Random polytopes in a convex polytope, independence of shape, and concentration of vertices

Imre Bárány ${ }^{1, \star, \star \star}$ and Christian Buchta ${ }^{2, \star \star \star}$
${ }^{1}$ Cowles Foundation, Yale University, New Haven, CT 06520, USA and Courant Institute of Mathematical Sciences, New York University, NY 10012, USA
${ }^{2}$ Institut für Antalysis, Technische Mathematik und Versicherungsmathematik, Technische Universität, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria

Received April 10, 1992; in revised form December 22, 1992

Mathematics Subject Classification (1991): 52A22, 60D05

1. Introduction and main results

Write \mathscr{F}^{d} for the set of all convex bodies (convex compact sets with nonempty interior) in \mathbb{R}^{d}. Define \mathscr{F}_{1}^{d} as the set of those $K \in \mathscr{F}^{d}$ with vol $K=1$. Fix $K \in \mathscr{F}_{1}^{d}$ and choose points $x_{1}, \ldots, x_{n} \in K$ randomly, independently, and according to the uniform distribution on K. Then $K_{n}=\operatorname{conv}\left\{x_{1}, \ldots, x_{n}\right\}$ is a random polytope in K. Write $E(K, n)$ for the expectation of the random variable $\operatorname{vol}\left(K \backslash K_{n}\right) . E(K, n)$ shows how well K_{n} approximates K in volume on the average.

Groemer [Gr1] proved that, among all convex bodies $K \in \mathscr{F}_{1}^{d}$, the ellipsoids are approximated worst, i.e.

$$
\begin{equation*}
E(K, n) \leq E(B, n) \tag{1.1}
\end{equation*}
$$

where B is any ellipsoid of volume one. Equality holds if and only if K is an ellipsoid. Wieacker [Wi] derived that $E(B, n)=\operatorname{const}(d) n^{-2 /(d+1)}+o\left(n^{-2 /(d+1)}\right)$. Affentranger [Af1] developed formulae from which $E(B, n)$ can be computed explicitly.

Here we prove that, among all convex bodies $K \in \mathscr{K}_{1}^{d}$, the simplices are approximated best in the following sense:

Theorem 1. Let $K \in \mathscr{F}_{1}^{d}$ and $\Delta \in \mathscr{K}_{1}^{d}, \Delta$ a simplex, $d \geq 2$. Then

[^0]\[

$$
\begin{equation*}
\liminf \frac{E(K, n)}{E(\Delta, n)} \geq 1+\frac{1}{d+1} \tag{1.2}
\end{equation*}
$$

\]

unless K is a simplex.
(1.2) shows that for every $K \in \mathscr{\mathscr { F } _ { 1 } ^ { d }}$ different from a simplex there is $n_{0}(K)$ such that for $n \geq n_{0}(K)$

$$
E(K, n) \geq\left(1+\frac{1}{2 d}\right) E(\Delta, n)
$$

Most probably, for every $K \in \mathscr{F _ { 1 } ^ { d }}$ and $n \geq d+1$

$$
\begin{equation*}
E(K, n) \geq E(\Delta, n) \tag{1.3}
\end{equation*}
$$

with equality if and only if K is a simplex. For $d=2$ and $n=3$ Blaschke [B11], [B12] proved (1.1) with equality if and only if K is an ellipse and (1.3) with equality if and only if K is a triangle, but his remark (not repeated in [B12]) that the method of proof can be extended without difficulty to all dimensions d and $n=d+1$ appears to be erroneous; cf., e.g., Groemer [Gr2], Schneider [Schn], or Pfiefer [Pf]. Blaschke's result was extended to $n=4$ by Buchta [Bu1]. For $d=2$ and $n \geq 3$ Dalla and Larman [DL] proved (1.3) with strict inequality if K is any polygon other than a triangle. Their result was completed by Giannopoulos [Gi] who showed that the inequality is strict whenever K is a plane convex body other than a triangle. The occurring bound was derived by Buchta [Bu2]:

$$
E(\text { triangle, } n)=\frac{2}{n+1} \sum_{k=1}^{n} \frac{1}{k} \text {. }
$$

In higher dimensions, Dalla and Larman [DL] proved (1.3) in the case that K is a d-polytope with at most $d+2$ vertices.

Actually, (1.2) separates the simplices from all other convex bodies. This is due to the fact that for polytopes $P \in \mathscr{\mathscr { K }} \mathbb{C}_{1}^{d}$ we can determine $E(P, n)$ up to first order precision. To state this result we call a chain $F_{0} \subset F_{1} \subset \ldots \subset F_{d-1}$ where F_{i} is an i-dimensional face of $P(i=0,1, \ldots, d-1)$ a tower of P. (Sometimes this is called a (complete) flag; cf., e.g., Bayer and Lee [BaLe].) Write $T(P)$ for the number of towers of P.

Theorem 2. Let $P \in \mathscr{K}_{1}^{d}$ be a polytope, $d \geq 2$. Then

$$
\begin{equation*}
E(P, n)=\frac{T(P)}{(d+1)^{d-1}(d-1)!} \frac{\log ^{d-1} n}{n}+O\left(\frac{\log ^{d-2} n \log \log n}{n}\right) \tag{1.4}
\end{equation*}
$$

For a simple polytope P, where $T(P)$ is $d!$ times the number of vertices of P, vert P, Affentranger and Wieacker [AW] recently proved that

$$
E(P, n)=\frac{d \operatorname{vert} P}{(d+1)^{d-1}} \frac{\log ^{d-1} n}{n}+O\left(\frac{\log ^{d-2} n}{n}\right)
$$

Before, van Wel [We] deduced for a d-dimensional cube and indicated for any simple polytope P that $E(P, n) \sim$ const (d) vert $P n^{-1} \log ^{d-1} n$ with const (d) expressed by a $\left(d^{2}-d\right)$-fold integral. In the case that P is a tetrahedron $E(P, n) \sim \frac{3}{4} n^{-1} \log ^{2} n$ was
derived by Buchta [Bu4]. If Efron's identity stated below is taken into consideration, Rényi and Sulanke [RS] much earlier obtained for a polygon P that

$$
E(P, n)=\frac{2}{3} \text { vert } P \frac{\log n}{n}+\frac{\operatorname{const}(P)}{n}+o\left(\frac{1}{n}\right)
$$

with explicitly given const (P).
Estimates for $E(P, n)$ were given in the case that P is a d-dimensional cube by Bentley, Kung, Schkolnick and Thompson [BKST] as well as by Devroye [De], in the general case by Dwyer and Kannan [DK], Dwyer [Dw], and Bárány and Larman [BáLa]. The last-mentioned authors proved that $E(P, n)$ is of order $n^{-1} \log ^{d-1} n$ for any polytope P.

Denote by $E\left(\right.$ vert $\left.K_{n}\right)$ the expected number of vertices of K_{n}. The simple identity due to Efron [Ef]

$$
\begin{equation*}
(n+1) E(K, n)=E\left(\operatorname{vert} K_{n+1}\right) \text { when } K \in \mathscr{F}_{1}^{d} \tag{1.5}
\end{equation*}
$$

shows that (1.4) is equivalent to

$$
\begin{equation*}
E\left(\text { vert } P_{n}\right)=\frac{T(P)}{(d+1)^{d-1}(d-1)!} \log ^{d-1} n+O\left(\log ^{d-2} n \log \log n\right) \tag{1.6}
\end{equation*}
$$

The advantage of this formulation is that the assumption vol $K=1$ can be dropped. To prove (1.4), or rather (1.6), we will show that the vertices of P_{n} are "concentrated" in certain simplices associated with towers of P. For the precise statement we need some preparation.

Assume that together with the polytope $P \in \mathscr{F}_{1}^{d}$ a hyperplane selection $H(\cdot)$ is given. This is a map that associates with every (nontrivial) face F of P a supporting hyperplane $H(F)$ such that

$$
H(F) \cap P=F
$$

Given a tower $T=\left(F_{0}, F_{1}, \ldots, F_{d-1}\right)$ we define the simplex $S(T, \varepsilon)$ associated with T for every small enough $\varepsilon>0$ by induction on d. For $d=1$, when $P=[0,1]$, say, and $H(\cdot)$ is unique, we set

$$
\begin{aligned}
& S(0, \varepsilon)=[0, \varepsilon] \\
& S(1, \varepsilon)=[1-\varepsilon, 1]
\end{aligned}
$$

Assume S has been defined for polytopes $Q \in \mathscr{F}_{1}^{d-1}$. Let $P \in \mathscr{K}_{1}^{d}, T=$ $\left(F_{0}, \ldots, F_{d-1}\right)$ a tower of P. For notational convenience we assume that $F_{0}=\{0\}$. Write cone P for the minimal (convex) cone containing P (with apex at the origin). Set $H_{i}=H\left(F_{i}\right)$, and consider the hyperplane $H_{0}(t)$ parallel to H_{0} at a distance t and on the same side of H_{0} as P. Then

$$
\begin{equation*}
Q(t):=\text { cone } P \cap H_{0}(t) \tag{1.7}
\end{equation*}
$$

is a $(d-1)$-dimensional polytope. Since $\operatorname{vol}_{d-1} Q(t)=\operatorname{const}(P) t^{d-1}$, there is a unique $t_{0}>0$ with $\operatorname{vol}_{d-1} Q\left(t_{0}\right)=1$. Define

$$
\begin{equation*}
Q:=Q\left(t_{0}\right) \in \mathscr{K}_{1}^{d-1} \tag{1.8}
\end{equation*}
$$

For a face F of P with $0 \in F$ but $F \neq\{0\}$ the set cone $F \cap H_{0}\left(t_{0}\right)$ is a face of Q. Moreover, all faces of Q are of this form. Correspondingly, the tower $T=T_{P}$ gives rise to a tower T_{Q} of Q via

$$
\begin{equation*}
T_{Q}=\left(\text { cone } F_{1} \cap H_{0}\left(t_{0}\right), \text { cone } F_{2} \cap H_{0}\left(t_{0}\right), \ldots, \text { cone } F_{d-1} \cap H_{0}\left(t_{0}\right)\right), \tag{1.9}
\end{equation*}
$$

and $H_{P}(\cdot)$ gives rise to a hyperplane selection $H_{Q}(\cdot)$ via

$$
\begin{equation*}
H_{Q}\left(\text { cone } F \cap H_{0}\left(t_{0}\right)\right)=H_{P}(F) \cap H_{0}\left(t_{0}\right) \tag{1.10}
\end{equation*}
$$

where F is a face of P with $0 \in F, F \neq\{0\}$. Then, by the induction hypothesis, the simplex $S_{Q}\left(T_{Q}, \varepsilon\right)$ has been defined. Set

$$
\begin{equation*}
S_{P}\left(T_{P}, \varepsilon\right)=\text { cone } S_{Q}\left(T_{Q}, \varepsilon\right) \cap H_{0}(0, \varepsilon) \tag{1.11}
\end{equation*}
$$

where $H_{0}(0, t)$ denotes the slab between the hyperplanes H_{0} and $H_{0}(t)$.
Although $S(T, \varepsilon)$ seems to depend heavily on $H(\cdot)$, it is essentially the same when $\varepsilon \rightarrow 0$. More precisely, given another hyperplane selection $H^{\prime}(\cdot)$, there are constants c_{1} and c_{2} (independent of ε) such that for all small enough $\varepsilon>0$

$$
S\left(T, H, c_{1} \varepsilon\right) \subset S\left(T, H^{\prime}, \varepsilon\right) \subset S\left(T, H, c_{2} \varepsilon\right)
$$

This can be proved by induction in an obvious way. We will write $S(T, \varepsilon)$ for $S_{P}(T, H, \varepsilon)$ as we think of P and $H(\cdot)$ as being fixed.

The notation (vert P_{n} in A) will denote the number of vertices of P_{n} in $A \subset \mathbb{R}^{d}$. The vertices of P_{n} are concentrated in the simplices $S(T, \varepsilon)$ with $\varepsilon=(\log n)^{-1}$ in the following sense:
Theorem 3. Let $P \in \mathscr{\mathscr { F } _ { 1 } ^ { d }}, d \geq 2$, and set $\varepsilon=(\log n)^{-1}$. Then

$$
E\left(\text { vert } P_{n} \text { in } P \backslash \bigcup_{T} S(T, \varepsilon)\right) \leq \operatorname{const}(P) \log ^{d-2} n \log \log n
$$

This is one of the results needed for Theorem 2: The other one is more difficult to prove, and we like to call it "independence of shape".
Theorem 4. Let $P \in \mathscr{K}_{1}^{d}, d \geq 2$, and set $\varepsilon=(\log n)^{-1}$. Then for any tower T of P

$$
E\left(\text { vert } P_{n 2} \text { in } S(T, \varepsilon)\right)=\frac{1}{(d+1)^{d-1}(d-1)!} \log ^{d-1} n+O\left(\log ^{d-2} n \log \log n\right)
$$

This shows that $S(T, \varepsilon)$ contains essentially the same number of vertices of P_{n} no matter what the shape of P is. Actually, we will prove that $E\left(\operatorname{vert} P_{n}\right.$ in $\left.S(T, \varepsilon)\right)$ is the same for all T independently of P up to $O\left(\log ^{d-2} n \log \log n\right)$. Then this number will be implied from the result of Affentranger and Wieacker.

Theorems 3 and 4 state that the vertices of P_{n} are concentrated in $\cup_{T} S(T, \varepsilon)$ and that their number in any particular simplex $S(T, \varepsilon)$ is essentially independent of the shape of P. This is true not only for the vertices but for the k-dimensional faces of P_{n} as well. Let us write $f_{k}(P)$ for the number of k-dimensional faces of the polytope P. Then the following analogue of (1.6) holds.
Theorem 5. For a polytope $P \in \mathscr{K}^{d}$ and $k=0,1, \ldots, d-1$

$$
E\left(f_{k}\left(P_{n}\right)\right)=C(d, k) T(P) \log ^{d-1} n+O\left(\log ^{d-2} n \log \log n\right)
$$

where $C(d, k)$ is a constant depending only on d and k.

The proof of this theorem is based on statements analogous to Theorems 3 and 4. As it is quite technical and does not require new ideas, we will not present it here.

It can be seen from the work of Affentranger and Wieacker [AW] that

$$
\begin{aligned}
& C(d, 0)=\frac{d^{d-1}}{((d-1)!)^{2}} M_{2}\left(\Delta_{d-1}\right) \\
& C(d, d-1)=\frac{d^{d-2}}{((d-1)!)^{2}} M_{1}\left(\Delta_{d-1}\right)
\end{aligned}
$$

where $M_{k}\left(\Delta_{d-1}\right)$ denotes the k-th moment of the volume of the convex hull of d random points in a simplex $\Delta_{d-1} \in \mathscr{F}_{1}^{d-1}$. Due to Reed [Re],

$$
M_{2}\left(\Delta_{d-1}\right)=\frac{(d-1)!}{d^{d-1}(d+1)^{d-1}}
$$

whence $C(d, 0)$ follows as stated in (1.6). However, $M_{1}\left(\Delta_{d-1}\right)$ is not known for $d \geq 5$. $\left(M_{1}\left(\Delta_{1}\right)=\frac{1}{3}, M_{1}\left(\Delta_{2}\right)=\frac{1}{12}\right.$, and it was recently proved by Buchta and Reitzner [BR] that $M_{1}\left(\Delta_{3}\right)=\frac{13}{720}-\frac{\pi^{2}}{15015}$.)

Since P_{n} is simplicial with probability 1 , for $j=-1,0, \ldots, d-2$

$$
\begin{equation*}
\sum_{k=j}^{d-1}(-1)^{k}\binom{k+1}{j+1} C(d, k)=(-1)^{d-1} C(d, j) \tag{1.12}
\end{equation*}
$$

with $C(d,-1)=0$, other than in the usual Dehn-Sommerville equations where the corresponding value is 1 . (Euler's theorem $\sum_{k=0}^{d-1}(-1)^{k} f_{k}=1-(-1)^{d}$ corresponds to $\sum_{k=0}^{d-1}(-1)^{k} C(d, k)=0$.) For example, in the three-dimensional case, (1.12) and $C(3,0)=\frac{1}{32}$ imply $C(3,1)=\frac{3}{32}, C(3,2)=\frac{1}{16}$. (The resulting expressions for $E\left(f_{k}\left(P_{n}\right)\right)$ can be simplified by observing that $T(P)$ is four times the number of edges for every three-dimensional polytope P.)

The results of this paper were announced in Bárány, Buchta [BB]. For further information about the convex hull of random points and related topics see the section "Random points in a convex body" in the work of Weil and Wieacker [WW] as well as the surveys of Affentranger [Af2], Schneider [Schn], and Buchta [Bu3]. Interesting remarks are also contained in the section "Random polygons and polyhedra" of a new book on unsolved problems in geometry [CFG].

2. Notation, definitions, further results

Given a convex body $K \in \mathscr{F}^{d}$ and $\theta>0$, the Macbeath region with centre $x \in K$ is defined as

$$
M(x, \theta)=M_{K}(x, \theta)=x+\theta[(K-x) \cap(x-K)]
$$

Sometimes we will write $M(x)$ instead of $M(x, 1)$. Macbeath regions were studied in [Ma], [ELR], [BáLa], and [Bá]. Define $u=u_{K}: K \rightarrow \mathbb{R}$ by

$$
u(x)=\operatorname{vol} M_{K}(x)
$$

Another function of interest is $v=v_{K}: K \rightarrow \mathbb{R}$ which is defined by

$$
v(x)=\min \left\{\operatorname{vol}\left(K \cap H^{+}\right): x \in H^{+}, H^{+} \text {a halfspace }\right\} .
$$

It is deduced in [BáLa] that $u(x) \leq 2 v(x)$ for every $x \in K$ and $v(x) \leq(3 d)^{d} u(x)$ if $u(x)$ or $v(x)$ is sufficiently small.

We write $K(u \leq \varepsilon)$ for $\{x \in K: u(x) \leq \varepsilon\}$; the sets $K(u \geq \varepsilon), K(v \leq \varepsilon)$, and $K(v \geq \varepsilon)$ are defined analogously. Macbeath proved that $K(u \geq \varepsilon)$ is convex, see Sections 7 and 11 of [Ma]. Obviously $K(v \geq \varepsilon)$ is convex because it is the intersection of closed halfspaces.

The main result of [BáLa] states that $E(K, n)$ is "essentially the same" as $\operatorname{vol} K\left(v \leq \frac{1}{n}\right)$. Precisely, there are constants $c_{1}(d)$ and $c_{2}(d)$ such that

$$
\begin{equation*}
c_{1}(d) E(K, n) \leq \operatorname{vol} K\left(v \leq \frac{1}{n}\right) \leq c_{2}(d) E(K, n) \tag{2.1}
\end{equation*}
$$

for $K \in \mathscr{K}_{1}^{d}$ and $n \geq d+1$. Moreover, vol $K\left(v \leq \frac{1}{n}\right)$ and $\operatorname{vol} K\left(u \leq \frac{1}{n}\right)$ are essentially the same, too.

In the case of a polytope we can prove a formula similar to (1.4):
Theorem 6. Let $P \in \mathscr{F}_{1}^{d}$ be a polytope, $d \geq 2$. Then

$$
\operatorname{vol} P(u \leq \varepsilon)=\frac{T(P)}{2^{d} d!(d-1)!} \varepsilon \log ^{d-1} \frac{1}{\varepsilon}+O\left(\varepsilon \log ^{d-2} \frac{1}{\varepsilon}\right)
$$

Albeit much simpler than Theorem 2 this will be quite useful. Analogously one can show

$$
\operatorname{vol} P(v \leq \varepsilon)=\frac{T(P)}{d^{d}(d-1)!} \varepsilon \log ^{d-1} \frac{1}{\varepsilon}+O\left(\varepsilon \log ^{d-2} \frac{1}{\varepsilon}\right)
$$

This was first proved by Schütt [Schü], we found it independently.
The assumption vol $K=1$ or vol $P=1$ in the theorems is made for convenience rather than necessity. What is really needed is vol $K>0$, and we will have to consider convex bodies with vol $K \neq 1$ as well. In this case it is better to take

$$
\frac{\operatorname{vol} K(u \leq \varepsilon \operatorname{vol} K)}{\operatorname{vol} K}
$$

instead of vol $K(u \leq \varepsilon)$ because it is affinely invariant. Precisely, let $L: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ be a nondegenerate affine transformation and $K \in \mathscr{F}^{d}$. Then, clearly,

$$
\begin{equation*}
\frac{\operatorname{vol} K\left(u_{K} \leq \varepsilon \operatorname{vol} K\right)}{\operatorname{vol} K}=\frac{\operatorname{vol} L K\left(u_{L K} \leq \varepsilon \operatorname{vol} L K\right)}{\operatorname{vol} L K} \tag{2.2}
\end{equation*}
$$

We mention further that E (vert K_{n}) does not depend on the volume of K. But Efron's identity (1.5) has to be modified:

$$
E\left(\text { vert } K_{n+1}\right)=\frac{n+1}{\operatorname{vol} K} E(K, n) \text { when } K \in \mathscr{K}^{d}
$$

Assume $P \in \mathscr{K}^{d}$ is a polytope and let T be one of its towers. This will define parameters $\tau_{0}(z), \tau_{1}(z), \ldots, \tau_{d-1}(z)$ for $z \in P$ in the following way. We use induction, so when $d=1, \tau_{0}(z)$ is the distance of z from the vertex defining T. When $d>1, \tau_{0}(z)$ is defined (cf. (1.7) and (1.8)) by

$$
z \in H_{0}\left(\tau_{0}(z)\right)
$$

Recall the definitions of $Q, T_{Q}, S_{Q}\left(T_{Q}, \varepsilon\right)$ from (1.7), (1.8), (1.9), (1.10), (1.11). Set

$$
\begin{equation*}
z_{Q}:=t_{0} \tau_{0}^{-1}(z) z \in Q \tag{2.3}
\end{equation*}
$$

Define now for $i=1,2, \ldots, d-1$

$$
\tau_{i}(z)=\tau_{i-1}\left(z_{Q}\right)
$$

where the parameter $\tau_{i-1}\left(z_{Q}\right)$ is meant in Q with respect to the tower T_{Q}. With this definition we have

$$
z \in S(T, \varepsilon) \text { if and only if } \tau_{0}(z) \leq \varepsilon \text { and } z_{Q} \in S_{Q}\left(T_{Q}, \varepsilon\right)
$$

and, further,

$$
z \in S(T, \varepsilon) \text { if and only if } \tau_{i}(z) \leq \varepsilon \quad(i=0,1, \ldots, d-1)
$$

Clearly, for $\alpha>0$ and $z \in P$

$$
\begin{equation*}
\tau_{0}(\alpha z)=\alpha \tau_{0}(z) \tag{2.4}
\end{equation*}
$$

but

$$
\begin{equation*}
\tau_{i}(\alpha z)=\tau_{i}(z) \quad(i=1, \ldots, d-1) \tag{2.5}
\end{equation*}
$$

In the proof of Theorem 4 we will need the following notation. Again, P is a polytope and $T=\left(F_{0}, F_{1}, \ldots, F_{d-1}\right)$ a tower of P. For $\phi_{0}, \phi_{1}, \ldots, \phi_{d-1}>0$ define

$$
\begin{align*}
P\left(\bar{\phi}_{i}\right) & =P\left(\phi_{0}, \ldots, \phi_{i}\right) \\
& =P\left(\phi_{0}, \ldots, \phi_{i} ; F_{0}, \ldots, F_{i}\right) \\
& =\left\{z \in P: \tau_{j}(z) \leq \phi_{j}(j=0, \ldots, i)\right\} \tag{2.6}
\end{align*}
$$

In particular, if $\varphi_{0}=\varphi_{1}=\cdots=\varphi_{d-1}=\varepsilon$, then

$$
P\left(\bar{\varphi}_{d-1}\right)=S(T, \varepsilon)
$$

Moreover, we put

$$
\begin{equation*}
P\left(\bar{\phi}_{i-1}\right)=P \text { when } i=0 \tag{2.7}
\end{equation*}
$$

and we set for $i=0,1, \ldots, d-1$

$$
\begin{aligned}
& P\left(\bar{\phi}_{i-1}, \tau_{i} \geq \phi_{i}\right) \\
& =P\left(\phi_{0}, \ldots, \phi_{i-1}, \tau_{i} \geq \phi_{i}\right) \\
& =\left\{z \in P\left(\bar{\phi}_{i-1}\right): \tau_{i}(z) \geq \phi_{i}\right\}
\end{aligned}
$$

Notice that for $i \geq 1$

$$
\begin{equation*}
P\left(\bar{\phi}_{i-1}, \tau_{i} \geq \phi_{i}\right)=\operatorname{cone} Q\left(\phi_{1}, \ldots, \phi_{i-1}, \tau_{i-1}^{(Q)} \geq \phi_{i}\right) \cap H_{0}\left(0, \phi_{0}\right) \tag{2.8}
\end{equation*}
$$

where $\tau_{i-1}^{(Q)}$ is the $(i-1)^{\text {st }}$ parameter induced in Q by the tower T.
Finally, we define

$$
\operatorname{ray}(x, y)=\{x+t(y-x): t \geq 0\}
$$

and we set

$$
u(x, y)=\max \{u(z): z \in \operatorname{aff}(x, y)\}
$$

where $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ and aff (x, y) denotes the affine hull of $x, y \in \mathbb{R}^{d}$.
We will use the notation const (P) for different constants. As we think that the hyperplane selection $H(\cdot)$ is given together with the polytope P, we will write const (P) instead of const (P, H).

3. Auxiliary results

For $0 \leq \varepsilon \leq 1$

$$
\begin{equation*}
\operatorname{vol}\left\{x \in \mathbb{R}^{d}: \prod_{i=1}^{d} x_{i} \leq \varepsilon, 0 \leq x_{i} \leq 1(i=1, \ldots, d)\right\}=\varepsilon \sum_{i=0}^{d-1} \frac{1}{i!} \log ^{i} \frac{1}{\varepsilon} . \tag{3.1}
\end{equation*}
$$

This follows, e.g., from (3.5) and (8.1) in Chapter I of [Fe].
Assume now that P is a polytope with a fixed tower T whose starting vertex is the origin. Then

$$
\begin{equation*}
u_{P}(x)=\int_{\tau_{0}(x)-\tau_{0}}^{\tau_{0}(x)+\tau_{0}} \operatorname{vol}_{d-1}\left[M_{P}(x) \cap H_{0}(t)\right] d t \tag{3.2}
\end{equation*}
$$

where $\tau_{0} \geq 0$ is defined as the largest t for which the section $M_{P}(x) \cap H_{0}\left(\tau_{0}(x)-t\right)$ is nonempty. It is easy to see that the central section $M_{P}(x) \cap H_{0}\left(\tau_{0}(x)\right)$ coincides with $M_{Q\left(\tau_{0}(x)\right)}(x)$. Since $M_{P}(x)$ is centrally symmetric with centre x, the largest volume section is the central one. Then (3.2) implies

$$
\begin{equation*}
u_{P}(x) \leq 2 \tau_{0} u_{Q\left(\tau_{0}(x)\right.}(x) \tag{3.3}
\end{equation*}
$$

On the other hand,

$$
\begin{align*}
u_{P}(x) & =2 \int_{\tau_{0}(x)-\tau_{0}}^{\tau_{0}(x)} \operatorname{vol}_{d-1}\left[M_{P}(x) \cap H_{0}(t)\right] d t \\
& \geq 2 \int_{\tau_{0}(x)}^{\tau_{0}(x)-\tau_{0}}\left(\frac{t-\tau_{0}(x)+\tau_{0}}{\tau_{0}}\right)^{d-1} \operatorname{vol}_{d-1} M_{Q\left(\tau_{0}(x)\right)}(x) d t \\
& =\frac{2 \tau_{0}}{d} u_{Q\left(\tau_{0}(x)\right)}(x) . \tag{3.4}
\end{align*}
$$

We will often use (3.3) and (3.4) when $\tau_{0}=\tau_{0}(x)$. This happens if x is close enough to the vertex of T, for instance, if the vertex of T is the only vertex of P lying in the slab $H_{0}\left(0,2 \tau_{0}(x)\right)$.

Assume now that $K \in \mathscr{K}^{d}$ with vol $K=q$. It can be seen from the proof of Theorem 1 in [BáLa] that

$$
\begin{equation*}
\operatorname{Prob}\left(x \notin K_{n}\right) \leq 2 \sum_{i=0}^{d-1}\binom{n}{i}\left(\frac{u(x)}{2 q}\right)^{i}\left(1-\frac{u(x)}{2 q}\right)^{n-i} \tag{3.5}
\end{equation*}
$$

where Prob is meant with $x \in K$ fixed and K_{n} the random polytope in K varying.

Before stating the first of three lemmata needed in the proof of Theorem 4, we mention a result of Macbeath: Let L be a convex compact subset of K containing interior points of K. Then, according to Lemma 7.1 in [Ma], the maximum value of u_{K} in L is attained at a unique point of L.

Lemma 1. Assume $K \in \mathscr{F}^{d}$, and a and b are points on the boundary of K such that aff (a, b) contains interior points of K. Let c be the point where u takes its maximum value on $\operatorname{aff}(a, b)$. Then, if $u(c)$ is sufficiently small,

$$
\frac{\|a-c\|}{\|b-c\|} \leq(3 d)^{d+2}
$$

Lemma 1 says that if H is a hyperplane and $u(c)=\max \{u(x): x \in H\}$ with $c \in H$, then c is a " $(3 d)^{d+2}$-central" point of the section $K \cap H$. Similarly, the v-maximal point on H is the centre of gravity of $K \cap H$ (cf., e.g., the proof of Lemma 4 in [ELR]), whence it is " $(d-1)$-central".
Lemma 2. Assume $P \in \mathscr{W}_{1}^{d}, T$ is a tower of $P, \varphi_{0}=\varphi_{1}=\ldots=\varphi_{d-1}=\left(\log \frac{1}{\varepsilon}\right)^{-1}$ with $\varepsilon>0$ small enough, $\phi_{0}, \phi_{1}, \ldots, \phi_{d-1}>0$ are constants, $\theta \geq 1$. Then, for $i=0,1, \ldots, d-1, x \in P\left(\bar{\varphi}_{i}\right)$ implies

$$
\begin{aligned}
& \operatorname{vol}\left[P\left(\bar{\phi}_{i-1}, \tau_{i} \geq \phi_{i}\right) \cap M_{P\left(\bar{\phi}_{i-1}\right)}(x, \theta)\right] \\
& \quad \leq \operatorname{const}(P) \tau_{i}(x) \operatorname{vol} M_{P\left(\bar{\phi}_{i-1}\right)}(x, \theta)
\end{aligned}
$$

Lemma 3. Assume, again, $P \in \mathscr{T}_{1}^{d}$, T is a tower of $P, \varphi_{0}=\varphi_{1}=\ldots=\varphi_{d-1}=$ $\left(\log \frac{1}{\varepsilon}\right)^{-1}$ with $\varepsilon>0$ small enough, $\phi_{0}, \phi_{1}, \ldots, \phi_{d-1}>0$ are constants. Then, for $i=0,1, \ldots, d-1$,

$$
\begin{aligned}
& \text { meas }\left\{(x, y) \in P\left(\bar{\varphi}_{i}\right) \times P\left(\bar{\phi}_{i-1}, \tau_{i} \geq \phi_{i}\right): u_{P\left(\bar{\phi}_{i-1}\right)}(x, y) \leq \varepsilon\right\} \\
& \quad \leq \operatorname{const}(P) \varepsilon^{2} \log ^{d-2} \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}
\end{aligned}
$$

where meas is the product of the Lebesgue measures on $\mathbb{R}^{d} \times \mathbb{R}^{d}$.
The proofs of the lemmata are given in Section 8. In Section 7 we deduce Theorem 1 from Theorem 2. The proof of Theorem 2 consists in proving Theorems 3 and 4 which will be done in Sections 5 and 6. Theorem 6, or rather its proof, turns out to be an important tool for the proofs of Theorem 3 and 4, so we start with Theorem 6.

4. Proof of Theorem 6

For a vertex $v \in P$ define $H_{v}=H(\{v\})$ and write $H_{v}(0, \varphi)$ for the slab between H_{v} and $H_{v}(\varphi)$. Put $A(\varphi)=P \backslash \cup_{v} H_{v}(0, \varphi)$. As a first step in the proof we show

$$
\begin{equation*}
\operatorname{vol}[P(u \leq \varepsilon) \cap A(\varphi)] \leq \operatorname{const}(P) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi} \tag{4.1}
\end{equation*}
$$

provided $\varphi^{d} \geq \operatorname{const}(P) \varepsilon$. (4.1) means that the essential part of $P(u \leq \varepsilon)$ is concentrated near the vertices of P.

When $d=1$ and $\varphi \geq \varepsilon / 2$, the left hand side of (4.1) equals 0 . For $d \geq 2$ let $\Delta_{1}, \ldots, \Delta_{m}$ be simplices forming a triangulation of P that uses vertices of P only. Clearly,

$$
P(u \leq \varepsilon) \subset \bigcup_{i=1}^{m} \Delta_{i}\left(u_{\Delta i} \leq \varepsilon\right)
$$

Now for a simplex $\Delta \in \mathscr{F}_{1}^{d}$ with hyperplane selection $H(\cdot)$ one can show that

$$
\begin{align*}
& \operatorname{vol}\left\{x \in \Delta: u_{\Delta}(x) \leq \varepsilon, x \notin \bigcup_{v \text { a vertex of } \Delta} H_{v}(0, \varphi)\right\} \\
& \quad \leq \operatorname{const}(d) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi} \tag{4.2}
\end{align*}
$$

provided $\varphi^{d} \geq \operatorname{const}(d) \varepsilon$. The proof of this is a routine calculation using (3.1) and is, therefore, omitted. See [Dw], [AW] for a similar computation.

Using an affine transformation carrying Δ_{i} into Δ we get by (2.2)

$$
\begin{aligned}
& \operatorname{vol}\left\{x \in \Delta_{i}: u_{\Delta_{i}}(x) \leq \varepsilon, x \notin \bigcup_{v \text { a vertex of } \Delta_{i}} H_{v}(0, \varphi)\right\} \\
& \quad \leq \operatorname{vol} \Delta_{i} \operatorname{vol}\left\{x \in \Delta: u_{\Delta}(x) \leq \frac{\varepsilon}{\operatorname{vol} \Delta_{i}}, x \notin \bigcup_{v \text { a vertex of } \Delta} H_{v}\left(0, \frac{\varphi}{\left(\operatorname{vol} \Delta_{i}\right)^{1 / d}}\right)\right\} \\
& \quad \leq \operatorname{vol} \Delta_{i} \operatorname{const}(d) \frac{\varepsilon}{\operatorname{vol} \Delta_{i}} \log ^{d-2} \frac{\operatorname{vol} \Delta_{i}}{\varepsilon} \log \frac{\left(\operatorname{vol} \Delta_{i}\right)^{1 / d}}{\varphi} \\
& \quad \leq \operatorname{const}(d) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}
\end{aligned}
$$

provided $\left(\frac{\varphi}{\left(\operatorname{vol} \Delta_{i}\right)^{1 / d}}\right)^{d} \geq \operatorname{const}(d) \frac{\varepsilon}{\operatorname{vol} \Delta_{i}}$, i.e. $\varphi^{d} \geq \operatorname{const}(d) \varepsilon$. Summing this for all Δ_{i} we get (4.1).

It is helpful for the second step in the proof to notice that analogous arguments easily give

$$
\begin{equation*}
\operatorname{vol} P(u \leq \varepsilon) \leq \operatorname{const}(P) \varepsilon \log ^{d-1} \frac{1}{\varepsilon} \tag{4.3}
\end{equation*}
$$

This second step consists in showing that $P(u \leq \varepsilon)$ is concentrated in the union of the simplices $S(T, \varphi)$. Setting now $B(\varphi)=P \backslash \cup_{T} S(T, \varphi)$ we claim

$$
\begin{equation*}
\operatorname{vol}[P(u \leq \varepsilon) \cap B(\varphi)] \leq \operatorname{const}(P) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi} \tag{4.4}
\end{equation*}
$$

provided $\varphi^{d} \geq \operatorname{const}(P) \varepsilon$. We prove (4.4) by induction on d. The case $d=1$ is trivial. The case $d=2$ which needs special consideration is quite simple and is left to the reader.

Since $B(\varphi) \supset A(\varphi)=P \backslash \cup_{v} H_{v}(0, \varphi)$ we have

$$
P(u \leq \varepsilon) \cap B(\varphi)=[P(u \leq \varepsilon) \cap A(\varphi)] \cup \bigcup_{v}\left[P(u \leq \varepsilon) \cap B(\varphi) \cap H_{v}(0, \varphi)\right]
$$

$$
\begin{align*}
& \operatorname{vol}[P(u \leq \varepsilon) \cap B(\varphi)] \\
& \quad \leq \operatorname{vol}[P(u \leq \varepsilon) \cap A(\varphi)]+\sum_{v} \operatorname{vol}\left[P(u \leq \varepsilon) \cap B(\varphi) \cap H_{v}(0, \varphi)\right] \tag{4.5}
\end{align*}
$$

We will estimate

$$
\begin{aligned}
O(v) & :=\operatorname{vol}\left[P(u \leq \varepsilon) \cap B(\varphi) \cap H_{v}(0, \varphi)\right] \\
& =\operatorname{vol}\left\{x \in P: u(x) \leq \varepsilon, x \notin \bigcup S(T, \varphi), x \in H_{v}(0, \varphi)\right\}
\end{aligned}
$$

separately for each vertex v. We suppose $v=0$, again. Assume φ is so small that the only vertex lying in $H_{0}(0,2 \varphi)$ is $v=0$. Consequently, for $x \in P \cap H_{0}(0, \varphi)$

$$
M_{P}(x, 1)=M_{\operatorname{conv}(Q \cup\{0\})}(x, 1)
$$

where Q is defined in (1.8), cf. (1.7) as well. Then

$$
\begin{equation*}
O(v)=\int_{0}^{\varphi} \operatorname{vol}_{d-1}\left\{x \in Q(t): u_{P}(x) \leq \varepsilon, x \notin \bigcup S(T, \varepsilon)\right\} d t . \tag{4.6}
\end{equation*}
$$

We estimate the integrand in (4.6) using successively (3.4), (2.2), the fact that $\operatorname{vol}_{d-1} Q(t)=c_{1}(Q) t^{d-1}$, and the induction hypothesis

$$
\begin{align*}
\operatorname{vol}_{d-1}\{ & \left.x \in Q: u_{Q}(x) \leq \varepsilon, x \notin \bigcup S_{Q}\left(T_{Q}, \varphi\right)\right\} \\
& \leq \operatorname{const}(Q) \varepsilon \log ^{d-3} \frac{1}{\varepsilon} \log \frac{1}{\varphi} \tag{4.7}
\end{align*}
$$

provided $\varphi^{d-1} \geq c_{2}(Q) \varepsilon$; cf. (4.4) and (1.9). Thus we obtain

$$
\begin{align*}
\operatorname{vol}_{d-1} & \left\{x \in Q(t): u_{P}(x) \leq \varepsilon, x \notin \bigcup S(T, \varphi)\right\} \\
& \leq \operatorname{vol}_{d-1}\left\{x \in Q(t): u_{Q(t)}(x) \leq \frac{d \varepsilon}{2 t}, x \notin \bigcup S(T, \varphi)\right\} \\
& =\frac{\operatorname{vol}_{d-1} Q(t)}{\operatorname{vol} Q} \operatorname{vol}_{d-1}\left\{x \in Q: u_{Q}(x) \leq \frac{d \varepsilon \operatorname{vol}_{d-1} Q}{2 t \operatorname{vol}_{d-1} Q(t)}, x \notin \bigcup S_{Q}\left(T_{Q}, \varphi\right)\right\} \\
& =c_{1}(Q) t^{d-1} \operatorname{vol}_{d-1}\left\{x \in Q: u_{Q}(x) \leq \frac{d \varepsilon}{2 c_{1}(Q) t^{d}}, x \notin \bigcup S_{Q}\left(T_{Q}, \varphi\right)\right\} \\
& \leq c_{1}(Q) t^{d-1} \operatorname{const}(Q) \frac{d \varepsilon}{2 c_{1}(Q) t^{d}} \log d-3 \frac{2 c_{1}(Q) t^{d}}{d \varepsilon} \log \frac{1}{\varphi} \\
& =\operatorname{const}(Q) \frac{\varepsilon}{t} \log ^{d-3} \frac{2 c_{1}(Q) t^{d}}{d \varepsilon} \log \frac{1}{\varphi} \tag{4.8}
\end{align*}
$$

provided $\varphi^{d-1} \geq c_{2}(Q) \frac{d \varepsilon}{2 c_{1}(Q) t^{d}}$ and $\frac{d \varepsilon}{2 c_{1}(Q) t^{d}} \leq 1$. Define t_{2} and t_{1} as the smallest values $t>0$ such that these inequalities hold, i.e.

$$
t_{2}^{d}=c_{2}(Q) \frac{d \varepsilon}{2 c_{1}(Q) \varphi^{d-1}} \text { and } t_{1}^{d}=\frac{d \varepsilon}{2 c_{1}(Q)}
$$

Notice that $t_{2} \geq t_{1}$ as $\frac{c_{2}(Q)}{\varphi^{d-1}} \geq 1$.

We apply (4.8) when $t_{2} \leq t \leq \varphi$. Observing $\frac{2 c_{1}(Q) \varphi^{d}}{d} \leq 1$ (as the volume of P is 1) we see that

$$
\begin{aligned}
& \int_{t_{2}}^{\varphi} \operatorname{vol}_{d-1}\left\{x \in Q(t): u_{P}(x) \leq \varepsilon, x \notin \bigcup S(T, \varphi)\right\} d t \\
& \quad \leq \int_{t_{2}}^{\varphi} \operatorname{const}(Q) \frac{\varepsilon}{t} \log ^{d-3} \frac{2 c_{1}(Q) t^{d}}{d \varepsilon} \log \frac{1}{\varphi} d t \\
& \quad=\operatorname{const}(Q) \frac{1}{d(d-2)} \varepsilon\left(\log ^{d-2} \frac{2 c_{1}(Q) \varphi^{d}}{d \varepsilon}-\log ^{d-2} \frac{c_{2}(Q)}{\varphi^{d-1}}\right) \log \frac{1}{\varphi} \\
& \quad \leq \operatorname{const}(Q) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}
\end{aligned}
$$

For $t_{1} \leq t \leq t_{2}$ we use

$$
\operatorname{vol}_{d-1}\left\{x \in Q: u_{Q}(x) \leq \varepsilon\right\} \leq \operatorname{const}(Q) \varepsilon \log ^{d-2} \frac{1}{\varepsilon}
$$

instead of (4.7); cf. (4.3). (Applying (4.3) can be avoided if the whole theorem is proved by induction.) Then

$$
\begin{aligned}
& \int_{t_{1}}^{t_{2}} \operatorname{vol}_{d-1}\left\{x \in Q(t): u_{P}(x) \leq \varepsilon, x \notin \bigcup S(T, \varphi)\right\} d t \\
& \leq \int_{t_{1}}^{t_{2}} \operatorname{vol}_{d-1}\left\{x \in Q(t): u_{P}(x) \leq \varepsilon\right\} d t \\
& \leq \int_{t_{1}}^{t_{2}} c_{1}(Q) t^{d-1} \operatorname{vol}_{d-1}\left\{x \in Q: u_{Q}(x) \leq \frac{d \varepsilon}{2 c_{1}(Q) t^{d}}\right\} d t \\
& \leq \int_{t_{1}}^{t_{2}} c_{1}(Q) t^{d-1} \operatorname{const}(Q) \frac{d \varepsilon}{2 c_{1}(Q) t^{d}} \log ^{d-2} \frac{2 c_{1}(Q) t^{d}}{d \varepsilon} d t \\
& \quad=\int_{t_{1}}^{t_{2}} \operatorname{const}(Q) \frac{\varepsilon}{t} \log ^{d-2} \frac{2 c_{1}(Q) t^{d}}{d \varepsilon} d t \\
&= \operatorname{const}(Q) \frac{1}{d(d-1)} \varepsilon \log g^{d-1} \frac{c_{2}(Q)}{\varphi^{d-1}} \\
& \leq \operatorname{const}(Q) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}
\end{aligned}
$$

since $1 \leq \frac{c_{2}(Q)}{\varphi^{d-1}} \leq \frac{1}{\varepsilon}$.
Finally, for $0 \leq t \leq t_{1}$

$$
\begin{aligned}
& \int_{0}^{t_{1}} \operatorname{vol}_{d-1}\left\{x \in Q(t): u_{P}(x) \leq \varepsilon, x \notin \bigcup S(T, \varphi)\right\} d t \\
& \quad \leq \int_{0}^{t_{1}} \operatorname{vol}_{d-1} Q(t) d t=\int_{0}^{t_{1}} c_{1}(Q) t^{d-1} d t=\frac{\varepsilon}{2}
\end{aligned}
$$

To summarize, we conclude that

$$
O(v) \leq \operatorname{const}(Q) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}
$$

Because of (4.5), this together with (4.1) proves (4.4).
As a third and last step in the proof we compute $\operatorname{vol}[P(u \leq \varepsilon) \cap S(T, \varphi)]$. We do this first when $P=C$, the unit cube in \mathbb{R}^{d}. In this case, by symmetry, $C(u \leq \varepsilon) \cap S(T, \varphi)$ is the same for all towers T of C. On the other hand,

$$
u_{C}(x)=2^{d} x_{1} \ldots x_{d}
$$

for those $x=\left(x_{1}, \ldots, x_{d}\right) \in C$ which satisfy $0 \leq x_{i} \leq \frac{1}{2}(i=1, \ldots, d)$. A routine computation similar to the one needed for (4.2) gives

$$
\begin{aligned}
& \operatorname{vol}\left\{x \in C: u_{C}(x) \leq \varepsilon, x_{i} \leq \frac{1}{2}(i=1, \ldots, d)\right\} \\
& \quad=\frac{1}{2^{d}(d-1)!} \varepsilon \log ^{d-1} \frac{1}{\varepsilon}+O\left(\varepsilon \log ^{d-2} \frac{1}{\varepsilon}\right)
\end{aligned}
$$

Since there are $d!$ towers and so $d!$ simplices $S(T, \varphi)$ starting with $F_{0}=\{0\}$, we get

$$
\begin{equation*}
\operatorname{vol}\left[C\left(u_{C} \leq \varepsilon\right) \cap S(T, \varphi)\right]=\frac{1}{2^{d} d!(d-1)!} \varepsilon \log ^{d \cdots 1} \frac{1}{\varepsilon}+O\left(\varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}\right) \tag{4.9}
\end{equation*}
$$

where we used (4.4) with $P=C$ as well.
Assume now P is a polytope and T is one of its towers. Then one can find two parallelepipeda C_{1} and C_{2} with towers T_{1} and T_{2} so that $S_{P}(T, \varphi)=S_{C_{1}}\left(T_{1}, \varphi\right)=$ $S_{C_{2}}\left(T_{2}, \varphi\right)$ and that for x close enough to the origin

$$
\begin{aligned}
& x \in C_{1} \text { implies } x \in P \text { and } \\
& x \in P \text { implies } x \in C_{2}
\end{aligned}
$$

Now if $x \in S(T, \varphi)$ and φ is small enough, then x is close to the origin and so

$$
M_{C_{1}}(x) \subset M_{P}(x) \subset M_{C_{2}}(x)
$$

Consequently $u_{C_{1}}(x) \leq u_{P}(x) \leq u_{C_{2}}(x)$. We know from (4.9) and (2.2) that for $i=1,2$

$$
\operatorname{vol}\left[C_{i}\left(u_{C_{i}} \leq \varepsilon\right) \cap S\left(T_{i}, \varphi\right)\right]=\frac{1}{2^{d} d!(d-1)!} \varepsilon \log ^{d-1} \frac{1}{\varepsilon}+O\left(\varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}\right)
$$

proving that

$$
\begin{equation*}
\operatorname{vol}\left[P\left(u_{P} \leq \varepsilon\right) \cap S(T, \varphi)\right]=\frac{1}{2^{d} d!(d-1)!} \varepsilon \log ^{d-1} \frac{1}{\varepsilon}+O\left(\varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}\right) \tag{4.10}
\end{equation*}
$$

Finally, summing (4.10) for all the towers and using (4.4) gives

$$
\operatorname{vol} P(u \leq \varepsilon)=\frac{T(P)}{2^{d} d!(d-1)!} \varepsilon \log ^{d-1} \frac{1}{\varepsilon}+O\left(\varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \frac{1}{\varphi}\right)
$$

provided $\varphi^{d} \geq \operatorname{const}(P) \varepsilon$. This certainly holds when φ is a suitable constant and $\varepsilon>0$ small enough, proving the theorem.

5. Proof of Theorem 3

Assume $A \subset P$ is measurable. Set $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$. Clearly,

$$
\begin{align*}
E\left(\operatorname{vert} P_{n} \text { in } A\right) & =\sum_{i=1}^{n} \operatorname{Prob}\left(x_{i} \in A, x_{i} \notin \operatorname{conv}\left(X_{n} \backslash\left\{x_{i}\right\}\right)\right) \\
& =n \int_{x \in A} \operatorname{Prob}\left(x \notin P_{n-1}\right) d x . \tag{5.1}
\end{align*}
$$

Here $\operatorname{Prob}\left(x \notin P_{n-1}\right)$ is meant with x fixed and $P_{n-1}=\operatorname{conv} X_{n-1}$, a random polytope. We apply (5.1) when

$$
A=B(\varepsilon)=P \backslash \bigcup_{T} S(T, \varepsilon)
$$

where $\varepsilon=(\log n)^{-1}$. We use the method of [BáLa]. Changing n to $n+1$ and applying (3.5) we get

$$
\begin{align*}
& (n+1) \int_{B(\varepsilon)} \operatorname{Prob}\left(x \notin P_{n}\right) d x \\
& \leq(n+1) \int_{B(\varepsilon)} 2 \sum_{i=0}^{d-1}\binom{n}{i}\left(\frac{u(x)}{2}\right)^{i}\left(1-\frac{u(x)}{2}\right)^{n-i} d x \\
& =(n+1) \sum_{\lambda=1}^{n} \int_{\substack{\frac{\lambda-1}{n} \leq u(x) \leq \frac{\lambda}{n}}} 2 \sum_{i=0}^{d-1}\binom{n}{i}\left(\frac{u(x)}{2}\right)^{i}\left(1-\frac{u(x)}{2}\right)^{n-i} d x \\
& \leq 2(n+1) \sum_{\lambda=1}^{n} \sum_{i=0}^{d-1}\binom{n}{i}\left(\frac{\lambda}{2 n}\right)^{i}\left(1-\frac{\lambda-1}{2 n}\right)^{n-i} \operatorname{vol}\left\{x \in B(\varepsilon): u(x) \leq \frac{\lambda}{n}\right\} .
\end{align*}
$$

Here $\binom{n}{i}\left(\frac{\lambda}{2 n}\right)^{i} \leq \frac{\lambda^{i}}{2^{i} i!},\left(1-\frac{\lambda-1}{2 n}\right)^{-i} \leq 2^{i}$, and $\left(1-\frac{\lambda-1}{2 n}\right)^{n} \leq e^{-(\lambda-1) / 2}$ yield

$$
\begin{equation*}
\sum_{i=0}^{d-1}\binom{n}{i}\left(\frac{\lambda}{2 n}\right)^{i}\left(1-\frac{\lambda-1}{2 n}\right)^{n-i} \leq \mathrm{const}(d) \lambda^{d-1} e^{-\lambda / 2} \tag{5.3}
\end{equation*}
$$

Moreover, $\operatorname{vol}\left\{x \in B(\varepsilon): u(x) \leq \frac{\lambda}{n}\right\} \leq 1$. Set $\lambda_{0}=\lfloor 4 \log n\rfloor$. Then

$$
\begin{align*}
& 2(n+1) \sum_{\lambda=\lambda_{0}+1}^{n} \sum_{i=0}^{d-1}\binom{n}{i}\left(\frac{\lambda}{2 n}\right)^{i}\left(1-\frac{\lambda-1}{2 n}\right)^{n-i} \operatorname{vol}\left\{x \in B(\varepsilon): u(x) \leq \frac{\lambda}{n}\right\} \\
& \leq \operatorname{const}(d) \pi \sum_{\lambda=\lambda_{0}+1}^{n} \lambda^{d-1} e^{-\lambda / 2} \\
& \leq \operatorname{const}(d) \pi e^{-\lambda_{0} / 4} \sum_{\lambda=1}^{\infty} \lambda^{d-1} e^{-\lambda / 4} \\
& \leq \operatorname{const}(d) \tag{5.4}
\end{align*}
$$

We know from Theorem 6 or rather from (4.4) that

$$
\operatorname{vol}\left\{x \in B(\varepsilon): u(x) \leq \frac{\lambda}{n}\right\} \leq \operatorname{const}(P) \frac{\lambda}{n} \log ^{d-2} \frac{n}{\lambda} \log \frac{1}{\varepsilon}
$$

since $\varepsilon=(\log n)^{-1}$ satisfies $\varepsilon^{d} \geq \operatorname{const}(P) \frac{\lambda}{n}$ when $\lambda \leq \lambda_{0}$. So we have

$$
\begin{align*}
& 2(n+1) \sum_{\lambda=1}^{\lambda_{0}} \sum_{i=0}^{d-1}\binom{n}{i}\left(\frac{\lambda}{2 n}\right)^{i}\left(1-\frac{\lambda-1}{2 n}\right)^{n-i} \operatorname{vol}\left\{x \in B(\varepsilon): u(x) \leq \frac{\lambda}{n}\right\} \\
& \leq \operatorname{const}(d) n \sum_{\lambda=1}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{const}(P) \frac{\lambda}{n} \log ^{d-2} \frac{n}{\lambda} \log \log n \\
& \leq \operatorname{const}(P) \sum_{\lambda=1}^{\lambda_{0}} \lambda^{d} e^{-\lambda / 2} \log ^{d-2} n \log \log n \\
& \leq \operatorname{const}(P) \log ^{d-2} n \log \log n . \tag{5.5}
\end{align*}
$$

This proof will serve as a model for some proofs to come. In particular, estimations analogous to (5.2), (5.3), (5.4), and (5.5) will frequently be used with reference to this section and without elaboration.

6. Proof of Theorem 4

Again let $X_{n}=\left\{x_{1}, \ldots, x_{n}\right\}$ be the set of the n random points in P. For $i=$ $0,1, \ldots, d-1$ define

$$
\begin{aligned}
E(i, n)= & E\left[\operatorname{vert} \operatorname{conv}\left(X_{n} \cap P\left(\bar{\phi}_{i}\right)\right) \text { in } P\left(\bar{\varphi}_{i}\right)\right] \\
& -E\left[\operatorname{vert} \operatorname{conv}\left(X_{n} \cap P\left(\bar{\phi}_{i-1}\right)\right) \text { in } P\left(\bar{\varphi}_{i}\right)\right] .
\end{aligned}
$$

Here $P\left(\tilde{\phi}_{i}\right)$ and $P\left(\tilde{\varphi}_{i}\right)$ are defined in (2.6), cf. (2.7) as well. We set

$$
\begin{equation*}
\varphi_{i}=(\log n)^{-1}, \phi_{i}=\operatorname{const}(P) \quad(i=0,1, \ldots, d-1) \tag{6.1}
\end{equation*}
$$

where ϕ_{i} is chosen so small that the set $\left\{z \in P: 0<\tau_{i}(z)<2 \phi_{i}\right\}$ does not contain any vertex of P. We claim that

$$
\begin{equation*}
0 \leq E(i, n) \leq \operatorname{const}(P) \log ^{d-2} n \log \log n \tag{6.2}
\end{equation*}
$$

This will prove the theorem in the following way:

$$
\begin{align*}
E\left(\text { vert } P_{n}\right)= & \sum_{F_{0}} E\left[\text { vert } P_{n} \text { in } P\left(\varphi_{0} ; F_{0}\right)\right] \\
& +O\left(\log ^{d-2} n \log \log n\right) \\
= & \sum_{F_{0}} E\left[\text { vert } \operatorname{conv}\left(X_{n} \cap P\left(\phi_{0} ; F_{0}\right)\right) \text { in } P\left(\varphi_{0} ; F_{0}\right)\right] \\
& +O\left(\log ^{d-2} n \log \log n\right) \\
= & \sum_{F_{0}, F_{1}} E\left[\text { vert } \operatorname{conv}\left(X_{n} \cap P\left(\phi_{0} ; F_{0}\right)\right) \text { in } P\left(\varphi_{0}, \varphi_{1} ; F_{0}, F_{1}\right)\right] \\
& +O\left(\log ^{d-2} n \log \log n\right) \\
= & \sum_{F_{0}, F_{1}} E\left[\operatorname{vert}^{2} \operatorname{conv}\left(X_{n} \cap P\left(\phi_{0}, \phi_{1} ; F_{0}, F_{1}\right)\right) \text { in } P\left(\varphi_{0}, \varphi_{1} ; F_{0}, F_{1}\right)\right] \\
& +O\left(\log ^{d-2} n \log \log n\right) \\
= & \ldots \\
= & \sum_{T} E\left[\operatorname{vert}^{2} \operatorname{conv}\left(X_{n} \cap P\left(\phi_{0}, \ldots, \phi_{d-1} ; T\right)\right) \text { in } P\left(\varphi_{0}, \ldots, \varphi_{d-1} ; T\right)\right] \\
& +O\left(\log ^{d-2} n \log \log n\right) \tag{6.3}
\end{align*}
$$

where the equalities follow from Theorem 3 and (6.2), alternatively. The terms in the last sum are independent of P, they depend only on $\varphi_{0}, \ldots, \varphi_{d-1}$ and $\phi_{0}, \ldots, \phi_{d-1}$. This means that they are the same for every tower of every polytope once these numbers are equal. For a simple polytope Affentranger and Wieacker determined

$$
E\left(\operatorname{vert} P_{n}\right)=\frac{d \text { vert } P}{(d+1)^{d-1}} \log ^{d-1} n+O\left(\log ^{d-2} n\right)
$$

Since $T(P)=d!$ vert P for a simple polytope, we get from (6.3) that the expected number of vertices of P_{n} lying in $S\left(T,(\log n)^{-1}\right)$ is

$$
\frac{1}{(d+1)^{d-1}(d-1)!} \log ^{d-1} n+O\left(\log ^{d-2} n \log \log n\right)
$$

But then $E\left[\right.$ vert P_{n} in $\left.S\left(T,(\log n)^{-1}\right)\right]$ is this very number for every tower T of every polytope, simple or otherwise.

Set $q=\operatorname{vol} P\left(\bar{\phi}_{i-1}\right)$. Choosing the random n-set X_{n} from P is the same as the following two-step procedure. First choose $m \in\{0,1, \ldots, n\}$ with probability $\binom{n}{m} q^{m}(1-q)^{n-m}$, then choose m points y_{1}, \ldots, y_{m} from $P\left(\bar{\phi}_{i-1}\right)$ randomly, independently and uniformly, and choose $n-m$ points from $P \backslash P\left(\bar{\phi}_{i-1}\right)$ randomly, independently and uniformly. Correspondingly,

$$
\begin{aligned}
E(i, n)= & \sum_{m=0}^{n}\binom{n}{m} q^{m}(1-q)^{n-m} \\
& \left\{E\left[\operatorname{vert} \operatorname{conv}\left(X_{n} \cap P\left(\bar{\phi}_{i}\right)\right) \text { in } P\left(\bar{\varphi}_{i}\right) \mid \operatorname{card}\left(X_{n} \cap P\left(\bar{\phi}_{i-1}\right)\right)=m\right]\right. \\
& \left.-E\left[\operatorname{vertconv}\left(X_{n} \cap P\left(\bar{\phi}_{i-1}\right)\right) \text { in } P\left(\bar{\varphi}_{i}\right) \mid \operatorname{card}\left(X_{n} \cap P\left(\bar{\phi}_{i-1}\right)\right)=m\right]\right\}
\end{aligned}
$$

$$
\begin{align*}
= & \sum_{m=0}^{n}\binom{n}{m} q^{m}(1-q)^{n-m} \\
& \left\{E\left[\operatorname{vert} \operatorname{conv}\left(Y_{m} \cap P\left(\bar{\phi}_{i}\right)\right) \text { in } P\left(\bar{\varphi}_{i}\right)\right]\right. \\
& \left.-E\left[\operatorname{vert} \operatorname{conv}\left(Y_{m} \cap P\left(\bar{\phi}_{i-1}\right)\right) \text { in } P\left(\bar{\varphi}_{i}\right)\right]\right\} \tag{6.4}
\end{align*}
$$

with $Y_{m}=\left\{y_{1}, \ldots, y_{m}\right\}$. Here $\operatorname{conv}\left(Y_{m} \cap P\left(\bar{\phi}_{i-1}\right)\right)=P\left(\bar{\phi}_{i-1}\right)_{m}$ since $Y_{m} \subset P\left(\bar{\phi}_{i-1}\right)$, but we cannot use the same notation for conv $\left(Y_{m} \cap P\left(\bar{\phi}_{i}\right)\right)$. So we better leave them as they are. We continue (6.4) using (5.1)

$$
\begin{aligned}
E(i, n)= & \sum_{m=0}^{n}\binom{n}{m} q^{m}(1-q)^{n-m} \\
& m \int_{x \in P\left(\bar{\varphi}_{i}\right)} \operatorname{Prob}\left[x \notin \operatorname{conv}\left(Y_{m-1} \cap P\left(\tilde{\phi}_{i}\right)\right)\right.
\end{aligned}
$$

$$
\begin{equation*}
\text { and } \left.x \in \operatorname{conv}\left(Y_{m-1} \cap P\left(\bar{\phi}_{i-1}\right)\right)\right] d x \tag{6.5}
\end{equation*}
$$

So we see that $E(i, n) \geq 0$. We claim now that for $m \geq d+2$

$$
\begin{align*}
E_{0}:= & m \int_{x \in P\left(\bar{\varphi}_{i}\right)} \operatorname{Prob}\left[x \notin \operatorname{conv}\left(Y_{m-1} \cap P\left(\bar{\phi}_{i}\right)\right)\right. \\
& \text { and } \left.x \in \operatorname{conv}\left(Y_{m-1} \cap P\left(\bar{\phi}_{i-1}\right)\right)\right] d x \\
\leq & \operatorname{const}(P) \log ^{d-2} m \log \log m \tag{6.6}
\end{align*}
$$

($E_{0}=0$ clearly for $m \leq d+1$.) This will prove (6.2), since using (6.6) in (6.5) gives

$$
\begin{aligned}
E(i, n) & \leq \sum_{m=d+2}^{n}\binom{n}{m} q^{m}(1-q)^{n-m} \operatorname{const}(P) \log ^{d-2} m \log \log m \\
& \leq \operatorname{const}(P) \log ^{d-2} n \log \log n \sum_{m=d+2}^{n}\binom{n}{m} q^{m}(1-q)^{n-m} \\
& \leq \operatorname{const}(P) \log ^{d-2} n \log \log n
\end{aligned}
$$

As we prove (6.6) we now introduce the notation $K=P\left(\bar{\phi}_{i-1}\right)$, and we assume that vol $K=\operatorname{vol} P\left(\bar{\phi}_{i-1}\right)=1$ since in (6.6) this does not matter. Let us write further

$$
\begin{aligned}
& K\left(\tau_{i} \leq \phi_{i}\right):=P\left(\tilde{\phi}_{i}\right) \\
& K\left(\tau_{i} \geq \phi_{i}\right):=\left\{z \in K: \tau_{i}(z) \geq \phi_{i}\right\} \\
& K\left(\tau_{i} \geq \varphi_{i}\right):=\left\{z \in K: \tau_{i}(z) \geq \varphi_{i}\right\}
\end{aligned}
$$

but $P\left(\tilde{\varphi}_{i}\right)=P\left(\varphi_{0}, \ldots, \varphi_{i}\right)$ as earlier. For the estimation (6.6) we need the simple but important
Proposition 1. Assume $x, y_{1}, \ldots, y_{m-1}$ are in general position in K. Set $Y_{m-1}=$ $\left\{y_{1}, \ldots, y_{m-1}\right\}$ and assume, further, that

$$
x \in P\left(\bar{\varphi}_{i}\right), x \in \operatorname{conv} Y_{m-1}, x \notin \operatorname{conv}\left(Y_{m-1} \cap K\left(\tau_{i} \leq \phi_{i}\right)\right)
$$

Then there is a $y_{k} \in Y_{m-1} \cap K\left(\tau_{i} \geq \phi_{i}\right)$ such that

$$
\begin{equation*}
\operatorname{ray}\left(x, y_{k}\right) \cap \operatorname{conv}\left[\left(Y_{m-1} \backslash\left\{y_{k}\right\}\right) \cap K\left(\tau_{i} \geq \varphi_{i}\right)\right]=\emptyset, \tag{6.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{ray}\left(x, y_{k}\right) \cap \operatorname{conv}\left[\left(Y_{m-1} \backslash\left\{y_{k}\right\}\right) \cap K\left(\tau_{i} \leq \phi_{i}\right)\right]=\emptyset \tag{6.8}
\end{equation*}
$$

Proof. Identify x with the origin for this proof. Then the conditions imply that

$$
\begin{aligned}
& C_{1}:=\operatorname{cone} Y_{m-1}=\mathbb{R}^{d}, \\
& C_{2}:=\operatorname{cone}\left(Y_{m-1} \cap K\left(\tau_{i} \leq \phi_{i}\right)\right) \neq \mathbb{R}^{d}, \\
& C_{3}:=\operatorname{cone}\left(Y_{m-1} \cap K\left(\tau_{i} \geq \varphi_{i}\right)\right) \neq \mathbb{R}^{d} .
\end{aligned}
$$

As the sum of the last two cones is C_{1}, C_{3} must have an extreme ray, defined by some $y_{k} \in Y_{m-1} \cap K\left(\tau_{i} \geq \varphi_{i}\right)$ that is not in C_{2}. Then $y_{k} \notin K\left(\tau_{i} \leq \phi_{i}\right)$ as well, and $\operatorname{ray}\left(x, y_{k}\right)$ has the claimed properties.

We rewrite (6.6) using the new notation and Proposition 1.

$$
\begin{aligned}
E_{0} & =m \int_{P\left(\overline{(}_{i}\right)} \operatorname{Prob}\left[x \notin \operatorname{conv}\left(Y_{m-1} \cap K\left(\tau_{i} \leq \phi_{i}\right)\right) \text { and } x \in \operatorname{conv}\left(Y_{m-1} \cap K\right)\right] d x \\
& \leq m \int_{P\left(\bar{\varphi}_{i}\right)} \operatorname{Prob}\left[\exists y_{k} \in Y_{m-1} \cap K\left(\tau_{i} \geq \phi_{i}\right) \text { such that (6.7) and (6.8) hold }\right] d x \\
& \leq m \int_{P\left(\varphi_{i}\right)} \sum_{k=1}^{m-1} \operatorname{Prob}\left[y_{k} \in K\left(\tau_{i} \geq \phi_{i}\right) \text { and (6.7) and (6.8) hold }\right] d x \\
& \leq m \int_{x \in P\left(\bar{\varphi}_{i}\right)}(m-1) \int_{y \in K\left(\tau_{i} \geq \phi_{i}\right)} \operatorname{Prob}\left[\operatorname{ray}(x, y) \cap \operatorname{conv}\left(Y_{m-2} \cap K\left(\tau_{i} \geq \varphi_{i}\right)\right)=\emptyset\right. \\
& \text { and } \left.\operatorname{ray}(x, y) \cap \operatorname{conv}\left(Y_{m-2} \cap K\left(\tau_{i} \leq \phi_{i}\right)\right)=\emptyset\right] d y d x .
\end{aligned}
$$

Now change m to $m+2$ and define the events

$$
\begin{aligned}
& G 1: \operatorname{ray}(x, y) \cap \operatorname{conv}\left(Y_{m} \cap K\left(\tau_{i} \geq \varphi_{i}\right)\right)=\emptyset, \\
& G 2: \operatorname{ray}(x, y) \cap \operatorname{conv}\left(Y_{m} \cap K\left(\tau_{i} \leq \phi_{i}\right)\right)=\emptyset .
\end{aligned}
$$

Thus, in order to prove (6.6) it will be enough to show that

$$
\begin{equation*}
m^{2} \iint_{(x, y) \in K^{(i)}} \operatorname{Prob}(G 1 \text { and } G 2) d y d x \leq \operatorname{const}(P) \log ^{d-2} m \log \log m \tag{6.9}
\end{equation*}
$$

where $K^{(i)}=P\left(\bar{\varphi}_{i}\right) \times K\left(\tau_{i} \geq \phi_{i}\right)$.
Let z be the point where the function

$$
u=u_{K}\left(=u_{P\left(\bar{\phi}_{i-1}\right)}\right)
$$

takes its maximum value on aff (x, y). It is known that z is unique (cf. Section 3), but we will not need this. We split $K^{(i)}$, the domain of the integration in (6.9), into three parts:

$$
\begin{aligned}
K_{1}^{(i)} & =\left\{(x, y) \in K^{(i)}: \tau_{i}(z) \geq 2 \varphi_{i}\right\} \\
K_{2}^{(i)} & =\left\{(x, y) \in K^{(i)}: \tau_{i}(x) \leq \tau_{i}(z) \leq 2 \varphi_{i}\right\} \\
K_{3}^{(i)} & =\left\{(x, y) \in K^{(i)}: \tau_{i}(z) \leq \tau_{i}(x)\right\}
\end{aligned}
$$

We will estimate the integral (6.9) separately for the three parts.
Case 1: $\tau_{i}(z) \geq 2 \varphi_{i}$. Set $\bar{u}=u_{K\left(\tau_{i} \geq \varphi_{i}\right)}, \bar{q}=\operatorname{vol} K\left(\tau_{i} \geq \varphi_{i}\right)$, and recall (3.5).

$$
\left.\begin{array}{l}
\operatorname{Prob}(G 1 \text { and } G 2) \leq \operatorname{Prob}(G 1) \\
\leq \operatorname{Prob}\left[z \notin \operatorname{conv}\left(Y_{m} \cap K\left(\tau_{i} \geq \varphi_{i}\right)\right)\right] \\
= \\
\sum_{\mu=0}^{m}\binom{m}{\mu} \bar{q}^{\mu}(1-\bar{q})^{m-\mu} \\
\\
= \\
\operatorname{Prob}\left[z \notin \operatorname{conv}\left(Y_{m} \cap K\left(\tau_{i} \geq \varphi_{i}\right)\right) \mid \operatorname{card}\left(Y_{m} \cap K\left(\tau_{i} \geq \varphi_{i}\right)\right)=\mu\right] \\
\leq \\
\leq \sum_{\mu=0}^{m}\binom{m}{\mu} \bar{q}^{\mu}(1-\bar{q})^{m-\mu} \operatorname{Prob}\left(z \notin K\left(\tau_{i} \geq \varphi_{i}\right)_{\mu}\right) \\
= \\
=2 \sum_{j=0}^{d-1}\binom{m}{j} \bar{q}^{\mu}(1-\bar{q})^{m-\mu}\left(\frac{\bar{u}(z)}{2 \bar{q}}\right)^{j} \sum_{\mu=j}^{m}\binom{m-j}{m-\mu}(1-\bar{q})^{m-\mu}\left[\bar{q}\left(1-\frac{\bar{u}(z)}{2 \bar{q}}\right)^{\mu-j}\right. \\
j
\end{array}\right)\left(\frac{\bar{u}(z)}{2 \bar{q}}\right)^{j}\left(1-\frac{\bar{u}(z)}{2 \bar{q}}\right)^{\mu-j} .
$$

Then

$$
\begin{aligned}
E_{1} & :=m^{2} \iint_{K_{1}^{(i)}} \operatorname{Prob}(G 1 \text { and } G 2) d y d x \\
& \leq m^{2} \iint_{K_{1}^{(i)}} 2 \sum_{j=0}^{d-1}\binom{m}{j}\left(\frac{\bar{u}(z)}{2}\right)^{j}\left(1-\frac{\bar{u}(z)}{2}\right)^{m-j} d y d x \\
& =2 m^{2} \sum_{\lambda=1}^{m} \iint_{K_{1}^{(i)}} \sum_{j=0}^{d-1}\binom{m}{j}\left(\frac{\bar{u}(z)}{2}\right)^{j}\left(1-\frac{\bar{u}(z)}{2}\right)^{m-j} d y d x \\
& \leq \operatorname{const}(d) m^{2} \sum_{\lambda=1}^{m} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{1}^{(i)}: \bar{u}(z) \leq \frac{\lambda}{m}\right\}
\end{aligned}
$$

where the last inequality follows in the same way as (5.2) and (5.3). This time we set $\lambda_{0}=\lfloor 8 \log m\rfloor$ and write

$$
\begin{align*}
E_{1} \leq & \operatorname{const}(d) m^{2}\left[\sum_{\lambda=1}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{1}^{(i)}: \bar{u}(z) \leq \frac{\lambda}{m}\right\}\right. \\
& \left.+\sum_{\lambda=\lambda_{0}+1}^{m} \lambda^{d-1} e^{-\lambda / 2}\right] \tag{6.10}
\end{align*}
$$

The second sum is less than const(d) m^{-2}; cf. (5.4). For the first sum we need
Proposition 2. $u(z) \leq \frac{2 d!}{(d-i)!} \bar{u}(z)$ if $\tau_{i}(z) \geq 2 \varphi_{i}$.
Proof. We use induction. For $i=0$ the statement is

$$
u_{P}(z) \leq 2 u_{P\left(\tau_{0} \geq \varphi_{0}\right)}(z)
$$

provided $\tau_{0}(z) \geq 2 \varphi_{0}$. Observe that $M_{P\left(\tau_{0} \geq \varphi_{0}\right)}(z)=M_{P}(z) \cap H_{0}\left(\varphi_{0}, 2 \tau_{0}(z)-\varphi_{0}\right)$ where $H_{0}\left(t_{1}, t_{2}\right)$ stands for the slab between $H_{0}\left(t_{1}\right)$ and $H_{0}\left(t_{2}\right)$. So by (3.2)

$$
\begin{aligned}
\frac{\tilde{u}(z)}{u(z)} & =\frac{2 \int_{0}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P\left(\tau_{0} \geq \varphi_{0}\right)}(z) \cap H_{0}(t)\right] d t}{2 \int_{0}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P}(z) \cap H_{0}(t)\right] d t} \\
& =\frac{\int_{\varphi_{0}}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P}(z) \cap H_{0}(t)\right] d t}{\int_{0}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P}(z) \cap H_{0}(t)\right] d t} \geq \frac{1}{2}
\end{aligned}
$$

since $\tau_{0}(z) \geq 2 \varphi_{0}$ and the integrand is a monotone function.
When $i \geq 1, t_{0}:=\max \left\{0,2 \tau_{0}(z)-\phi_{0}\right\}$ is the smallest t such that

$$
M_{P\left(\phi_{0}, \ldots, \phi_{i-1}\right)}(z) \cap H_{0}(t) \text { and } M_{P\left(\phi_{0}, \ldots, \phi_{i-1}, \tau_{i} \geq \varphi_{i}\right)}(z) \cap H_{0}(t)
$$

are nonempty. Therefore (3.3), (3.4), and the induction hypothesis (also cf. (2.8)) imply

$$
\begin{aligned}
\frac{\bar{u}(z)}{u(z)} & =\frac{\operatorname{vol} M_{P\left(\phi_{0}, \ldots, \phi_{i-1}, \tau_{i} \geq \varphi_{i}\right)}(z)}{\operatorname{vol} M_{P\left(\phi_{0}, \ldots, \phi_{i-1}\right)}(z)} \\
& =\frac{2 \int_{t_{0}}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i-1}, \tau_{i} \geq \varphi_{i}\right)}(z) \cap H_{0}(t)\right] d t}{2 \int_{t_{0}}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i-1}\right)}(z) \cap H_{0}(t)\right] d t} \\
& \geq \frac{\frac{\tau_{0}(z)-t_{0}}{d} \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i-1}, \tau_{i} \geq \varphi_{i}\right)}(z) \cap H_{0}\left(\tau_{0}(z)\right)\right]}{\left(\tau_{0}(z)-t_{0}\right) \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i-1}\right)}(z) \cap H_{0}\left(\tau_{0}(z)\right)\right]} \\
& =\frac{1}{d} \frac{u_{Q\left(\tau_{0}(z)\right)\left(\phi_{1}, \ldots, \phi_{i-1}, \tau_{i} \geq \varphi_{i}\right)}(z)}{u Q\left(\tau_{0}(z)\right)\left(\phi_{1}, \ldots, \phi_{i-1}\right)} \geq \frac{1}{d} \frac{(d-i)!}{(d-1)!} \frac{1}{2} .
\end{aligned}
$$

Using Proposition 2 and Lemma 3 in the first sum of (6.10) we obtain

$$
\begin{aligned}
& \sum_{\lambda=1}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{1}^{(i)}: \bar{u}(z) \leq \frac{\lambda}{m}\right\} \\
& \leq \sum_{\lambda=1}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{1}^{(i)}: u(z) \leq 2 d!\frac{\lambda}{m}\right\} \\
& \leq \sum_{\lambda=1}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{const}(P)\left(\frac{2 d!\lambda}{m}\right)^{2} \log ^{d-2} \frac{m}{2 d!\lambda} \log \log \frac{m}{2 d!\lambda} \\
& \leq \operatorname{const}(P) m^{-2} \log ^{d-2} m \log \log m .
\end{aligned}
$$

This proves that

$$
E_{1} \leq \operatorname{const}(P) \log ^{d-2} m \log \log m
$$

Case 2: $\tau_{i}(x) \leq \tau_{i}(z) \leq 2 \varphi_{i}$. This time we set $\tilde{u}=u_{K\left(\tau_{i} \leq \phi_{i}\right)}$ and $\tilde{q}=\operatorname{vol} K\left(\tau_{i} \leq \phi_{i}\right)$. In a similar way as in Case 1 we see that

$$
\begin{aligned}
& \operatorname{Prob}(G 1 \text { and } G 2) \leq \operatorname{Prob}(G 2) \\
& \leq \operatorname{Prob}\left[z \notin \operatorname{conv}\left(Y_{m} \cap K\left(\tau_{i} \leq \phi_{i}\right)\right)\right] \\
& \leq 2 \sum_{j=0}^{d-1}\binom{m}{j}\left(\frac{\tilde{u}(z)}{2}\right)^{j}\left(1-\frac{\tilde{u}(z)}{2}\right)^{m-j}
\end{aligned}
$$

Correspondingly,

$$
\begin{aligned}
E_{2}:= & m^{2} \iint_{K_{2}^{(i)}} \operatorname{Prob}(G 1 \text { and } G 2) d y d x \\
\leq & m^{2} \iint_{K_{2}^{(i)}} 2 \sum_{j=0}^{d-1}\binom{m}{j}\left(\frac{\tilde{u}(z)}{2}\right)^{j}\left(1-\frac{\tilde{u}(z)}{2}\right)^{m-j} \\
\leq & \operatorname{const}(d) m^{2} \sum_{\lambda=1}^{m} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{2}^{(i)}: \tilde{u}(z) \leq \frac{\lambda}{m}\right\} \\
\leq & \operatorname{const}(d) m^{2}\left[\sum_{\lambda=1}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{2}^{(i)}: \tilde{u}(z) \leq \frac{\lambda}{m}\right\}\right. \\
& \left.+\sum_{\lambda=\lambda_{0}+1}^{m} \lambda^{d-1} e^{-\lambda / 2}\right]
\end{aligned}
$$

where $\lambda_{0}=\lfloor 8 \log m\rfloor$, again. Here we need
Proposition 3. $u(z) \leq \frac{d!}{(d-i)!} \tilde{u}(z)$ if $\tau_{i}(z) \leq \frac{\phi_{i}}{2}$.
Proof. By induction again. The case $i=0$ is very simple, since $u_{P}(z)=u_{P\left(\phi_{0}\right)}(z)$ if $\tau_{0}(z) \leq \frac{\phi_{0}}{2}$. When $i \geq 1$, the same reasoning as in the proof of Proposition 2 gives

$$
\begin{aligned}
\frac{\tilde{u}(z)}{u(z)} & =\frac{\operatorname{vol} M_{P\left(\phi_{0}, \ldots, \phi_{i}\right)}(z)}{\operatorname{vol} M_{P\left(\phi_{0}, \ldots, \phi_{i-1}\right)}(z)} \\
& =\frac{2 \int_{t_{0}}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i}\right)}(z) \cap H_{0}(t)\right] d t}{2 \int_{t_{0}}^{\tau_{0}(z)} \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i-1}\right)}(z) \cap H_{0}(t)\right] d t} \\
& \geq \frac{\frac{1}{d}\left(\tau_{0}(z)-t_{0}\right) \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i}\right)}(z) \cap H_{0}\left(\tau_{0}(z)\right)\right]}{\left(\tau_{0}(z)-t_{0}\right) \operatorname{vol}_{d-1}\left[M_{P\left(\phi_{0}, \ldots, \phi_{i-1}\right)}(z) \cap H_{0}\left(\tau_{0}(z)\right]\right]} \\
& \geq \frac{1}{d} \frac{u_{Q\left(\tau_{0}(z)\right)\left(\phi_{1}, \ldots, \phi_{i}\right)}(z)}{u_{Q\left(\tau_{0}(z)\right)\left(\phi_{1}, \ldots, \phi_{i-1}\right)}(z)} \geq \frac{1}{d} \frac{(d-i)!}{(d-1)!} .
\end{aligned}
$$

Observing (6.1) we see in the same way as in Case 1 that

$$
E_{2} \leq \operatorname{const}(P) \log ^{d-2} m \log \log m
$$

Case 3: $\tau_{i}(z) \leq \tau_{i}(x)$. Of course, $\tau_{i}(x) \leq \varphi_{i}<\phi_{i} \leq \tau_{i}(y)$. Macbeath proved that the set $\{x \in K: u(x) \geq \varepsilon\}$ is convex (recall Section 2). This implies that u is maximal on ray (x, y) at x. Similarly as in Case 2 - but with x instead of z - we get

$$
\begin{aligned}
E_{3}:= & m^{2} \iint_{K_{3}^{(i)}} \operatorname{Prob}(G 1 \text { and } G 2) d y d x \\
\leq & m^{2} \iint_{K_{3}^{(i)}} \operatorname{Prob}\left[x \notin \operatorname{conv}\left(Y_{m} \cap K\left(\tau_{i} \leq \phi_{i}\right)\right)\right] d y d x \\
\leq & \operatorname{const}(d) m^{2}\left[\sum_{\lambda=0}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{3}^{(i)}: \tilde{u}(x) \leq \frac{\lambda}{m}\right\}\right. \\
& \left.+\sum_{\lambda=\lambda_{0}+1}^{m} \lambda^{d-1} e^{-\lambda / 2}\right]
\end{aligned}
$$

with $\lambda_{0}=\lfloor 8 \log m\rfloor$. Again $u(x) \leq d!\tilde{u}(x)$ by Proposition 3. Lemma 1 shows that $y \in M_{K}(z, \theta)$ with $\theta=(3 d)^{d+2}$. As x lies on the segment connecting z and y we have $y \in M_{K}(x, \theta)$. Hence

$$
\begin{aligned}
& \operatorname{meas}\left\{(x, y) \in K_{3}^{(i)}: \tilde{u}(x) \leq \frac{\lambda}{m}\right\} \\
& \leq \operatorname{meas}\left\{(x, y) \in K_{3}^{(i)}: u(x) \leq d!\frac{\lambda}{m}\right\} \\
& \leq \operatorname{meas}\left\{(x, y) \in P\left(\bar{\varphi}_{i}\right) \times K\left(\tau_{i} \geq \phi_{i}\right): u(x) \leq d!\frac{\lambda}{m}, y \in M_{K}(x, \theta)\right\} \\
&=\int_{\substack{x \in P\left(\phi_{i}\right) \\
u(*) \leq d!\frac{\lambda}{m}}} \operatorname{vol}\left\{y \in K\left(\tau_{i} \geq \phi_{i}\right): y \in M_{K}(x, \theta)\right\} d x
\end{aligned}
$$

Estimating the integrand by Lemma 2 and observing (6.1) we further see that

$$
\begin{aligned}
\operatorname{meas} & \left\{(x, y) \in K_{3}^{(i)}: \tilde{u}(x) \leq \frac{\lambda}{m}\right\} \\
& \leq \int_{\substack{x \in P\left(\bar{\varphi}_{i}\right) \\
u(x) \leq d!\frac{\lambda}{m}}} \operatorname{const}(P) \tau_{i}(x) u(x) d x \\
& \leq \operatorname{const}(P)(\log m)^{-1} \frac{d!\lambda}{m} \int_{\substack{x \in P\left(\bar{\varphi}_{i}\right) \\
u(x) \leq d!\frac{\lambda}{m}}} 1 d x
\end{aligned}
$$

By Theorem 6

$$
\operatorname{vol}\left\{x \in P\left(\bar{\varphi}_{i}\right): u(x) \leq d!\frac{\lambda}{m}\right\} \leq \operatorname{const}(d) \frac{d!\lambda}{m} \log ^{d-1} \frac{d!\lambda}{m}
$$

and therefore

$$
\begin{aligned}
& \operatorname{meas}\left\{(x, y) \in K_{3}^{(i)}: \tilde{u}(x) \leq \frac{\lambda}{m}\right\} \\
& \quad \leq \operatorname{const}(P) \frac{\lambda^{2}}{m^{2}} \log ^{d-2} m
\end{aligned}
$$

Consequently

$$
\begin{aligned}
& \sum_{\lambda=0}^{\lambda_{0}} \lambda^{d-1} e^{-\lambda / 2} \operatorname{meas}\left\{(x, y) \in K_{3}^{(i)}: \tilde{u}(x) \leq \frac{\lambda}{m}\right\} \\
& \leq \operatorname{const}(P) \frac{1}{m^{2}} \log ^{d-2} m
\end{aligned}
$$

and

$$
E_{3} \leq \mathrm{const}(P) \log ^{d-2} m
$$

7. Proof of Theorem 1

Consider a convex body $K \in \mathscr{F}_{1}^{d}$. Define $N(\varepsilon)$ as the maximal number of pairwise disjoint caps of K, each of volume ε. (A cap of K is the intersection of K with a halfspace.) If K is a polytope, then $N(\varepsilon) \leq$ vert K and $N(\varepsilon)=$ vert K for small enough ε. Conversely we have:

$$
\begin{equation*}
\text { If } N(\varepsilon) \text { is bounded, then } K \text { is a polytope. } \tag{7.1}
\end{equation*}
$$

To prove this assume that $N(\varepsilon) \leq N_{0}, N\left(\varepsilon_{0}\right)=N_{0}$, and take pairwise disjoint caps $C_{1}, \ldots, C_{N_{0}}$, each of volume ε_{0}. Then $C_{i}=K \cap H_{i}$ with a halfspace H_{i}. Write H_{i}^{ε} for the halfspace contained in H_{i} such that $\operatorname{vol}\left(K \cap H_{i}^{\varepsilon}\right)=\varepsilon$ for $0 \leq \varepsilon \leq \varepsilon_{0}$. By changing each H_{i} a little and decreasing ε_{0} a little we may assume that $K \cap H_{i}^{0}$ is a single point z_{i}. We show now that $K=\operatorname{conv}\left\{z_{1}, \ldots, z_{N_{0}}\right\}$. Assume not, then there is a point z_{0} on the boundary of K with $z_{0} \notin \operatorname{conv}\left\{z_{1}, \ldots, z_{N_{0}}\right\}$. Then there is a halfspace H_{0} with $z_{0} \in \operatorname{int} H_{0}$ and $z_{i} \notin H_{0}\left(i=1, \ldots, N_{0}\right)$. Then the cap $H_{0}^{\varepsilon} \cap K$
is disjoint from all the other caps $H_{i}^{\varepsilon} \cap K$ for sufficiently small ε, a contradiction proving (7.1).

Now we prove (1.2). Let first K be a polytope. If it is not a simplex, it has at least $d+2$ vertices, each vertex belongs to at least d edges, and, generally, each k-face belongs to at least $d-k$ faces of dimension $k+1$. Hence $T(K) \geq(d+2) d$!, and Theorem 2 gives

$$
\lim \inf \frac{E(K, n)}{E(\Delta, n)}=\frac{T(K)}{T(\Delta)} \geq \frac{(d+2) d!}{(d+1)!}=1+\frac{1}{d+1}
$$

unless K is a simplex. So assume K is not a polytope. For $\varepsilon>0$ small, find $N(\varepsilon)$ and pairwise disjoint caps $C_{1}, \ldots, C_{N(\varepsilon)}$ of volume ε. Let $C_{i}=K \cap H_{i}$ and $C_{i}^{*}=K \cap H_{i}^{*}$ where the halfspace H_{i}^{*} is contained in H_{i} with its boundary hyperplane halving the width of C_{i} in direction orthogonal to H_{i}. Clearly, for $\eta>0$ small enough

$$
\left\{x \in C_{i}^{*}: u_{C_{i}}(x) \leq \eta\right\}=\left\{x \in C_{i}^{*}: u_{K}(x) \leq \eta\right\} .
$$

The proof of Theorem 2 of [BaLa], applied to C_{i} (cf. (2.2)), yields

$$
\operatorname{vol}\left\{x \in C_{i}^{*}: u_{C_{i}}(x) \leq \eta\right\} \geq \operatorname{const}(d) \eta \log ^{d-1} \frac{\varepsilon}{\eta} .
$$

Choosing $\varepsilon=\sqrt{\eta}$ we obtain

$$
\begin{aligned}
\operatorname{vol} K\left(u_{K} \leq \eta\right) & \geq \sum_{i=1}^{N(\sqrt{\eta})} \operatorname{vol}\left\{x \in C_{i}^{*}: u_{K}(x) \leq \eta\right\} \\
& =\sum_{i=1}^{N(\sqrt{\eta})} \operatorname{vol}\left\{x \in C_{i}^{*}: u_{C_{i}}(x) \leq \eta\right\} \\
& \geq \operatorname{const}(d) N(\sqrt{\eta}) \eta \log ^{d-1} \frac{1}{\eta}
\end{aligned}
$$

and consequently, by (2.1),

$$
E(K, n) \geq \operatorname{const}(d) N\left(\frac{1}{\sqrt{n}}\right) \frac{\log ^{d-1} n}{n} .
$$

Since $N\left(\frac{1}{\sqrt{n}}\right)$ is unbounded by (7.1), this shows that

$$
\liminf \frac{E(K, n)}{E(\Delta, n)} \geq \lim \inf \operatorname{const}(d) N\left(\frac{1}{\sqrt{n}}\right)=\infty .
$$

8. Proof of the lemmata

Proof of Lemma 1. The set $K(v \geq \varepsilon)$ is convex as it is the intersection of closed halfspaces. By Lemma F of [Bá] it does not contain any line segment on its boundary provided $\varepsilon>0$. Therefore the maximal v-value on $\operatorname{aff}(a, b)$ is attained at a unique point c^{*}, and there is a hyperplane H^{*} containing aff (a, b) such that $K\left(v \geq v\left(c^{*}\right)\right) \cap H^{*}=$ $\left\{c^{*}\right\}$. Fron Lemma G of [Bá] we know that if C is a cap with $K(v \geq \varepsilon) \cap C=\{x\}$,
a single point, then $C \subset M(x, 3 d)$ provided ε is sufficiently small. Hence the cap C^{*} cut off from K by H^{*} is contained in $M\left(c^{*}, 3 d\right)$, and consequently

$$
\frac{\left\|a-c^{*}\right\|}{\left\|b-c^{*}\right\|} \leq 3 d
$$

Now if c^{*} is on the line segment connecting c and b, clearly

$$
\frac{\|a-c\|}{\|b-c\|} \leq \frac{\left\|a-c^{*}\right\|}{\left\|b-c^{*}\right\|} \leq 3 d
$$

and we are done. So assume c^{*} is on the line segment connecting c and a. Since u is maximal at $c, u(c) \geq u\left(c^{*}\right)$. Write $Q^{*}=K \cap H^{*}$. Let the width of C^{*} be h in the direction orthogonal to H^{*}. As $C^{*} \subset M\left(c^{*}, 3 d\right)$, the width of $M\left(c^{*}\right)$ in the same direction is at least $\frac{2}{3 d} h$. Considering (3.2), (3.3), and (3.4) we see that

$$
\begin{aligned}
u(c) & \leq 2 h u_{Q^{*}}(c) \\
u\left(c^{*}\right) & \geq \frac{1}{d} \frac{2}{3 d} h u_{Q^{*}}\left(c^{*}\right)
\end{aligned}
$$

Let L be the ($d-2$)-dimensional plane in H^{*} through b orthogonal to aff (a, b), and let σ be the maximal $(d-2)$-dimensional volume of a section of Q^{*} with a plane that is parallel to L. Then

$$
u_{Q^{*}}(c) \leq 2\|b-c\| \sigma
$$

On the other hand, $C^{*} \subset M\left(c^{*}, 3 d\right)$ implies $Q^{*} \subset M_{Q^{*}}\left(c^{*}, 3 d\right)$ and thus vol ${ }_{d-1} Q^{*} \leq$ $(3 d)^{d-1} \operatorname{vol}_{d-1} M_{Q^{*}}\left(c^{*}\right)$, i.e.

$$
u_{Q^{*}}\left(c^{*}\right) \geq \frac{1}{(3 d)^{d-1}} \operatorname{vol}_{d-1} Q^{*}
$$

As $\operatorname{vol}_{d-1} Q^{*} \geq \frac{1}{d-1}\|a-b\| \sigma$,

$$
u_{Q^{*}}\left(c^{*}\right) \geq \frac{1}{(d-1)(3 d)^{d-1}}\|a-b\| \sigma
$$

Hence

$$
\begin{aligned}
1 & \leq \frac{u(c)}{u\left(c^{*}\right)} \leq 3 d^{2} \frac{u_{Q^{*}}(c)}{u_{Q^{*}}\left(c^{*}\right)} \leq 6 d^{2}(d-1)(3 d)^{d-1} \frac{\|b-c\|}{\|a-b\|} \\
& \leq(3 d)^{d+2} \frac{\|b-c\|}{\|a-b\|}
\end{aligned}
$$

and $\frac{\|a-b\|}{\|b-c\|} \leq(3 d)^{d+2}$ gives $\frac{\|a-c\|}{\|b-c\|} \leq(3 d)^{d+2}$.
Proof of Lemma 2. Set, as in the proof of Theorem 4, $K=P\left(\bar{\phi}_{i-1}\right)$ and $K\left(\tau_{i} \geq \phi_{i}\right)=$ $P\left(\bar{\phi}_{i-1}, \tau_{i} \geq \phi_{i}\right)$. We may assume $\tau_{0}(x) \leq \frac{\phi_{0}}{\theta+1}$ which implies that $K\left(\tau_{0} \geq \phi_{0}\right) \cap$ $M_{K}(x, \theta)$ is empty, proving the lemma when $i=0$.

For $i \geq 1$ we first consider the case $\theta=1$. Recall the definition of Q in (1.8), set $q=$ cone $F_{1} \cap H_{0}\left(t_{0}\right)$ and define

$$
x^{*}=x+\left(1-\tau_{0}(x) t_{0}^{-1}\right) q .
$$

Assume now $i>1$. It is not difficult to see that for $0 \leq t \leq 2 \tau_{0}(x)$

$$
\begin{equation*}
M_{K}(x) \cap H_{0}(t) \subseteq\left(-1+t t_{0}^{-1}\right) q+M_{Q\left(\phi_{1}, \ldots, \phi_{i-1}\right)}\left(x^{*}\right) \tag{8.1}
\end{equation*}
$$

$\left(M_{K}(x) \cap H_{0}(t)\right.$ is empty if $t>2 \tau_{0}(x)$.) From

$$
K\left(\tau_{i} \geq \phi_{i}\right)=\operatorname{cone} Q\left(\phi_{1}, \ldots, \phi_{i-1}, \tau_{i-1}^{(Q)} \geq \phi_{i}\right) \cap H_{0}\left(0, \phi_{0}\right)
$$

(cf. (2.8)) it follows that for $0 \leq t \leq t_{0}$

$$
\begin{equation*}
K\left(\tau_{i} \geq \phi_{i}\right) \cap H_{0}(t) \subseteq\left(-1+t t_{0}^{-1}\right) q+Q\left(\phi_{1}, \ldots, \phi_{i-1} ; \tau_{i-1}^{(Q)} \geq \phi_{i}\right) \tag{8.2}
\end{equation*}
$$

(8.1), (8.2), and the induction hypothesis yield

$$
\begin{aligned}
\operatorname{vol}_{d-1} & {\left[K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}(x) \cap H_{0}(t)\right] } \\
& =\operatorname{vol}_{d-1}\left[Q\left(\phi_{1}, \ldots, \phi_{i-1} ; \tau_{i-1}^{(Q)} \geq \phi_{i}\right) \cap M_{Q\left(\phi_{1}, \ldots, \phi_{i-1}\right)}\left(x^{*}\right)\right] \\
& \leq \operatorname{const}(Q) \tau_{i-1}^{(Q)}\left(x^{*}\right) \operatorname{vol}_{d-1} M_{Q\left(\phi_{1}, \ldots, \phi_{i-1}\right)}\left(x^{*}\right) \\
& =\operatorname{const}(Q) \tau_{i}(x) \operatorname{vol}_{d-1} M_{Q\left(\tau_{0}(x)\right)\left(\phi_{1}, \ldots, \phi_{i-1}\right)}(x)
\end{aligned}
$$

since $\tau_{i-1}^{(Q)}\left(x^{*}\right)=\tau_{i}(x)$ as $i>1$ (cf. (2.5)) and $M_{Q\left(\phi_{1}, \ldots, \phi_{i-1}\right)}\left(x^{*}\right)$ is congruent to $M_{Q\left(\tau_{0}(x)\right)\left(\phi_{1}, \ldots, \phi_{i-1}\right)}(x)$. Then

$$
\begin{aligned}
& \operatorname{vol}\left[K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}(x)\right] \\
&=\int_{0}^{2 \tau_{0}(x)} \operatorname{vol}_{d-1}\left[K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}(x) \cap H_{0}(t)\right] d t \\
& \leq 2 \tau_{0}(x) \operatorname{const}(Q) \tau_{i}(x) \operatorname{vol}_{d-1} M_{Q\left(\tau_{0}(x)\right)\left(\phi_{1}, \ldots, \phi_{i-1}\right)}(x) \\
& \leq \operatorname{const}(P) \tau_{i}(x) \operatorname{vol} M_{K}(x),
\end{aligned}
$$

where the last step follows from (3.4).
Special care is needed when $i=1$. Then the hyperplane $H\left(F_{1}\right)$ supports K and so $M_{K}(x)$ lies between the hyperplanes $H\left(F_{1}\right)$ and $2 x-H\left(F_{1}\right)$ which is the reflection of $H\left(F_{1}\right)$ through x. The slab between these hyperplanes intersects Q in $Q\left(\tau_{0}^{(Q)} \leq 2 \tau_{0}(x) \tau_{1}(x) t_{0}^{-1}\right)$. So we have instead of (8.1)

$$
M_{K}(x) \cap H_{0}(t) \subseteq\left(-1+t t_{0}^{-1}\right) q+Q\left(\tau_{0}^{(Q)} \leq 2 \tau_{0}(x) \tau_{1}(x) t_{0}^{-1}\right)
$$

On the other hand, using (2.4) we get

$$
K\left(\tau_{1} \geq \phi_{1}\right) \cap H_{0}(t) \subseteq\left(-1+t t_{0}^{-1}\right) q+Q\left(\tau_{0}^{(Q)} \geq t \phi_{1} t_{0}^{-1}\right)
$$

Hence $K\left(\tau_{1} \geq \phi_{1}\right) \cap M_{K}(x) \cap H_{0}(t)$ is empty unless $t \phi_{1} t_{0}^{-1} \leq 2 \tau_{0}(x) \tau_{1}(x) t_{0}^{-1}$. Thus

$$
\begin{aligned}
& \operatorname{vol}\left[K\left(\tau_{1} \geq \phi_{1}\right) \cap M_{K}(x)\right] \\
&=\int_{0}^{2 \tau_{0}(x)} \operatorname{vol}_{d-1}\left[K\left(\tau_{1} \geq \phi_{1}\right) \cap M_{K}(x) \cap H_{0}(t)\right] d t \\
& \leq \int_{0}^{2 \tau_{0}(x) \tau_{1}(x) \phi_{1}^{-1}} \operatorname{vol}_{d-1}\left[M_{K}(x) \cap H_{0}(t)\right] d t \\
& \leq 2 \tau_{0}(x) \tau_{1}(x) \phi_{1}^{-1} \operatorname{vol}_{d-1}\left[M_{K}(x) \cap H_{0}\left(\tau_{0}(x)\right)\right] \\
& \leq d \phi_{1}^{-1} \tau_{1}(x) \operatorname{vol} M_{K}(x)
\end{aligned}
$$

If $\theta>1, x+\theta(K-x) \supset K \supset K\left(\tau_{i} \geq \phi_{i}\right)$ implies

$$
\begin{aligned}
& K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}(x, \theta) \\
& =K\left(\tau_{i} \geq \phi_{i}\right) \cap\{x+\theta[(K-x) \cap(x-K)]\} \\
& =K\left(\tau_{i} \geq \phi_{i}\right) \cap[x+\theta(K-x)] \cap[x+\theta(x-K)] \\
& =K\left(\tau_{i} \geq \phi_{i}\right) \cap[x+(K-x)] \cap[x+\theta(x-K)]
\end{aligned}
$$

and as $K=$ cone $Q\left(\phi_{1}, \ldots, \phi_{i-1}\right) \cap H_{0}\left(0, \phi_{0}\right)$, it follows from $\tau_{0}(x) \leq \frac{\phi_{0}}{\theta+1}$ that

$$
\begin{aligned}
& {[x+(K-x)] \cap[x+\theta(x-K)]} \\
& =K \cap[(\theta+1) x-\theta K] \\
& =\frac{\theta+1}{2} x+\left[\left(K-\frac{\theta+1}{2} x\right) \cap\left(\frac{\theta+1}{2} x-K\right)\right] \\
& =M_{K}\left(\frac{\theta+1}{2} x, 1\right)
\end{aligned}
$$

Consequently

$$
K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}(x, \theta)=K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}\left(\frac{\theta+1}{2} x, 1\right)
$$

On the other hand, $\tau_{i}\left(\frac{\theta+1}{2} x\right)=\tau_{i}(x)$ and

$$
\begin{aligned}
M_{K}\left(\frac{\theta+1}{2} x, 1\right) & =[x+(K-x)] \cap[x+\theta(x-K)] \\
& \subset[x+\theta(K-x)] \cap[x+\theta(x-K)] \\
& =M_{K}(x, \theta)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \operatorname{vol}\left[K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}(x, \theta)\right] \\
&=\operatorname{vol}\left[K\left(\tau_{i} \geq \phi_{i}\right) \cap M_{K}\left(\frac{\theta+1}{2} x, 1\right)\right] \\
& \leq \operatorname{const}(P) \tau_{i}\left(\frac{\theta+1}{2} x\right) \operatorname{vol} M_{K}\left(\frac{\theta+1}{2} x, 1\right) \\
& \leq \operatorname{const}(P) \tau_{i}(x) \operatorname{vol} M_{K}(x, \theta) .
\end{aligned}
$$

Proof of Lemma 3. We are going to use Theorem 6 of [BáLa] and Theorems 7 and 8 of [Bá]. They - or rather their proofs - say the following:

For a convex body $K \subset \mathscr{S}_{1}^{d}$ and $\varepsilon \leq \varepsilon_{0}(d)$ assume that z_{1}, \ldots, z_{N} is a system of points maximal with respect to the following two properties: $u\left(z_{j}\right)=\varepsilon$ for every $j=1, \ldots, N$ and $M\left(z_{j}, \frac{1}{2}\right) \cap M\left(z_{k}, \frac{1}{2}\right)=\emptyset$ for every $j, k=1, \ldots, N, j \neq k$. According to Macbeath, the set $K(u \geq \varepsilon)$ is convex (recall Section 2) and does not contain any line segment on its boundary (recall Section 3), so for every z_{j} there is a halfspace H_{j}^{+}with $K(u \geq \varepsilon) \cap H_{j}^{+}=\left\{z_{j}\right\}$. Now, by Theorem 6 of [BáLa]

$$
\begin{equation*}
\bigcup_{j=1}^{N}\left[M\left(z_{j}, \frac{1}{2}\right) \cap H_{j}^{+}\right] \subset K(u \leq \varepsilon) \subset \bigcup_{j=1}^{N} M\left(z_{j}, 5\right) \tag{8.3}
\end{equation*}
$$

and by Theorems 7 and 8 of [Bá]

$$
\begin{equation*}
\{(x, y) \in K \times K: u(x, y) \leq \varepsilon\} \subset \bigcup_{j=1}^{N} M\left(z_{j}, 15 d\right) \times M\left(z_{j}, 15 d\right) \tag{8.4}
\end{equation*}
$$

Again set $K=P\left(\bar{\phi}_{i-1}\right)$ and $K\left(\tau_{i} \geq \phi_{i}\right)=P\left(\bar{\phi}_{i-1}, \tau_{i} \geq \phi_{i}\right)$. As K is a polytope, by Theorem 6 , $\operatorname{vol} K(u \leq \varepsilon) \leq \operatorname{const}(P) \varepsilon \log ^{d-1} \frac{1}{\varepsilon}$. On the other hand, $\operatorname{vol}\left[M\left(z_{j}, \frac{1}{2}\right) \cap\right.$ $\left.H_{j}^{+}\right]=2^{-(d+1)} \varepsilon$. Hence

$$
\begin{equation*}
N \leq \operatorname{const}(P) \log ^{d-1} \frac{1}{\varepsilon} \tag{8.5}
\end{equation*}
$$

Claim. If $z \notin S(T, 2 \eta)$ and H^{+}is any halfspace containing z in its bounding hyperplane, then

$$
\operatorname{vol}\left[M\left(z, \frac{1}{2}\right) \cap H^{+} \backslash S(T, \eta)\right] \geq \frac{1}{d!2^{d}} \operatorname{vol} M\left(z, \frac{1}{2}\right)
$$

Proof. By induction on d. The case $d=1$ is trivial. Since

$$
M\left(z, \frac{1}{2}\right) \subset H_{0}\left(\frac{1}{2} \tau_{0}(z), \frac{3}{2} \tau_{0}(z)\right)
$$

and the last set is disjoint from $S(T, \eta)$ whenever $\eta<\frac{1}{2} \tau_{0}(z)$, only the case $\tau_{0}(z) \leq 2 \eta$ has to be considered.

As $z \in H_{0}(0,2 \eta)$ and $z \notin S(T, 2 \eta)=$ cone $S_{Q}\left(T_{Q}, 2 \eta\right) \cap H_{0}(0,2 \eta)$ (cf. (1.11)), clearly $z_{Q} \notin S_{Q}\left(T_{Q}, 2 \eta\right)$ (cf. (2.3)). Then, by the induction hypothesis, for any halfspace H_{Q}^{+}in $H_{0}\left(t_{0}\right)$ containing z_{Q} on its boundary

$$
\operatorname{vol}_{d-1}\left[M_{Q}\left(z_{Q}, \frac{1}{2}\right) \cap H_{Q}^{+} \backslash S_{Q}\left(T_{Q}, \eta\right)\right] \geq \frac{1}{(d-1)!2^{d-1}} \operatorname{vol}_{d-1} M_{Q}\left(z_{Q}, \frac{1}{2}\right)
$$

Choosing $H_{Q}^{+}:=$cone $\left[H^{+} \cap H_{0}\left(\tau_{0}(z)\right)\right] \cap H_{0}\left(t_{0}\right)$ and replacing $H_{0}\left(t_{0}\right)$ by $H_{0}\left(\tau_{0}(z)\right)$ we obtain

$$
\begin{aligned}
& \operatorname{vol}_{d-1}\left[M\left(z, \frac{1}{2}\right) \cap H_{0}\left(\tau_{0}(z)\right) \cap H^{+} \backslash \text { cone } S_{Q}\left(T_{Q}, \eta\right)\right] \\
& \quad \geq \frac{1}{(d-1)!2^{d-1}} \operatorname{vol}_{d-1}\left[M\left(z, \frac{1}{2}\right) \cap H_{0}\left(\tau_{0}(z)\right)\right]
\end{aligned}
$$

(The set $H^{+} \cap H_{0}\left(\tau_{0}(z)\right)$ may, exceptionally, coincide with the whole $H_{0}\left(\tau_{0}(z)\right)$. In this case one has to perturb H_{0}.) The point $\frac{1}{2} z$ has distance $\frac{1}{2} \tau_{0}(z)$ from the $(d-1)$ dimensional set $M\left(z, \frac{1}{2}\right) \cap H_{0}\left(\tau_{0}(z)\right) \cap H^{+} \backslash$ cone $S_{Q}\left(T_{Q}, \eta\right)$. Both the point and the set lie in $M\left(z, \frac{1}{2}\right) \cap H^{+} \backslash S(T, \eta)$. Thus

$$
\begin{aligned}
& \operatorname{vol}\left[M\left(z, \frac{1}{2}\right) \cap H^{+} \backslash S(T, \eta)\right] \\
& \quad \geq \frac{1}{d} \frac{\tau_{0}(z)}{2} \operatorname{vol}_{d-1}\left[M\left(z, \frac{1}{2}\right) \cap H_{0}\left(\tau_{0}(z)\right) \cap H^{+} \backslash S(T, \eta)\right] \\
& \quad \geq \frac{1}{d} \frac{\tau_{0}(z)}{2} \frac{1}{(d-1)!2^{d-1}} \operatorname{vol}\left[M\left(z, \frac{1}{2}\right) \cap H_{0}\left(\tau_{0}(z)\right)\right] \\
& \quad \geq \frac{1}{d!2^{d}} \operatorname{vol} M\left(z, \frac{1}{2}\right)
\end{aligned}
$$

where the last step follows from (3.3).
The Claim shows that for $z_{j} \notin S(T, 2 \eta)$

$$
\operatorname{vol}\left[M\left(z, \frac{1}{2}\right) \cap H_{j}^{+} \backslash S(T, \eta)\right] \geq \frac{1}{d!4^{d}} \varepsilon
$$

On the other hand, by (4.4)

$$
\operatorname{vol}\left[P(u \leq \varepsilon) \backslash \bigcup_{T} S(T, 2 \eta)\right] \leq \operatorname{const}(P) \varepsilon \log ^{d-2} \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}
$$

if we choose $\eta=\left(\log \frac{1}{\varepsilon}\right)^{-1}$. Then (8.3) shows that the number of points z_{j} outside $\cup_{T} S(T, 2 \eta)$ is at most

$$
\begin{equation*}
\operatorname{const}(P) \log ^{d-2} \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon} \tag{8.6}
\end{equation*}
$$

Further, (8.4) implies

$$
\begin{align*}
& \left\{(x, y) \in P\left(\bar{\varphi}_{i}\right) \times K\left(\tau_{i} \geq \phi_{i}\right): u_{K}(x, y) \leq \varepsilon\right\} \\
& \subseteq \bigcup_{j=1}^{N}\left[M\left(z_{j}, 15 d\right) \cap P\left(\bar{\varphi}_{i}\right)\right] \times\left[M\left(z_{j}, 15 d\right) \cap K\left(\tau_{i} \geq \phi_{i}\right)\right] \tag{8.7}
\end{align*}
$$

Consider now a point $z_{j} \in S(T, 2 \eta)$ for some tower T. It follows from Lemma 2 that if the tower T does not start with the chain of faces $F_{0} \subset F_{1} \subset \ldots \subset F_{i}$, then

$$
\begin{equation*}
\operatorname{vol}\left[M\left(z_{j}, 15 d\right) \cap P\left(\bar{\varphi}_{i}\right)\right] \leq \operatorname{const}(P) \varepsilon\left(\log \frac{1}{\varepsilon}\right)^{-1} \tag{8.8}
\end{equation*}
$$

When T starts with this chain of faces, then, again by Lemma 2,

$$
\begin{equation*}
\operatorname{vol}\left[M\left(z_{j}, 15 d\right) \cap K\left(\tau_{i} \geq \phi_{i}\right)\right] \leq \operatorname{const}(P) \varepsilon\left(\log \frac{1}{\varepsilon}\right)^{-1} \tag{8.9}
\end{equation*}
$$

Taking the measure of the sets in (8.7) we get

$$
\begin{aligned}
& \operatorname{meas}\left\{(x, y) \in P\left(\bar{\varphi}_{i}\right) \times K\left(\tau_{i} \geq \phi_{i}\right): u_{K}(x, y) \leq \varepsilon\right\} \\
& \quad \leq \sum_{j=1}^{N} \operatorname{vol}\left[M\left(z_{j}, 15 d\right) \cap P\left(\bar{\varphi}_{i}\right)\right] \operatorname{vol}\left[M\left(z_{j}, 15 d\right) \cap K\left(\tau_{i} \geq \phi_{i}\right)\right]
\end{aligned}
$$

By (8.6) there are at most const $(P) \log ^{d-2} \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}$ terms with $z_{j} \notin \cup_{T} S(T, 2 \eta)$, and as both factors in each term are less than const $(d) \varepsilon$, the sum of these terms is at most

$$
\operatorname{const}(P) \varepsilon^{2} \log ^{d-2} \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon}
$$

By (8.8) the terms with $z_{j} \in S(T, 2 \eta)$ are less than const $(P) \varepsilon\left(\log \frac{1}{\varepsilon}\right)^{-1}$ times const $(d) \varepsilon$ if T does not start with $F_{0} \subset F_{1} \subset \ldots \subset F_{i}$, and by (8.9) less than const $(d) \varepsilon$ times $\operatorname{const}(P) \varepsilon\left(\log \frac{1}{\varepsilon}\right)^{-1}$ if T starts with $F_{0} \subset F_{1} \subset \ldots \subset F_{i}$. As by (8.5) there are at most const $(P) \log ^{d-1} \frac{1}{\varepsilon}$ terms, the sum of terms with $z_{j} \in \cup_{T} S(T, 2 \eta)$ is at most

$$
\operatorname{const}(P) \varepsilon^{2} \log ^{d-2} \frac{1}{\varepsilon}
$$

Therefore

$$
\begin{aligned}
& \operatorname{meas}\left\{(x, y) \in P\left(\bar{\varphi}_{i}\right) \times K\left(\tau_{i} \geq \phi_{i}\right): u_{K}(x, y) \leq \varepsilon\right\} \\
& \quad \leq \operatorname{const}(P) \varepsilon^{2} \log ^{d-2} \frac{1}{\varepsilon} \log \log \frac{1}{\varepsilon} .
\end{aligned}
$$

References

[Af1] Affentranger, F.: The expected volume of a random polytope in a ball. J. Microscopy 151, 277-287 (1988)
[Af2] Affentranger, F.: Aproximación aleatoria de cuerpos.convexos. Publ. Mat., Barc. 36, 85-109 (1992)
[AW] Affentranger, F., Wieacker, J. A.: On the convex hull of uniform random points in a simple d-polytope. Discrete Comput. Geom. 6, 291-305 (1991)
[Bá] Bárány, I.: Intrinsic volumes and f-vectors of random polytopes. Math. Ann. 285, 671-699 (1989)
[BB] Bárány, I., Buchta, C.: On the convex hull of uniform random points in an arbitrary d-polytope. Anz. Österr. Akad. Wiss., Math.-Naturwiss. K1. 127, 25-27 (1990)
[BáLa] Bárány, L., Larman, D. G.: Convex bodies, economic cap coverings, random polytopes. Mathematika 35, 274-291 (1988)
[BaLe] Bayer, M. M., Lee, C. W.: Convex polytopes. In: Gruber, P. M., Wills, J. M. (eds.) Handbook of convex geometry. Amsterdam: Elsevier 1993
[BKST] Bentley, J. L., Kung, H. T., Schkolnick, M., Thompson, C. D.: On the average number of maxima in a set of vectors and applications. J. Assoc. Comput. Mach. 25, 536-543 (1978)
[BII] Blaschke, W.: Über affine Geometrie XI: Lësung des "Vierpunktproblems" von Sylvester aus der Theorie der geometrischen Wahrscheinlichkeiten. Ber. Verh. Sächs. Ges. Wiss. Leipzig, Math.Phys. Kl. 69, 436-453 (1917)
[BI2] Blaschke, W.: Vorlesungen uber Differentialgeometrie, vol. II. Affine Differentialgeometrie. Berlin: Springer 1923
[Bu1] Buchta, C: Über die konvexe Hüle von Zufallspunkten in Eibereichen. Elem. Math. 38, 153-156 (1983)
[Bu2] Buchta, C.: Zufallspolygone in konvexen Vielecken. J. Reine Angew. Math. 347, 212-220 (1984)
[Bu3] Buchta, C.: Zuffillige Polyeder - Eine Übersicht. In: Hlawka, E. (ed.) Zahlentheoretische Analysis (Lect. Notes Math., vol. 1114, pp. 1-13) Berlin Heidelberg New York Tokyo: Springer 1985
[Bu4] Buchta, C.: A note on the volume of a randorn polytope in a tetrahedron. Illinois J. Math. 30, 653-659 (1986)
[BR] Buchta, C., Reitzner, M.: What is the expected volume of a tetrahedron whose vertices are chosen at random from a given tetrahedron? Anz. Österr. Akad. Wiss., Math.-Naturwiss. KI. 129, 63-68 (1992)
[CFG] Croft, H. T., Falconer, K. J., Guy, R. K.: Unsolved problems in geometry. New York Berlin Heidelberg: Springer 1991
[DL] Dalla, L., Larman, D. G.: Volumes of a random polytope in a convex set. In: Gritzmann, P., Sturmfels, B. (eds.) Applied geometry and discrete mathematics: The Victor Klee Festschrift (DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 175180) Providence, RI: Am. Math. Soc. 1991
[De] Devroye, L.: A note on finding convex hulls via maximal vectors. Inf. Process. Lett. 11, 53-56 (1980)
[Dw] Dwyer, R. A.: On the convex hull of random points in a polytope. J. Appl. Probab. 25, 688-699 (1988)
[DK] Dwyer, R. A., Kannan, R.: Convex hull of randomly chosen points from a polytope. Math. Res. 38, 16-24 (1987)
[Ef] Efron, B.: The convex hull of a random set of points. Biometrika 52, 331-343 (1965)
[ELR] Ewald, G., Larman, D. G., Rogers, C. A.: The directions of the line segments and of the rdimensional balls on the boundary of a convex body in Euclidean space. Mathematika 17, 1-20 (1970)
[Fe] Feller, W.: An introduction to probability theory and its applications, vol. II. New York London Sydney: Wiley 1966
[Gi] Giannopoulos, A. A.: On the mean value of the area of a random polygon in a plane convex body. Mathematika 39, 279-290 (1992)
[Grl] Groemer, H.: On the mean value of the volume of a random polytope in a convex set. Arch. Math. 25, 86-90 (1974)
[Gr2] Groemer, H.: Math. Reviews 84g: 60019 (1984)
[Ma] Macbeath, A. M.: A theorem on non-homogeneous lattices. Ann. Math., II. Ser. 56, 269-293 (1952)
[Pf] Pfiefer, R. E.: The historical development of J. J. Sylvester's four point problem. Math. Mag. 62. 309-317 (1989)
[Re] Reed, W. J.: Random points in a simplex. Pacific J. Math. 54, 183-198 (1974)
[RS] Rényi, A., Sulanke, R.: Über die konvexe Hülle von n zufällig gewählten Punkten. Z. Wahrscheinlichkeitsth. Verw. Geb. 2, 75-84 (1963)
[Schn] Schneider, R.: Random approximation of convex sets. J. Microscopy 151, 211-227 (1988)
[Schü] Schütt, C.: The convex floating body and polyhedral approximation. Israel J. Math. 73, 65-77 (1991)
[We] Van Wel, B. F.: The convex hull of a uniform sample from the interior of a simple d-polytope. J. Appl. Probab. 26, 259-273 (1989)
[WW] Weil, W., Wieacker, J. A.: Stochastic geometry. In: Gruber, P. M., Wills, J. M. (eds.) Handbook of convex geometry. Amsterdam: Elsevier 1993
[Wi] Wieacker, J. A.: Einige Probleme der polyedrischen Approximation. Diplomarbeit, Albert-Ludwigs-Universität, Freiburg im Breisgau 1978

This article was processed by the authors using the Springer-Verlag TEX PJourlg macro package 1991.

[^0]: * Mailing address of the first author: Mathematical Institute of the Hungarian Academy of Sciences, P.O. Box 127, H-1364 Budapest, Hungary.
 ** Supported by the Program in Discrete Mathematics and Its Applications at Yale and NSF Grant CCR-8901484. Partially supported by the Hungarian National Science Foundation Grant 1812.
 *** Work on this paper was done during a stay at the University of Freiburg im Breisgau supported by Deutscher Akademischer Austauschdienst.

