

Random Polytopes in the *d*-Dimensional Cube

Z. Füredi*

Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest, P.O. Box 127, Hungary

Abstract. Let C^d be the set of vertices of a *d*-dimensional cube, $C^d = \{(x_1, \ldots, x_d): x_i = \pm 1\}$. Let us choose a random *n*-element subset A(n) of C^d . Here we prove that Prob(the origin belongs to the conv $A(2d + x\sqrt{2d})) = \Phi(x) + o(1)$ if x is fixed and $d \rightarrow \infty$. That is, for an arbitrary $\varepsilon > 0$ the convex hull of more than $(2+\varepsilon)d$ vertices almost always contains 0 while the convex hull of less than $(2-\varepsilon)d$ points almost always avoids it.

1. Convex Hull of Subsets of Vertices

Let C^d denote the set of vertices of a *d*-dimensional cube, $C^d \subset \mathbb{R}^d$, $C^d = \{(x_1, \ldots, x_d): x_i = \pm 1\}$. Let A(n) be a random *n*-element subset of C^d . We have $\binom{2^d}{n}$ possibilities for A(n), hence $\operatorname{Prob}(A(n)$ has property $\pi) = (\# \text{ of } n\text{-tuples}$ of C^d with property $\pi) / \binom{2^d}{n}$. The threshold function of the property π is n_d if for every $\varepsilon > 0$ we have

 $\operatorname{Prob}(A((1+\varepsilon)n_d) \text{ has property } \pi) \rightarrow 1$ whenever $d \rightarrow \infty$

and

 $\operatorname{Prob}(A((1-\varepsilon)n_d) \text{ has property } \pi) \to 0 \quad \text{whenever } d \to \infty.$

J. Mycielski posed the following problem: How large should we choose n so that conv A(n), the convex hull of A(n), contains almost surely the origin 0 [2]? P. Erdös conjectured that the threshold function of this property is O(d) [2]. This was proved by Komlós [5] in 1980.

^{*} Present address: Department of Mathematics, M.I.T., Room 2-380, Cambridge, MA 02139, USA.

Theorem 1.1 [5]. $1.3d < n_d < 4.4d$, i.e.,

 $\lim_{d\to\infty}\operatorname{Prob}(0\in\operatorname{conv} A(1.3d))=0$

and

$$\lim_{d\to\infty}\operatorname{Prob}(0\in\operatorname{conv} A(4.4d))=1.$$

Here we improve this result. Denote $1/\sqrt{2\pi} \int_{-\infty}^{c} e^{-x^2/2} dx$ by $\Phi(c)$, as usual.

Theorem 1.2. Let c be a real number. Then

 $\lim_{d\to\infty}\operatorname{Prob}(0\in\operatorname{conv} A(2d+c\sqrt{2d}))=\Phi(c).$

Corollary 1.3. $n_d = 2d$.

Our results are strongly related to an old theorem of Wendel [7] (see Theorem 4.1). More results and an extensive literature about random polytopes can be found in a recent paper of Buchta and Müller [1]. See also Mycielski [6].

2. Lemmas

P. Erdös conjectured that a random ± 1 matrix is almost always regular. This was proved by Komlós [4] in 1967:

Lemma 2.1 [4]. Let M be a $d \times d$ random ± 1 matrix (i.e., every entry a_{ij} is chosen independently and with probabilities $\operatorname{Prob}(a_{ij}=1) = \operatorname{Prob}(a_{ij}=-1) = \frac{1}{2}$). Then

$$\operatorname{Prob}(M \text{ is regular}) > 1 - O(1/\sqrt{d}). \tag{1}$$

Komlós conjectures that one can replace $O(1/\sqrt{d})$ by $O(1/(1+\varepsilon)^d)$ for some positive ε . The following lemma is a simple generalization of a result due to Harding [3]. Let $P = \{p_1, p_2, \ldots, p_n\} \subset \mathbb{R}^d$ be a point-set $(p_i = p_j \text{ is possible})$. The partition $P = U \cup V$ is *induced by a hyperplane* if there exists a hyperplane $H \subset \mathbb{R}^d$ such that $P \cap H = \emptyset$ and H splits every segment [u, v] for $u \in U, v \in V$. Denote by h(P) the number of such partitions of P, $h(d, n) = \max\{h(P): P \subset \mathbb{R}^d, |P| = n\}$. Harding proved that

$$h(d, n) = \binom{n-1}{d} + \cdots + \binom{n-1}{0}.$$

Denote by a(k, P) the number of affine dependent k-tuples of P. The lower bound in the following lemma is an easy consequence of a theorem of Winder [8] (see also Zaslavsky [9]).

316

Random Polytopes in the d-Dimensional Cube

Lemma 2.2. For every $P \subset \mathbb{R}^d$, |P| = n we have

$$h(d, n) - \sum_{2 \le k \le d+1} a(k, P) \le h(P) \le h(d, n) = \sum_{k \le d} \binom{n-1}{k}.$$
 (2)

This lower bound is not the best possible, but it is sufficient for our purposes.

3. Proof of Theorem 1.2

The first observation is that we can neglect those A(n)'s which contain a pair of opposite vertices because the probability of this event tends to 0 when $d \rightarrow \infty$. In fact, we have

$$\operatorname{Prob}(A(n) \cap (-A(n)) \neq \emptyset) \leq \frac{2^d \binom{2^u}{n-2}}{\binom{2^d}{n}} < \frac{n^2}{2^d} = o(1) \quad \text{if} \quad n = O(d) \text{ and } d \to \infty.$$
(3)

The main idea in our argument is that we obtain a random *n*-set A in two steps. First we choose *n* pairs from the 2^{d-1} pairs of the form $\{x, -x\}, x \in C^d$. Then we choose an element from each pair. Let H be a hyperplane of \mathbb{R}^d in general position with respect to C^d , $0 \notin H$. For $x \in C^d$ we denote the point $H \cap (0, x)$ by $\pi(x)$.

Lemma 3.1. Let $x_1, \ldots, x_n \in C^d$, $\Pi = \{\pi(x_i) : 1 \le i \le n\}$ and

$$Y = \{\{y_1, \ldots, y_n\}: y_i = x_i \text{ or } -x_i\}.$$

Then # (members of Y whose convex hull avoids 0) = $2h(\Pi)$.

Proof. If the convex hull of $\{y_1, \ldots, y_n\}$ avoids 0 then there exists a hyperplane H_0 through 0 such that it separates $\{y_1, \ldots, y_n\}$ from $\{-y_1, \ldots, -y_n\}$. Hence $H_0 \cap H$ induces a partition of II. Moreover, the converse is also true, every induced partition yields two members of Y.

Using Lemma 2.2 for $n = 2d + c\sqrt{2d}$ we get

$$Prob(0 \notin \text{conv } A(n)) = \frac{1}{2^n \binom{2^{d-1}}{n}} \sum 2h(\Pi) \leq \frac{h(d, n)}{2^{n-1}}$$
$$= \frac{1}{2^{n-1}} \sum_{i < n/2 - (c\sqrt{n})/2} \binom{n-1}{i} = \Phi(-c) + O\left(\frac{1}{n}\right).$$

(Actually we have calculated Prob $(0 \notin \text{conv } A(n) | A \cap (-A) = \emptyset)$ and used (3).) Moreover, (3) implies

$$\operatorname{Prob}(0 \notin \operatorname{conv} A(n)) \ge \frac{h(d, n)}{2^{n-1}} - \frac{1}{2^{n-1} \binom{2^{d-1}}{n}} \sum_{\Pi} \sum_{1 \le k \le d} a(k, \Pi).$$
(4)

Here Komlós' theorem (i.e., Lemma 2.1) implies

$$\frac{1}{\binom{2^{d-1}}{n}}\sum a(k,\Pi) \leq O\left(\frac{1}{\sqrt{d}}\right)\binom{n}{d}.$$

Similarly

$$\frac{1}{2^{d-1}}\sum_{\Pi} a(k, \Pi)$$

$$= \binom{n}{k} \operatorname{Prob}(k \text{ random } \pm 1 \text{ sequences of length } d \text{ are linearly dependent})$$

$$\leq \binom{n}{k} O\left(\frac{1}{\sqrt{d}}\right).$$

Hence (4) gives

$$\operatorname{Prob}(0 \notin \operatorname{conv} A(n)) \geq \frac{h(d, n)}{2^{n-1}} - \frac{\sum\limits_{i \leq d} \binom{n}{i}}{2^{n-1}} O\left(\frac{1}{\sqrt{d}}\right) = \Phi(-c) + O\left(\frac{1}{n}\right) - O\left(\frac{1}{\sqrt{d}}\right).$$

4. Final Remarks

If Komlós' conjecture is true, then the method given above yields, for n = O(d),

$$\operatorname{Prob}(0 \notin \operatorname{conv} A(n)) = \frac{h(n, d)}{2^{n-1}} + O(d^2/(1+\varepsilon)^d).$$

Of course, this method can be used in all cases when the underlying set of the points T is symmetric, and $Prob(x_1, \ldots, x_d, T \text{ are linearly dependent}) = 1 - o(1)$, for example,

Theorem 4.1 (Wendel [7]). Let B^d denote the d-dimensional ball. Let us choose an n-element set P randomly. Then

$$\operatorname{Prob}(0 \notin \operatorname{conv} P) = h(d, n)/2^{n-1}.$$

Actually, Wendel used a similar inductional method (but he did not need our lemmas except the equality h(P) = h(d, n) for affine independent *n*-sets $P \subset \mathbb{R}^d$). Finally, it is easy to see that in our case $(n \sim 2d, d \rightarrow \infty)$ we have

$$\operatorname{Prob}(0 \in \operatorname{int} \operatorname{conv} P) - \operatorname{Prob}(0 \in \operatorname{conv} P) \rightarrow 0.$$

References

- 1. C. Buchta and J. Müller, Random polytopes in a ball, J. Appl. Probab. 21 (1984), 753-762.
- 2. P. Erdös and J. Mycielski, private communication.
- 3. E. F. Harding, The number of partitions of a set of n points in k dimensions induced by hyperplanes, Proc. Edinburgh Math. Soc. (2) 15 (1966/67), 285-289.
- 4. J. Komlós, On the determinant of (0, 1)-matrices, Studia Sci. Math. Hungar. 2 (1967), 7-21.
- 5. J. Komlós, unpublished.
- 6. J. Mycielski, On random convex hulls, Colloq. Math., to appear.
- 7. J. G. Wendel, A problem in geometric probability, Math. Scand. 11 (1962), 109-111.
- 8. R. O. Winder, Partitions of N-space by hyperplanes, SIAM J. Appl. Math. 14 (1966), 811-818.
- 9. T. Zaslavsky, Facing up to Arrangements: Face-count Formulas for Partitions of Space by Hyperplanes, Memoir 154, American Mathematical Society, Providence, RI, 1975.

Received November 12, 1985.