For the proof it suffices to show that the conditional probability
µ(0�01�1 | FBc)(ξ) satisfies that

µ(0�01�1 | FBc)(ξ) → µ(0�01�1) as B → R(5.34)

for any finite subsets �0 and �1 of R and for µ-a.e. ξ ∈ {0,1}R .
By Lemma 5.5 there exists a constant C such that if B ⊂ B ′, �0 ∪ �1 ⊂ B and

�′
0 ∪ �′

1 ⊂ B ′c,∣∣∣∣ µ(0�0∪�′
01�1∪�′

1)

µ(0�01�1)µ(0�′
01�′

1)
− 1

∣∣∣∣2
≤ C

∑
x∈�0∪�1

∑
y∈�′

0∪�′
1

K(x,y)2 ≤ C
∑
i∈B

∑
j∈B ′c

K(x, y)2.
(5.35)

Hence, we obtain ∣∣∣∣ 1

µ(0�01�1)
µ(0�01�1 | FB ′c )(ξ) − 1

∣∣∣∣2
≤ C

∑
x∈B

∑
y∈B ′c

K(x, y)2 → 0 (B ′ → R).
(5.36)

�
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REMARK. In Section 6, we will have another proof of Theorem 5.6. Indeed,
µ is the unique Gibbs measure with respect to a continuous potential.

In the ergodic-theoretical terminology (e.g., [3, 10]), Theorem 5.6 implies the
following.

COROLLARY 5.7. Let K be a symmetric convolution operator and assume
Spec(K) ⊂ (0,1). Then the shift (Q,µK,σ ) is a K-system. In particular,
it has complete positive entropy: h(µ,σ,α) > 0 for any nontrivial partition
α = {A1, . . . ,Ak}.

If stronger conditions are imposed on K , one may deduce various uniform
mixing properties from Lemma 5.5. For instance, the weak Bernoulli property
(cf. [10, 27]) holds under a rather mild summability condition on the kernel.

THEOREM 5.8. Let K be a symmetric convolution operator on �2(Zd) with
kernel k. Assume that Spec(K) ⊂ (0,1) and that∑

n∈Zd

|n||k(n)|2 < ∞.(5.37)

Then the following uniform mixing property holds:

lim|n|→∞
µ(0�0∪(�′

0+n)1�1∪(�′
1+n))

µ(0�01�1)µ(0�′
01�′

1)
= 1(5.38)

uniformly in finite subsets �0, �1, �′
0 and �′

1 of Zd provided that � = �0 ∪�1 ⊂
Zk−1 × Z− × Zd−k , �′ = �′

0 ∪ �′
1 ⊂ Zk−1 × Z+ × Zd−k , �0 ∩ �1 = ∅ and

�′
0 ∩ �′

1 = ∅. Here �′
i + n = {l + nek ; l ∈ �′

i} for i = 0,1.

In particular, the shift dynamical system ({0,1}Zd
,µ,σk) satisfies the weak

Bernoulli property and so it is isomorphic to a Bernoulli shift.

PROOF. By Lemma 5.5 it suffices to prove

lim
n→∞

∑
i∈�

∑
j∈�′+n

k(i − j)2 = 0(5.39)

uniformly in � ⊂ Zk−1 × Z− × Zd−k , �′ ⊂ Zk−1 × Z+ × Zd−k . But it is obvious
from the assumption (5.37). �

6. Gibbs property. Now we prove that our measures are Gibbs measures with
respect to some potentials, which generally have long range.

From now on it is convenient to identify (ξ(x))x∈R ∈ {0,1}R with the set
{x ∈ R; ξ(x) = 1}, which we also denote by ξ . We employ the following definition
in the present paper.
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DEFINITION 6.1. A probability measure µ on Q is called a Gibbs measure if
there exists a family of continuous functions U(X | ξ) defined on the set of pairs
of a finite subset X and a configuration ξ with ξ ∩ X = ∅ such that

Eµ[F | F�c ](ξ) = 1

Z�,ξ

∑
X⊂�

e−U(X|ξ�c)F (X ∪ ξ�c)(6.1)

for every finite subset � of R, where

Z�,ξ = ∑
X⊂�

e−U(X|ξ�c)(6.2)

is a normalizing constant. The potential U is unique up to an additive constant. In
below, we always normalize U so that U(∅ | ξ) = 0.

By (6.1) the functions U(X | ξ) necessarily satisfy the relation

U(X ∪ Y | ξ) = U(X | ξ) + U(Y | X ∪ ξ)(6.3)

if ξ ∩ (X∪Y ) = ∅ and X∩Y = ∅. In particular, if we write U(x | ξ) = U({x} | ξ)

then the continuous function U(x | ξ{x}c) determines all the values of U(X | ξ) and

U({x1, . . . , xn} | ξ) = U(xn | {x1, . . . , xn−1} ∪ ξ)

+U(xn−1 | {x1, . . . , xn−2} ∪ ξ) + · · · + U(x1 | ξ)
(6.4)

for any n and any n-point subset {x1, . . . , xn} of R \ ξ . Moreover, the func-
tion U(x | ξ) necessarily satisfies the relation

U(x | {y} ∪ ξ) + U(y | ξ) = U(y | {x} ∪ ξ) + U(x | ξ)(6.5)

whenever x �= y and {x, y} ∩ ξ = ∅. Note that under our normalization

µ(ξ{x} = 1 | F{x}c)(ξ)

µ(ξ{x} = 0 | F{x}c)(ξ)
= e−U(x|ξ{x}c )(6.6)

and that (6.6) is equal to (6.1) (cf. [16]).

THEOREM 6.2. Let R be a countable discrete space and K be a symmetric
bounded operator on �2(R). Assume

Spec(K) ⊂ (0,1).(6.7)

Then µ is a Gibbs measure and the continuous function U(·|·) is given by

U(x | ξ) = − log
(
J (x, x) − 〈J−1

ξ jx
ξ , jx

ξ 〉)(6.8)

whenever x ∈ R, ξ ∈ Q and {x} ∩ ξ = ∅. Here J (x, y) stands for the kernel of the
operator J = (I −K)−1K , and we set Jξ = (J (y, z))y,z∈ξ and jx

ξ = (J (x, y))y∈ξ

for ξ ∈ Q.
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REMARK. The unique Gibbs property will be shown as Theorem 6.8
separately. Let X = {x1, . . . , xn} be a finite subset of R and ξ ∩ X = ∅. Then
it turns out that

U(X | ξ) = − log det
(
J (xi, xj ) − 〈J−1

ξ j
xi

ξ , j
xj

ξ 〉)ni,j=1.(6.9)

The proof follows immediately from Lemma 6.7 by induction.

For the proof of Theorem 6.2, we need the following fact which may be
interesting in itself.

THEOREM 6.3. Let H be a real Hilbert space with inner product (·, ·) and
A be a positive definite bounded symmetric operator with bounded inverse A−1

on H . Let D be a dense linear subspace of H and

D = D0 ⊕ D1 ⊕ D2(6.10)

be an orthogonal decomposition with dimD0 = 1. Take a unit vector e from D0
and set

α = inf
f ∈D1

(
A(e + f ), e + f

)
and β = inf

g∈D2

(
A−1(e + g), e + g

)
.(6.11)

Then there holds the identity

αβ = 1.(6.12)

PROOF. Let Hi(i = 0,1,2) be the completions of Di(i = 0,1,2), respec-
tively. Since both A and A−1 are bounded, the quadratic forms (A·, ·) and (A−1·, ·)
are both equivalent to the norm (·, ·). Hence there exist the vectors u ∈ H1 and
v ∈ H2 which attain the minimum of α and β in (6.11). In other words, they sat-
isfy

α = (
A(e + u), e + u

)
and β = (

A−1(e + v), e + v
)
.(6.13)

Moreover, they necessarily satisfy

A(e + u) ∈ H⊥
1 = H0 ⊕ H2 and A−1(e + v) ∈ H⊥

2 = H0 ⊕ H1(6.14)

and so (
A(e + u),A−1(e + v)

)= (
A(e + u), e

)(
A−1(e + v), e

)
.(6.15)

Noting that e + u ∈ H0 ⊕ H1 and e + v ∈ H0 ⊕ H2, we obtain

αβ = (
A(e + u), e + u

)(
A−1(e + v), e + v

)
= (

A(e + u), e
)(

A−1(e + v), e
)

(6.16)

= (
A(e + u),A−1(e + v)

)= (e, e) = 1. �

The next corollary immediately follows from Theorem 6.3.
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COROLLARY 6.4. Let R = {x} ∪ �1 ∪ �2 be a partition and J be a bounded
symmetric operator such that O < c1I ≤ J ≤ c2I . Then,

inf
f ∈Dx

∑
y,z∈�1∪{x}

J (y, z)f (y)f (z) inf
f∈Dx

∑
y,z∈�2∪{x}

J−1(y, z)f (y)f (z) = 1(6.17)

where Dx = {f :R → R;f (x) = 1, f is of compact support }.
We recall

µ�(0�01�1) = det(I − K�)det(J [�])�1(6.18)

for a finite subset � = �0 ∪ �1. The essential part of the proof of Theorem 6.2 is
the following.

LEMMA 6.5. Suppose Spec(K) is contained in the unit open interval (0,1).
Let

Dx = {f :R → R;f (x) = 1, suppf is compact },(6.19)

as before. Then, the following hold:

lim sup
�↑R

µ�

({x} ∪ ξ�

)
µ�(ξ�)

≤ inf
f ∈Dx

∑
y,z∈{x}∪ξ

J (y, z)f (y)f (z)(6.20)

= J (x, x) − ∑
y,z∈ξ

J−1
ξ (y, z)J (x, y)J (z, x)(6.21)

for any ξ ∈ Q. Here ξ is identified with the set {x ∈ R; ξ(x) = 1} and Jξ =
(J (y, z))y,z∈ξ .

PROOF. Under the assumption above, both J = (I − K)−1K and J−1 =
K−1(I − K) are bounded operators. We use the following elementary identities
for the ratio of determinants of positive definite matrices: if A = (a(y, z))y,z∈I

and Ã = (a(y, z))y,z∈I∪{x}, then

det Ã

detA
= a(x, x) − ∑

y,z∈I

A−1(y, z)a(x, y)a(z, x)

= inf
f (x)=1

∑
y,z∈I∪{x}

a(y, z)f (y)f (z).
(6.22)

Thus if ξ ⊂ R \ {x}
µ� ({x} ∪ ξ�)

µ�(ξ�)
= inf

f ∈Dx

∑
y,z∈{x}∪ξ�

J [�](y, z)f (y)f (z)(6.23)

where J [�] = (I − K�)−1K�. Since J [�]� ≤ J�, we have∑
y,z∈{x}∪ξ�

J [�](y, z)f (y)f (z) ≤ ∑
y,z∈{x}∪ξ

J (y, z)f (y)f (z),(6.24)
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whenever suppf ⊂ �. Consequently,

lim sup
�↑R

µ� ({x} ∪ ξ�)

µ�(ξ�)
≤ ∑

y,z∈{x}∪ξ

J (y, z)f (y)f (z)(6.25)

for any f ∈ Dx and we obtain (6.20). It is easy to see

inf
f ∈D

∑
y,z∈{x}∪ξ

J (y, z)f (y)f (z) = J (x, x) − 〈J−1
ξ jx

ξ , jx
ξ 〉.(6.26) �

LEMMA 6.6. Suppose Spec(K) is contained in the unit open interval (0,1).
Let Dx be as in Lemma 6.5. Then, the following inequality holds:

lim inf
�↑R

µ�

({x} ∪ ξ�

)
µ�(ξ�)

≥
(

inf
f ∈Dx

∑
y,z∈{x}∪ξ c

J−1(y, z)f (y)f (z)

)−1

(6.27)

for any ξ ∈ Q. Here ξ is identified with the set {x ∈ R; ξ(x) = 1}.
PROOF. For a configuration ξ ∈ Q let ξ be the configuration obtained by

interchanging 0 and 1 at all sites of R. Recall that the distribution of ξ under µ

is the fermion process associated with I − K in place of K and the operator J is
replaced by (

I − (I − K)
)−1

(I − K) = K−1(I − K) = J−1.(6.28)

Thus, we obtain from Lemma 6.5

lim sup
�↑R

µ�(ξ�)

µ�(ξ� ∪ {x}) ≤ inf
f (x)=1

∑
y,z∈{x}∪ξ

J−1(y, z)f (y)f (z).(6.29)

Hence follows the desired lower estimate. �

PROOF OF THEOREM 6.2. Define U(x | ξ) by

U(x | ξ) = J (x, x) − 〈J−1
ξ jx

ξ , jx
ξ 〉.(6.30)

Then Lemmas 6.5 and 6.6 above together with Corollary 6.4 show that there exists
the limit

lim
�↑R

µ�({x} ∪ ξ�)

µ�(ξ�)
= e−U(x|ξ )

= inf
f (x)=1

∑
y,z∈{x}∪ξ

J (y, z)f (y)f (z)(6.31)

= sup
f (x)=1

( ∑
y,z∈{x}∪ξ c

J−1(y, z)f (y)f (z)

)−1

.(6.32)

The continuity of U(x|ξ) is now obvious. �
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Now we proceed to the proof to relation (6.9) stated in the remark after
Theorem 6.2.

LEMMA 6.7. For any mutually disjoint finite subsets X and Y of R \ ξ , the
following relation holds:

det(JX∪Y − JX∪Y,ξ J
−1
ξ Jξ,X∪Y )

= det(JX − JX,ξ∪Y J−1
ξ∪Y Jξ∪Y,X)det(JY − JY,ξJ

−1
ξ Jξ,Y ).

(6.33)

PROOF. By applying (5.17) of Lemma 5.2 twice, we get

(JX − JX,ξ∪Y J−1
ξ∪Y Jξ∪Y,X)−1

= (J−1
ξ∪X∪Y )X

= (
(J−1

ξ∪X∪Y )X∪Y

)
X

= (
(JX∪Y − JX∪Y,ξ J

−1
ξ Jξ,X∪Y )−1)

X.

(6.34)

Note that formula (5.17) in Lemma 5.2 also implies that if H is finite dimensional
or, equivalently, if T is a positive definite symmetric matrix of finite size then there
holds the relation

detT = det(P�T P�)

det(P�cT −1P�c)
(6.35)

for any subset � of the suffix set. Hence we get

det(JX∪Y − JX∪Y,ξ J
−1
ξ Jξ,X∪Y )−1

= det
(
(JX∪Y − JX∪Y,ξJ

−1
ξ Jξ,X∪Y

)−1
)X

det(JX∪Y − JX∪Y,ξ J
−1
ξ Jξ,X∪Y )Y

(6.36)

= det(JX − JX,ξ∪Y J−1
ξ∪Y Jξ∪Y,X)−1 det(JY − JY,ξJ

−1
ξ Jξ,Y )−1.

Consequently, we obtain (6.33). �

Now we show the uniqueness of the Gibbs measure. Set

q�,ξ (X) = e−U(X|ξ )

Z�,ξ

= det(�(ξ)X)

Z�,ξ

for ξ ⊂ �c,(6.37)

where �(ξ)(x, y) = J (x, y) − 〈J−1
ξ jx

ξ , j
y
ξ 〉 for x, y ∈ �, or equivalently, �(ξ) =

J� − J�ξJ
−1
ξ Jξ�, and Z�,ξ is the normalizing constant which can be written by

(2.6) and (2.7) as

Z�,ξ = ∑
X⊂�

det
(
�(ξ)X

)= det
(
I + �(ξ)

)
.(6.38)

We state the uniqueness theorem starting from the operator J .
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THEOREM 6.8. Let R be a countable discrete space and J be a nonnegative
definite symmetric bounded operator on �2(R). Assume that

Spec(J ) ⊂ (0,∞)(6.39)

and define a potential U(x | ξ) by

U(x | ξ) = − log
(
J (x, x) − 〈J−1

ξ jx
ξ , jx

ξ 〉)(6.40)

for ξ ⊂ R \ {x}. Then the Gibbs measure for U is unique. In other words, if µ is a
probability measure on Q such that

µ
(
0�\X1X | F�c

)
(ξ) = q�,ξ (X),(6.41)

then µ coincides with the fermion process µK with K = (I + J )−1J .

PROOF. Let � ∩ M = ∅, �̃ = � ∪ M and define �(ξ) = J�̃ − J�̃,ξJ
−1
ξ Jξ,�̃.

Then ∑
Y⊂M

q�̃,ξ (X ∪ Y ) = det(PM + �(ξ)X∪M)

det(I + �(ξ))
(6.42)

for ξ ⊂ �̃c.
Let us write

I + �(ξ) =
(

I + �(ξ)� �(ξ)�M

�(ξ)M� I + �(ξ)M

)
(6.43)

and

A =
(

I�\X O

O �(ξ)X

)
and B =

(
O

�(ξ)XM

)
.(6.44)

Then,

det
(
PM + �(ξ)X∪M

)= det
(

A B

�(ξ)M� I + �(ξ)M

)
.(6.45)

By Lemma 5.2 we get

(I + �(ξ))−1

=


−(I + �(ξ)�)−1×

�(ξ,�,M)−1
�(ξ)�M�(ξ,M,�)−1

−(I + �(ξ)M)−1×
�(ξ,M,�)−1

�(ξ)M��(ξ,�,M)−1

 ,
(6.46)
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where �(ξ,�,M) = I +�(ξ)� −�(ξ)�M(I +�(ξ)M)−1�(ξ)M�. Thus we see

det(PM + �(ξ)X∪M)

det(I� + �(ξ)�̃)

= det
(

A B

�(ξ)M� I + �(ξ)M

)(
I + �(ξ)� �(ξ)�M

�(ξ)M� I + �(ξ)M

)−1

= det
({

A − B
(
I + �(ξ)M

)−1
�(ξ)M�

}
�(ξ,�,M)−1)

= det(P�\X + �(ξ)X − �(ξ)XM(I + �(ξ)M)−1�(ξ)MX)

det(I + �(ξ)� − �(ξ)�M(I + �(ξ)M)−1�(ξ)M�)

= det(�(ξ)X − �(ξ)XM(I + �(ξ)M)−1�(ξ)MX)

det(I + �(ξ)� − �(ξ)�M(I + �(ξ)M)−1�(ξ)M�)
.

(6.47)

Let us show the componentwise convergence of the nonnegative definite
symmetric matrix �(ξ)� − �(ξ)�M(I + �(ξ)M)−1�(ξ)M� as M → �c. It is
lucky enough that we have

J�̃ ≥ �(ξ) ≥ �(�̃c)(6.48)

because for any f ∈ �2(�)

〈�(ξ)f,f 〉 = inf
g∈�2(ξ )

〈J (f + g), f + g〉.(6.49)

Hence, it suffices to consider two cases: ξ = ∅ and ξ = �̃c.
If ξ = ∅, then �(ξ) = J�̃ and we can show, as M → �c,(

I + J� − J�M(I + JM)−1JM�

)
(x, y)

→ (
I + J� − J��c(I + J�c)−1J�c�

)
(x, y).

(6.50)

Indeed, for any f ∈ �2(�),〈(
I + J� − J�M(I + JM)−1JM�

)
f,f

〉
= inf

g∈�2(M)
〈(I + J�∪M)(f + g), (f + g)〉

= inf
g∈�2(M)

〈(I + J )(f + g), (f + g)〉

→ inf
g∈�2(�c)

〈(I + J )(f + g), (f + g)〉

= 〈(
I + J� − J��c(I + J�c)−1J�c�

)
f,f

〉
.

(6.51)

Next we show that if ξ = �̃c, as M → �c,(
I + �� − ��M(I + �M)−1�M�

)
(x, y)

→ (
I + J� − J��c(I + J�c)−1J�c�

)
(x, y)

(6.52)
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where � = �(�̃c). Indeed, for any f ∈ �2(�), we see that〈(
I + �� − ��M(I + �M)−1�M�

)
f,f

〉
= inf

g∈�2(M)
〈(I + ��∪M)(f + g), f + g〉

= inf
g∈�2(M)

{‖f + g‖2 + 〈��∪M(f + g), f + g〉}
= inf

g∈�2(M)
inf

h∈�2(�̃c)

{‖f + g‖2 + 〈J (f + g + h),f + g + h〉}
= inf

k∈�2(�c)

{‖f + PMk‖2 + 〈J (f + k), f + k〉}
= inf

k∈�2(�c)
〈(P�̃ + J )(f + k), f + k〉

= 〈(
(P�̃ + J )� − (P�̃ + J )��c(P�̃ + J )−1

�c (P�̃ + J )�c�

)
f,f

〉
= 〈(

I + J� − J��c(P�̃ + J )−1
�c J�c�

)
f,f

〉
→ 〈(

I + J� − J��c(I + J )−1
�c J�c�

)
f,f

〉

(6.53)

as �̃ → R since P�̃ converges strongly to I .
From (6.48), (6.50) and (6.52), we conclude, as M → �c

(
I + �(ξ)� − �(ξ)�M

(
I + �(ξ)M

)−1
�M�

)
(x, y)

→ (
I + J� − J��c(I + J�c)−1J�c�

)
(x, y)

(6.54)

uniformly in ξ provided that ξ ⊂ (� ∪ M)c, where ξ may vary with M .
Now recall K = (I + J )−1J . Thus,

I − K� = (
(I + J )−1)

� = [I + J� − J��c(I + J�c)−1J�c�]−1(6.55)

and so

J [�] = (I − K�)−1 − I = J� − J��c(I + J�c)−1J�c�.(6.56)

Consequently, for any finite subset � of R and any subset X of � we obtain

lim
M→�c

∑
Y⊂M

q�∪M,ξ (X ∪ Y ) = det(J [�]X)

det(I + J [�])
= det(I − K�)det(J [�]X)

= det
(
P�\X(I − K�) + PXK�

)
= µK(0�\X1X).

(6.57)

Hence, the Gibbs measure is unique and coincides with µK . �
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