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Random Projection-Based Multiplicative
Data Perturbation for Privacy Preserving
Distributed Data Mining

Kun Liu, Hillol Kargupta, Senior Member, IEEE, and Jessica Ryan

Abstract—This paper explores the possibility of using multiplicative random projection matrices for privacy preserving distributed data
mining. It specifically considers the problem of computing statistical aggregates like the inner product matrix, correlation coefficient
matrix, and Euclidean distance matrix from distributed privacy sensitive data possibly owned by multiple parties. This class of problems
is directly related to many other data-mining problems such as clustering, principal component analysis, and classification. This paper
makes primary contributions on two different grounds. First, it explores Independent Component Analysis as a possible tool for
breaching privacy in deterministic multiplicative perturbation-based models such as random orthogonal transformation and random
rotation. Then, it proposes an approximate random projection-based technique to improve the level of privacy protection while still
preserving certain statistical characteristics of the data. The paper presents extensive theoretical analysis and experimental results.

Experiments demonstrate that the proposed technique is effective and can be successfully used for different types of privacy-

preserving data mining applications.

Index Terms—Random projection, multiplicative data perturbation, privacy preserving data mining.

1 INTRODUCTION

RIVACY is becoming an increasingly important issue in

many data-mining applications that deal with health
care, security, financial, behavioral, and other types of
sensitive data. It is particularly becoming important in
counterterrorism and homeland defense-related applica-
tions. These applications may require creating profiles,
constructing social network models, and detecting terrorist
communications among others from privacy sensitive data.
For example, mining healthcare data for detection of bio-
terrorism may require analyzing clinical records and
pharmacy transactions data of certain off-the-shelf drugs.
However, combining such diverse data sets belonging to
different parties may violate the privacy laws. Although
health organizations are allowed to release data as long as
the identifiers (e.g., name, SSN, address, etc.,) are removed,
it is not considered safe enough since reidentification
attacks may be constructed for linking different public data
sets to identify the original subjects [1]. This calls for well-
designed techniques that pay careful attention to hiding
privacy-sensitive information, while preserving the inher-
ent statistical dependencies which are important for data-
mining applications.

The problem we are interested in and discuss in this
paper can be defined as follows: Suppose there are
N organizations O;,0s,...,On; each organization O; has
a private transaction database DB;. A third party data
miner wants to learn certain statistical properties of the
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union of these databases | J'; DB;. These organizations are
comfortable with this, but they are reluctant to disclose their
raw data. How could the data miner perform data analysis
without compromising the privacy of the data? This is
generally referred to as the census problem [2]. In this
scenario, the data is usually distorted and its new
representation is released; anybody has arbitrary access to
the published data. Fig. 1 illustrates a distributed two-
party-input case as well as a single-party-input case.

This paper considers a randomized multiplicative data
perturbation technique for this problem. It is motivated by
the work presented elsewhere [3] that pointed out some of
the problems of additive random perturbation. Specifically,
this paper explores the possibility of using multiplicative
random projection matrices for constructing a new repre-
sentation of the data. The transformed data is released to
the data miner. It can be proved that the inner product and
Euclidean distance are preserved in the new data. The
approach is fundamentally based on the Johnson-Linden-
strauss lemma [4] which notes that any set of s points in
m-dimensional Euclidean space can be embedded into
k-dimensional subspace, where k is logarithmic in s, such
that the pair-wise distance of any two points is maintained
within an arbitrarily small factor. Therefore, by projecting
the data onto a random subspace, we can dramatically
change its original form while preserving much of its
underlying distance-related statistical characteristics.

In this paper, we assume that the private data is from the
same continuous real domain and all the parties are
semihonest (which means there is no collusion between
parties and all the parties follow the protocol properly).
Without loss of generality, we demonstrate our technique in
a two-party-input scenario where Alice and Bob, each
owning a private database, want a third party to analyze

Published by the IEEE Computer Society
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Fig. 1. (a) Distributed two-party-input computation model. (b) Single-
party-input computation model.

their data without seeing the raw information. Our
technique can be easily modified and applied to other
input cases.

The remainder of this paper is organized as follows:
Section 2 offers an overview of the related work in privacy
preserving data mining. Section 3 discusses the random
orthogonal transformation-based perturbation technique in
the context of distributed inner product computation. This
is computationally equivalent to many problems such as
computing Euclidean distance, correlation, angles, or even
covariance between a set of vectors. These statistical
aggregates play a critical role in many data-mining
techniques such as clustering, principal component analy-
sis, and classification. Section 4 explores the potential
vulnerability of this method from the perspective of
Independent Component Analysis (ICA). Section 5 presents
a random projection-based multiplicative data perturbation
technique as an extension to enhance the privacy level.
Section 6 gives a further detailed analysis about the privacy
issues. Section 7 compares our technique with other existing
secure matrix product protocols. Several real data mining
applications, e.g., distributed inner product/Euclidean
distance estimation, distributed clustering, linear classifica-
tion, etc., and experiments are provided in Section 8 to
justify the effectiveness of this technique. Finally, Section 9
concludes this paper and outlines the future research.

2 RELATED WORK

This section presents a brief overview of the literature on
privacy preserving data mining.

2.1 Data Perturbation

Data perturbation approaches can be grouped into two main
categories: the probability distribution approach and the
value distortion approach. The probability distribution
approach replaces the data with another sample from the
same (or estimated) distribution [5] or by the distribution
itself [6], and the value distortion approach perturbs data
elements or attributes directly by either additive noise,
multiplicative noise, or some other randomization proce-
dures [7]. In this paper, we mainly focus on the value
distortion approach.

The work in [8] proposed an additive data perturbation
technique for building decision tree classifiers. Each data
element is randomized by adding some random noise
chosen independently from a known distribution such as
Gaussian distribution. The data miner reconstructs the

distribution of the original data from its perturbed version
(using, e.g., an Expectation Maximization-based algorithm)
and builds the classification models. More recently,
Kargupta et al. [3] questioned the use of random additive
noise and pointed out that additive noise can be easily
filtered out in many cases that may lead to compromising
the privacy.

The possible drawback of additive noise makes one
wonder about the possibility of using multiplicative noise
for protecting the privacy of the data. Two basic forms of
multiplicative noise have been well studied in the statistics
community [9]. One is to multiply each data element by a
random number that has a truncated Gaussian distribution
with mean one and small variance. The other one is to take a
logarithmic transformation of the data first, add predefined
multivariate Gaussian noise, and take the antilog of the
noise-added data. In practice, the first method is good if the
data disseminator only wants to make minor changes to the
original data; the second method assures higher security
than the first one but maintains the data utility in the log-
scale. A potential problem of traditional additive and
multiplicative perturbation is that each data element is
perturbed independently, therefore the pair-wise similarity
of records is not guaranteed to be maintained. In this paper,
we propose an alternate approach that proves to preserve
much of the underlying statistical aggregates of the data.

Additive and multiplicative perturbation usually deal
with numeric data only. Perturbation for categorical data
was initially considered in [10], where a randomized
response method was developed for the purpose of data
collection through interviews. The work in [11] considered
categorical data perturbation in the context of association
rule mining. This work was extended in [12], where a
framework for quantifying privacy breaches was intro-
duced. The framework uses the concept of vy-amplification
and applies it without any assumption about the under-
lying distribution from which the original data is drawn.
The work in [13] considered this framework again and
showed how to optimally set the perturbation parameters
for reconstruction while maintaining vy-amplification.

2.2 Data Swapping

The basic idea of data swapping, which was first proposed
by Dalenius and Reiss [14], is to transform the database by
switching a subset of attributes between selected pairs of
records so that the lower order frequency counts or
marginals are preserved and data confidentiality is not
compromised. This technique could equally as well be
classified under the data perturbation category. A variety of
refinements and applications of data swapping have been
addressed since its initial appearance. We refer readers to
[15] for a thorough treatment.

2.3 k-Anonymity

The k-Anonymity model [1] considers the problem that a
data owner wants to share a collection of person-specific
data without revealing the identity of an individual. To
achieve this goal, data generalization and suppression
techniques are used to protect the sensitive information.
All attributes (termed as quasi-identifier) in the private
database that could be used for linking with external
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information would be determined, and the data is released
only if the information for each person contained in the
release cannot be distinguished from at least k — 1 other
people.

2.4 Secure Multiparty Computation

The Secure Multiparty Computation (SMC) [16] technique
considers the problem of evaluating a function of the secret
inputs from two or more parties, such that no party learns
anything but the designated output of the function. A large
body of cryptographic protocols, including circuit evaluation
protocol, oblivious transfer, homomorphic encryption, and
commutative encryption, serve as the building blocks of
SMC. The work in [17] offered a broad view of SMC
framework and its applications to data mining. The work
in [18] detailed a rigorous introduction to SMC. It was shown
that any function that can be expressed by an arithmetic
circuit is privately computable using a generic circuit
evaluation protocol. However, the communication and
computational complexity of doing so makes this general
approach infeasible for large data sets. A collection of SMC
tools useful for large-scale privacy preserving data mining
(e.g., secure sum, set union, and inner product) are discussed
in [19]. An overview of the state-of-the-art privacy preser-
ving data mining techniques is presented in [20].

2.5 Distributed Data Mining

The distributed data mining (DDM) [21], [22] approach
supports computation of data mining models and extraction
of “patterns” at a given node by exchanging only the minimal
necessary information among the participating nodes. The
work in [23] proposed a paradigm for clustering distributed
privacy sensitive data in an unsupervised or a semisuper-
vised scenario. In this algorithm, each local data site builds a
model and transmits only the parameters of the model to the
central site where a global clustering model is constructed. A
distributed privacy-preserving algorithm for Bayesian net-
work parameter learning is reported elsewhere [24].

2.6 Rule Hiding

The main objective of rule hiding is to transform the
database such that the sensitive rules are masked, and all
the other underlying patterns can still be discovered. The
work in [25] gave a formal proof that the optimal
sanitization is an NP-hard problem for the hiding of
sensitive large item sets in the context of association rule
mining. For this reason, some heuristic approaches have
been applied to address the complexity issues. For example,
the perturbation-based association rule hiding technique
[26] is implemented by changing a selected set of 1-values
to 0-values or vice versa so that the frequent item sets that
generate the rule are hidden or the support of sensitive
rules is lowered to a user-specified threshold. The blocking-
based association rule hiding approach [27] replaces certain
attributes of the data with a question mark. In this regard,
the minimum support and confidence will be altered into a
minimum interval. As long as the support and/or the
confidence of a sensitive rule lies below the middle in these
two ranges, the confidentiality of data is expected to be
protected.

JANUARY 2006

3 RANDOM ORTHOGONAL TRANSFORMATION

This section presents a deterministic multiplicative pertur-
bation method using random orthogonal matrices in the
context of computing inner product matrix. Later, we shall
analyze the deficiency of this method and then propose a
more general case that makes use of random projection
matrices for better protection of the data privacy.

An orthogonal transformation [28] is a linear transforma-
tion R : IR" — IR", which preserves the length of vectors as
well as the angles between them. Usually, orthogonal
transformations correspond to and may be represented
using orthogonal matrices. Let X and Y be two data sets
owned by Alice and Bob, respectively. X is an m; x n matrix,
and Y is an mo X n matrix. Both of them observe the same
attributes. Let R be an n x n random orthogonal matrix.
Now, consider the following linear transformation of the two
data sets:

U=XR, and V=YR;
vUT = xxT vvl =yyT uv? = XRRTYT = xXY7.

then we have

So, if both Alice and Bob transform their data using a secret
orthogonal matrix, and only release the perturbed versiontoa
third party, all the pair-wise angles/distances between the

row vectors from data (i,() can still be perfectly computed

there, where (if) is a horizontal concatenation of X and Y.
Therefore, it is easy to implement a distance-based privacy
preserving data-mining application in a third party for
homogeneously distributed (horizontally partitioned) data.
Similarly, if we transform the data in a way such that
U=RX, V=RY, we will have UTV = XTY, and all the
pair-wise distances and similarities between the columns
vectors from the data (X :Y) are fully preserved in the
perturbed data, where (X : Y') denotes a vertical concatena-
tion of X and Y. Therefore, a third party can analyze the
correlation of the attributes from heterogeneously distributed
(vertically partitioned) data without accessing the raw data.

Since only the transformed data is released, there are
actually an infinite number of inputs and transformation
procedures that can simulate the output, while the observer
has no idea what is the real form of the original data.
Therefore, random orthogonal transformation seems to be a
good way to protect data’s privacy while preserving its
utility. However, from the geometric point of view, an
orthogonal transformation is either a pure rotation when
the determinant of the orthogonal matrix is 1 or a
rotoinversion (a rotation followed by a flip) when the
determinant is -1, and, therefore, it is possible to reidentify
the original data through a proper rotation. Figs. 2a and 2b
illustrate how the random orthogonal transformation works
in a 3D space. It can be seen that the data is not very well
masked after transformation. In this regard, the security of a
similar approach using random rotation [29] to protect the
data privacy is also questionable. Moreover, if all the
original data vectors are statistically independent and they
do not follow Gaussian distribution, it is possible to
estimate their original forms quite accurately using Inde-
pendent Component Analysis (ICA). In the following
sections, we shall briefly discuss the properties of ICA
and then propose a random projection-based multiplicative
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Fig. 2. (a) A sample data set. (b) The perturbed data after a random orthogonal transformation. The transformation corresponds to a rotation of the

original data about the x-axis by a random angle.
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Fig. 3. (a) An illustration of the cocktail problem. In this case, what the ears hear are two linear combinations of four audio signals, i.e., four signals
are compressed into two. (b) A sample of four independent source signals.

perturbation technique to improve the privacy level while
preserving the data utilities.

4 INDEPENDENT COMPONENT ANALYSIS

Independent Component Analysis (ICA) [30] is a technique
for discovering independent hidden factors that are under-
lying a set of linear or nonlinear mixtures of some unknown
variables, where the mixing system is also unknown. These
unknown variables are assumed non-Gaussian and statis-
tically independent, and they are called the independent
components (ICs) of the observed data. These independent
components can be found by ICA. A classical example of
ICA is the cocktail party problem (as illustrated in Fig. 3a).
Imagine you are in a cocktail party. Although different
kinds of background sounds are mixed together, e.g., music,
other people’s chat, television news report, or even a siren
from a passing-by ambulance, you still have no problem
identifying the discussion of your neighbors. It is not clear
how human brains can separate the different sound sources.
However, ICA is able to do it if there are at least as many
“ears” or receivers in the room as there are different
simultaneous sound sources.

4.1 ICA Model
The basic ICA model can be defined as follows:

u(t) = Rx(t), (1)

where z(t) = (21(t), z3(t), ...,z (t))" denotes a m-dimen-
sional vector collecting the m independent source signals
zi(t),i =1,2,...,m. Here, ¢ indicates the time dependence.
Each signal z;(t) can be viewed as an outcome of a
continuous-value random process. R is a constant k x m
unknown mixing matrix, which can be viewed as a mixing
system with k receivers. u(t) = (uy(t),us(t), ..., us(t))" is
the observed mixture. The aim of ICA is to design a filter
that can recover the original signals from only the observed
mixture. Since u(t) = Rz(t) = (RAP)(P~'A1xz(t)) for any
diagonal matrix A and permutation matrix P, the recovered
signals z(t) can never have completely unique representa-
tion. So, the uniqueness of the recovered signals found by
ICA can only be guaranteed up to permutation and scaling
ambiguities.

As an illustration, consider four statistically independent
audio signals, denoted as a 4 x 8,000 matrix X (shown in
Fig. 3b). Note that, for the sake of simplicity, some of the
signals we are showing here are deterministic; however,
ICA generally works with continuous-value random pro-
cess. A linear mixture of these signals (shown in Fig. 4a) is
generated by premultiplying a 4 x 4 nonsingular random
matrix to X. The goal of ICA is to recover the original signals
using only the mixture. Fig. 4b gives the estimated signals
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Fig. 4. (a) Linear mixture of the original source signals using a square random matrix. (b) Recovered signals using ICA.

through ICA. It can be observed that the basic structure of
the original signals are recovered very well; however, the
order and the amplitude of the recovered signals are not
necessarily the same as those of the original ones.

4.2 Decomposability

In practice, a linear filter is designed to get the recovered
signals y(t) = (y1(t), ya(t), ... y(t)" from a k-dimensional
input u(t) = (w1 (t), us(t), ..., ur(t))". In other words,

y(t) = Bu(t), (2)

where B is an [ x k-dimensional separating matrix. Combin-
ing (1) and (2) together, we get

y(t) = BRx(t) = Zz(t), (3)

where Z = BR is an [ x m matrix. Each element of y(¢) is
thus a linear combination of z;(t) with weights given by z; ;.

Ideally, when k> m (i.e., the number of receivers is
greater than or equal to the number of source signals), if the
mixing matrix R has full column rank, there always exists
an | x k separating matrix B such that Z = BR = I, where I
is an identity matrix. Thus, we can recover all the signals up
to scaling and permutation ambiguities. Actually, to solve
the problem, there are two steps to be done. The first step is
to determine the existence of B such that Z can decompose
the mixture. The second step is to find such a kind of B if it
is proved to exist. We will focus on the first step.

In general, by imposing the following fundamental
restrictions [31], all the source signals can be separated
out up to scaling and permutation ambiguities:

e The source signals are statistically independent,
i.e., their joint probability density function (PDF)
Jx) (@1(t), 22(t), ..., 2, (t)) is factorizable in the
following way:

Few @18, 230, 2 (8) = L] e :(6)),
i=1

where fy ) (2;(t)) denotes the marginal probability
density of z;(¢).

e All the signals must be non-Gaussian with the
possible exception of one signal.

e The number of observed signals & must be at least as
large as the independent source signals, i.e., k > m.

e Matrix R must be of full-column rank.

These restrictions actually have exposed the potential
dangers of random orthogonal transformation or random
rotation techniques where the mixing matrix is square and
of full-column rank. If the original signals are also
statistically independent and there are no Gaussians, it is
most likely that ICA can find a good approximation of the
original signals from their perturbed version. Figs. 4a and
4b illustrated this situation.

Note that, if some of the source signals are correlated,
they may be lumped in the same group and can never be
separated out. If there is more than one Gaussian signal, the
problem becomes more complicated. The output of the filter
may be either individual non-Gaussian signals, individual
Gaussian signals, or a mixture of Gaussian signals. A
detailed analysis can be found elsewhere [32].

When [ < k <m (i.e., the number of sources is greater
than the number of receivers),' it is generally not possible to
design linear filters to simultaneously recover all these
signals. This kind of separation problem is termed as
overcomplete ICA or underdetermined source separation.
Cao et al. [32] analyzed the conditions for the existence of
the separating matrix B.

We first introduce two definitions (Definitions 4.1 and
42) and one theorem (Theorem 4.3) from the original
materials without any proof. They serve as important
building blocks in our solutions.

Definition 4.1 (Partition Matrix) [32]. A set of m integers
S={1,2,...,m} can be partitioned into | (I < m) disjoint
subsets S;, 1 =1,2,...,1. An I xm matrix Z is called a
partition matrix if its i, jth entry z;,; =1 when j € S;, and
z;; = 0 otherwise. Z is called a generalized partition matrix if
it is a product of an | x m partition matrix and an m x m
nonsingular diagonal matrix.

1. This implies that the number of recovered signals will be less than or
equal to the number of the original signals. This is reasonable since we
cannot get more signals than the original ones.
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Fig. 5. (a) Linear mixture of the original four source signals (as shown in Fig. 3b) with 50 percent random projection rate. (m =4,k = 2).
(b) Recovered signals. It can be observed that none of the original signals are reconstructed, and at most £ = 2 independent components can be

found by ICA.

When none of the subsets S; are empty, Z is simply a
matrix in which each column has only one nonzero entry,
and each row has at least one nonzero entry.

Definition 4.2 (I-row Decomposable) [32]. A k x m matrix
R is called I-row decomposable if there exists an | x k matrix B
such that Z = B x Ris an | x m generalized partition matrix.

Therefore, if R is I-row decomposable, there exists a
matrix B that enables Z to separate the source signals into
! disjoint subgroups; each output y;(t),i=1,2,...,l is a
linear combination of the source signals in one subgroup, i.e.,

Yi = E Z,L/’L’J, 1:1727,1
JES;

If for some i, S; = {p}, then y; = z;,x,, i.e., by using Z, we
can separate out one signal z, up to scaling ambiguities. If
the number of the disjoint subgroups is m (I =m), then
every subset S;, ¢ = 1,...,[, contains only one element, we
will have a complete separation. Also, note that, if R is
l-row decomposable, it must be (I — 1)-row decomposable
since we can add two outputs y;(t) and y;(¢) together to
get [ — 1 subgroups.

Theorem 4.3 [32]. Matrix R is I-row decomposable if and only if
its columns can be grouped into | disjoint groups such that the
column vectors in each group are linearly independent of the
vectors in all the other groups.

Proof. Please see the proof of Theorem 1 in [32]. O

Cao et al. proved that, with k& < m, the source signals can
at most be separated into k disjoint groups from the
observed mixture, and at most k — 1 signals (independent
components) can be separated out.

Our claim is that, if we can control the structure of the
mixing matrix R such that R is not two-row decomposable,
then there is no linear method that can find a matrix B for
separating the source signals into two or more disjoint
groups. In that case, it is not possible to separate out any of
the source signals. The following theorem characterized this

property:

Theorem 4.4. Any k x m (m > 2k — 1,m > 2) random matrix
with entries independent and identically chosen from some
continuous distribution in the real domain is not two-row
decomposable with probability 1.

Proof. For a k x m random matrix with m > 2k — 1 and any
partition of its columns into two nonempty sets, at least
one set will have at least £ members. Thus, this set of
columns contains a k x k submatrix, denoted as M. If M
is nonsingular, then the k column vectors of the
submatrix span R* Euclidean space. Thus, there is
always at least one vector in one group belonging to
the space spanned by the other group, which does not
satisfy Theorem 4.3.

Now, let us show M is indeed nonsingular with
probability 1. It has been proved in [33, Theorem 3.3]
that the probability that MM?T is positive definite is
1.% Since a matrix is positive definite if and only if all
the eigenvalues of this matrix are positive, and a
matrix is nonsingular if and only if all its eigenvalues
are nonzero [34, Theorem 1.2.2], we have that MM”
is nonsingular with 7probab1l1’(y 1. Further note that

rank(M) = rank(MM?) = rank MTM) [35], therefore
M is nonsmgular w1th probability 1. This completes
the proof. O

The above nonsingularity property of a random matrix
has also been proved in [34, Theorem 3.2.1] when the
random matrix is Gaussian. Thus, by letting m >> k, there
is no linear filter that can separate the observed mixtures
into two or more disjoint groups, so it is not possible to
recover any of the source signals. Figs. 5a and 5b depict this
property. It can be seen that, after 50 percent row-wise
random projection, the original four signals are compressed
into two, and ICA cannot recover any of them. Moreover,
projecting the original data using a nonsquare random
matrix has two more advantages. One is to compress the
data, which is very suited for distributed computation
applications; the other one is to realize a many (elements)-
to-one (element) map, which is totally different from the
traditional one-to-one data perturbation technique, and,
therefore, it is even ha