Random Polytopes in the \boldsymbol{d}-Dimensional Cube

Z. Füredi*

Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O. Box 127, Hungary

Abstract

Let C^{d} be the set of vertices of a d-dimensional cube, $C^{d}=$ $\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i}= \pm 1\right\}$. Let us choose a random n-element subset $A(n)$ of C^{d}. Here we prove that $\operatorname{Prob}($ the origin belongs to the conv $A(2 d+x \sqrt{2 d}))=\Phi(x)+o(1)$ if x is fixed and $d \rightarrow \infty$. That is, for an arbitrary $\varepsilon>0$ the convex hull of more than $(2+\varepsilon) d$ vertices almost always contains 0 while the convex hull of less than $(2-\varepsilon) d$ points almost always avoids it.

1. Convex Hull of Subsets of Vertices

Let C^{d} denote the set of vertices of a d-dimensional cube, $C^{d} \subset \mathbb{R}^{d}, C^{d}=$ $\left\{\left(x_{1}, \ldots, x_{d}\right): x_{i}= \pm 1\right\}$. Let $A(n)$ be a random n-element subset of C^{d}. We have $\binom{2^{d}}{n}$ possibilities for $A(n)$, hence $\operatorname{Prob}(A(n)$ has property $\pi)=$ (\# of n-tuples of C^{d} with property $\left.\pi\right) /\binom{2^{d}}{n}$. The threshold function of the property π is n_{d} if for every $\varepsilon>0$ we have

$$
\operatorname{Prob}\left(A\left((1+\varepsilon) n_{d}\right) \text { has property } \pi\right) \rightarrow 1 \quad \text { whenever } \quad d \rightarrow \infty
$$

and

$$
\operatorname{Prob}\left(A\left((1-\varepsilon) n_{d}\right) \text { has property } \pi\right) \rightarrow 0 \quad \text { whenever } d \rightarrow \infty .
$$

J. Mycielski posed the following problem: How large should we choose n so that conv $A(n)$, the convex hull of $A(n)$, contains almost surely the origin 0 [2]? P. Erdös conjectured that the threshold function of this property is $O(d)$ [2]. This was proved by Komlós [5] in 1980.

[^0]Theorem 1.1 [5]. $1.3 d<n_{d}<4.4 d$, i.e.,

$$
\lim _{d \rightarrow \infty} \operatorname{Prob}(0 \in \operatorname{conv} A(1.3 d))=0
$$

and

$$
\lim _{d \rightarrow \infty} \operatorname{Prob}(0 \in \operatorname{conv} A(4.4 d))=1
$$

Here we improve this result. Denote $1 / \sqrt{2 \pi} \int_{-\infty}^{c} e^{-x^{2} / 2} d x$ by $\Phi(c)$, as usual.
Theorem 1.2. Let c be a real number. Then

$$
\lim _{d \rightarrow \infty} \operatorname{Prob}(0 \in \operatorname{conv} A(2 d+c \sqrt{2 d}))=\Phi(c) .
$$

Corollary 1.3. $n_{d}=2 d$.
Our results are strongly related to an old theorem of Wendel [7] (see Theorem 4.1). More results and an extensive literature about random polytopes can be found in a recent paper of Buchta and Müller [1]. See also Mycielski [6].

2. Lemmas

P. Erdös conjectured that a random ± 1 matrix is almost always regular. This was proved by Komlós [4] in 1967:

Lemma 2.1 [4]. Let M be $a d \times d$ random ± 1 matrix (i.e., every entry $a_{i j}$ is chosen independently and with probabilities $\left.\operatorname{Prob}\left(a_{i j}=1\right)=\operatorname{Prob}\left(a_{i j}=-1\right)=\frac{1}{2}\right)$. Then

$$
\begin{equation*}
\operatorname{Prob}(M \text { is regular })>1-O(1 / \sqrt{d}) . \tag{1}
\end{equation*}
$$

Komlós conjectures that one can replace $O(1 / \sqrt{d})$ by $O\left(1 /(1+\varepsilon)^{d}\right)$ for some positive ε. The following lemma is a simple generalization of a result due to Harding [3]. Let $P=\left\{p_{1}, p_{2}, \ldots, p_{n}\right\} \subset \mathbb{R}^{d}$ be a point-set ($p_{i}=p_{j}$ is possible). The partition $P=U \cup V$ is induced by a hyperplane if there exists a hyperplane $H \subset \mathbb{R}^{d}$ such that $P \cap H=\varnothing$ and H splits every segment $[u, v]$ for $u \in U, v \in V$. Denote by $h(P)$ the number of such partitions of $P, h(d, n)=\max \left\{h(P): P \subset \mathbb{R}^{d},|P|=n\right\}$. Harding proved that

$$
h(d, n)=\binom{n-1}{d}+\cdots+\binom{n-1}{0}
$$

Denote by $a(k, P)$ the number of affine dependent k-tuples of P. The lower bound in the following lemma is an easy consequence of a theorem of Winder [8] (see also Zaslavsky [9]).

Lemma 2.2. For every $P \subset \mathbb{R}^{d},|P|=n$ we have

$$
\begin{equation*}
h(d, n)-\sum_{2 \leqslant k \leqslant d+1} a(k, P) \leqslant h(P) \leqslant h(d, n)=\sum_{k \leqslant d}\binom{n-1}{k} . \tag{2}
\end{equation*}
$$

This lower bound is not the best possible, but it is sufficient for our purposes.

3. Proof of Theorem 1.2

The first observation is that we can neglect those $A(n)$'s which contain a pair of opposite vertices because the probability of this event tends to 0 when $d \rightarrow \infty$. In fact, we have
$\operatorname{Prob}(A(n) \cap(-A(n)) \neq \varnothing) \leq \frac{2^{d}\binom{2^{d}}{n-2}}{\binom{2^{d}}{n}}<\frac{n^{2}}{2^{d}}=o(1) \quad$ if $\quad n=O(d)$ and $d \rightarrow \infty$.

The main idea in our argument is that we obtain a random n-set \boldsymbol{A} in two steps. First we choose n pairs from the 2^{d-1} pairs of the form $\{x,-x\}, x \in C^{d}$. Then we choose an element from each pair. Let H be a hyperplane of \mathbb{R}^{d} in general position with respect to $C^{d}, 0 \notin H$. For $x \in C^{d}$ we denote the point $H \cap(0, x)$ by $\pi(x)$.
Lemma 3.1. Let $x_{1}, \ldots, x_{n} \in C^{d}, \Pi=\left\{\pi\left(x_{i}\right): 1 \leqslant i \leqslant n\right\}$ and

$$
Y=\left\{\left\{y_{1}, \ldots, y_{n}\right\}: y_{i}=x_{i} \text { or }-x_{i}\right\}
$$

Then \# (members of Y whose convex hull avoids 0) $=2 h(\Pi)$.
Proof. If the convex hull of $\left\{y_{1}, \ldots, y_{n}\right\}$ avoids 0 then there exists a hyperplane H_{0} through 0 such that it separates $\left\{y_{1}, \ldots, y_{n}\right\}$ from $\left\{-y_{1}, \ldots,-y_{n}\right\}$. Hence $H_{0} \cap H$ induces a partition of Π. Moreover, the converse is also true, every induced partition yields two members of \mathbf{Y}.

Using Lemma 2.2 for $n=2 d+c \sqrt{2 d}$ we get

$$
\begin{aligned}
\operatorname{Prob}(0 \notin \operatorname{conv} A(n)) & =\frac{1}{2^{n}\binom{2^{d-1}}{n}} \sum 2 h(\Pi) \leqslant \frac{h(d, n)}{2^{n-1}} \\
& =\frac{1}{2^{n-1}} \sum_{i<n / 2-(c \vee n) / 2}\binom{n-1}{i}=\Phi(-c)+O\left(\frac{1}{n}\right) .
\end{aligned}
$$

(Actually we have calculated $\operatorname{Prob}(0 \notin \operatorname{conv} A(n) \mid A \cap(-A)=\varnothing)$ and used (3).) Moreover, (3) implies

$$
\begin{equation*}
\operatorname{Prob}(0 \notin \operatorname{conv} A(n)) \geqslant \frac{h(d, n)}{2^{n-1}}-\frac{1}{2^{n-1}\binom{2^{d-1}}{n}} \sum_{\Pi} \sum_{1 \leqslant k \leqslant d} a(k, \Pi) . \tag{4}
\end{equation*}
$$

Here Komlós' theorem (i.e., Lemma 2.1) implies

$$
\frac{1}{\binom{2^{d-1}}{n}} \sum a(k, \Pi) \leqslant O\left(\frac{1}{\sqrt{d}}\right)\binom{n}{d} .
$$

Similarly

$$
\begin{aligned}
& \frac{1}{2^{d-1}} \sum_{\Pi} a(k, \Pi) \\
& \quad=\binom{n}{k} \operatorname{Prob}(k \text { random } \pm 1 \text { sequences of length } d \text { are linearly dependent }) \\
& \quad \leq\binom{ n}{k} O\left(\frac{1}{\sqrt{d}}\right)
\end{aligned}
$$

Hence (4) gives

$$
\operatorname{Prob}(0 \notin \operatorname{conv} A(n)) \geqslant \frac{h(d, n)}{2^{n-1}}-\frac{\sum_{i \leqslant d}\binom{n}{i}}{2^{n-1}} O\left(\frac{1}{\sqrt{d}}\right)=\Phi(-c)+O\left(\frac{1}{n}\right)-O\left(\frac{1}{\sqrt{d}}\right)
$$

4. Final Remarks

If Komlós' conjecture is true, then the method given above yields, for $n=O(d)$,

$$
\operatorname{Prob}(0 \notin \operatorname{conv} A(n))=\frac{h(n, d)}{2^{n-1}}+O\left(d^{2} /(1+\varepsilon)^{d}\right)
$$

Of course, this method can be used in all cases when the underlying set of the points T is symmetric, and $\operatorname{Prob}\left(x_{1}, \ldots, x_{d}, T\right.$ are linearly dependent $)=1-o(1)$, for example,

Theorem 4.1 (Wendel [7]). Let B^{d} denote the d-dimensional ball. Let us choose an n-element set P randomly. Then

$$
\operatorname{Prob}(0 \notin \operatorname{conv} P)=h(d, n) / 2^{n-1}
$$

Actually, Wendel used a similar inductional method (but he did not need our lemmas except the equality $h(P)=h(d, n)$ for affine independent n-sets $\left.P \subset \mathbb{R}^{d}\right)$. Finally, it is easy to see that in our case ($n \sim 2 d, d \rightarrow \infty$) we have

$$
\operatorname{Prob}(0 \in \operatorname{int} \operatorname{conv} P)-\operatorname{Prob}(0 \in \operatorname{conv} P) \rightarrow 0 .
$$

References

1. C. Buchta and J. Müller, Random polytopes in a ball, J. Appl. Probab. 21 (1984), 753-762.
2. P. Erdös and J. Mycielski, private communication.
3. E. F. Harding, The number of partitions of a set of n points in k dimensions induced by hyperplanes, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 285-289.
4. J. Komlós, On the determinant of (0, 1)-matrices, Studia Sci. Math. Hungar. 2 (1967), 7-21.
5. J. Komlós, unpublished.
6. J. Mycielski, On random convex hulls, Colloq. Math., to appear.
7. J. G. Wendel, A problem in geometric probability, Math. Scand. 11 (1962), 109-111.
8. R. O. Winder, Partitions of N-space by hyperplanes, SIAM J. Appl. Math. 14 (1966), 811-818.
9. T. Zaslavsky, Facing up to Arrangements: Face-count Formulas for Partitions of Space by Hyperplanes, Memoir 154, American Mathematical Society, Providence, RI, 1975.

Received November 12, 1985.

[^0]: * Present address: Department of Mathematics, M.I.T., Room 2-380, Cambridge, MA 02139, USA.

