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Abstract

We present a simple variant of tiked tree which automatically adapts to intrinsic low dimemsil
structure in data without having to explicitly learn thisustture.

1 Introduction

The k-d tree (Bentley, 1975) is a spatial data structure thaitjsars R” into hyperrectangular cells. It is
built in a recursive manner, splitting along one coordirditection at a time (Figure 1, left). The succession
of splits corresponds to a binary tree whose leaves corfiaimtlividual cells inR”.

These trees are among the most widely-used spatial paitigie in machine learning and statistics. To
understand their application, consider Figure 1(left},ifstance, and suppose that the dots are points in
a database, while the cross is a query pgintThe cell containingy, which we will henceforth denote
cell(¢), can quickly be identified by moving down the tree. If the diameter of cg})) is small (where the
diameter is taken to mean the distance between the furthesbfpdata points in the cell), then the points
in it can be expected to have similar properties, for ingagimilar labels. Poing can then be classified
according to the majority vote of the labels in its cell, og thbel of its nearest neighbor in the cell. The
statistical theory arounkl-d trees is thus centered tme rate at which the diameter of individual cells drops
as you move down the trgfer details, see for instance Chapter 20 of the textbook byrbye, Gyorfi, and
Lugosi (1996).

It is an empirical observation that the usefulnesg-af trees diminishes as the dimensibnincreases.
This is easy to explain in terms of cell diameter; specificalle will show that:

There is a data set iR” for which ak-d tree requiresD levels in order to halve the cell
diameter.

In other words, if the data lie iR'°%°, then it could takd 000 levels of the tree to bring the diameter of cells
down to half that of the entire data set. This would reqaif€° data points!

Thus k-d trees are susceptible to the same curse of dimensionthfityhas been the bane of other
nonparametric statistical methods. However, a recentipesievelopment in statistics and machine learning
has been the realization that a lot of data which superficlab in a very high-dimensional spad”,
actually has lowntrinsic dimension, in the sense of lying close to a manifold of dinemd < D. There
has thus been a huge interest in algorithms which learn thisfoid from data, with the intention that future
data can then be transformed into this low-dimensionalesgacvhich the usual nonparametric (and other)
methods will work well. This field is quite recent and yet titerture on it is already voluminous; some
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Figure 1: Left: A spatial partitioning dR? induced by a-d tree with three levels. The first split is along
the z-axis, the second along theaxis, and the third along the-axis. The dots are data points; the cross
marks a query poinf. Right: Partitioning induced by an RP tree.

early foundational work includes that of Tenenbaatal (2000), Roweis and Saul (2000) and Belkin and
Niyogi (2003).

In this paper, we are interested in techniques that autoedigtiadapt to intrinsic low dimensional struc-
ture without having to explicitly learn this structure. Thm®st obvious first question is, ded trees adapt
to intrinsic low dimension? The answer is no: in fact the beaheple mentioned above has an intrinsic di-
mension of jusOD(log D). But we show that a simple variant bfd trees does, in fact, possess this property.
Instead of splitting along coordinate directions at the imedwve do the following: we split along a random
direction inSP~! (the unit sphere iiR”), and instead of splitting exactly at the median, we intaza
small amount of “jitter”. We call theseandom projection treeéFigure 1, right), or RP trees for short, and
we can show the following.

Pick any cellC in the RP tree. If the data 6" have intrinsic dimensiod, then all descendant
cells> dlog d levels below will have at most half the diameter@®f

There is no dependence at all on the extrinsic dimensign@l) of the data.

2 Detailed overview

In what follows, we will always assume the data ligR#.

2.1 k-dtrees and RP trees

Both k-d and random projection (RP) trees are built by recursimatyi splits. They differ only in the nature
of the split, which we define in a subroutine callesi@SERULE. The core tree-building algorithm is
called MAKE TREE, and takes as input a data set R”.



procedure MAKE TREE(S)
if |S| < MinSize
then return (Leaf)
Rule < CHOOSERULE(S)
LeftTree < MAKETREE({z € S : Rule(x) = true})
RightTree < MAKETREE({z € S : Rule(x) = false})
return ([Rule, Le ftTree, RightTree])

else

The k-d tree GHOOSERULE picks a coordinate direction (at random, or by cycling tlgiothe coordinates
in a fixed order) and then splits the data on its median valuth&i coordinate.

procedure CHOOSERULE(.S)
comment: k-d tree version

choose a random coordinate direction
Rule(z) := x; < median{{z; : z € S})
return (Rule)

On the other hand, an RPTree chooses a direction uniformigratom from the unit spher8”~! and
splits the data into two roughly equal-sized sets using @iptane orthogonal to this direction. We describe
two variants, which we call RPTree-Max and RPTree-Mean. firseis more theoretically motivated (in
the sense that we can prove a slightly stronger type of boond)fwhile the second is more practically
motivated. They are both adaptive to intrinsic dimensidthocaigh the proofs are in different models and
use very different techniques.

We start with the @o0osSERULE for RPTree-Max.

procedure CHOOSERULE(.S)
comment: RPTree-Max version

choose a random unit directianc R”

pick any pointz € S, and lety be the farthest point from it ity
choose’ uniformly at random if—1, 1] - 6||z — y|| /v D
Rule(x) :=x -v < (median{z - v : 2 € S}) + J)

return (Rule)

(In this paper]| - || always denotes Euclidean distance.) A tree of this kindh iitundaries that are arbitrary
hyperplanes, is generically called a binary space pant{85P) tree (Fuchs, Kedem, and Naylor, 1980). Our
particular variant is built using two kinds of randomnessthie split directions as well in the perturbations.
Both are crucial for the bounds we give.

The RPTree-Mean is similar to RPTree-Max, but differs in witical respects. First, it occasionally
performs a different kind of split: a cell is split into twogues based on distance from the mean. Second,
when splitting according to a random direction, the actpét kcation is optimized more carefully.



procedure CHOOSERULE(.S)
comment: RPTree-Mean version

if A2(S) <c-A4(S)
choose a random unit direction
sort projection valuesi(z) = v -z Vz € S, generating the lisi; <as <--- <a,
fori=1,...,n—1compute
then § i = %23:1 aj, H2 = 5 D1 G
¢ = 5(a; — p)? + > ii(aj — i)

find 7 that minimizes; and se¥) = (a; + a;4+1)/2
Rule(z) :=v-x <46

else { Rule(z) := ||z — mean(S)|| < mediar{||z — mear{S)|| : z € S}
return (Rule)

In the codec is a constantA(S) is the diameter oF (the distance between the two furthest points in the
set), andA 4(S) is theaveragediameter, that is, the average distance between poirfis of

1
A%(8) = e > e =yl

z,yeS

2.2 Low-dimensional manifolds

The increasing ubiquity of massive, high-dimensional da&is has focused the attention of the statistics
and machine learning communities on the curse of dimenkfyna large part of this effort is based on
exploiting the observation that many high-dimensionabdsgts have lovintrinsic dimension This is a
loosely defined notion, which is typically used to mean tih&t data lie near a smooth low-dimensional
manifold.

For instance, suppose that you wish to create realisticatioms by collecting human motion data and
then fitting models to it. You could put a large number of semsm a human being, and then measure
the three-dimensional position of each sensor (relative ¢hosen reference sensor on a relatively stable
location such as the pelvis) while the person is walking anmg. The number of sensors, say might
be large in order to get dense coverage of the body. Each dattip then a(3V)-dimensional vector,
measured at a certain point of time. However, despite trésng®y high dimensionality, the number of
degrees of freedom is small, corresponding to the dozeso-goint angles in the body. The sensor positions
are more or less deterministic functions of these joint @agllhe number of degrees of freedom becomes
even smaller if wedoublethe dimension of the embedding space by including for eanbasdts relative
velocity vector. In this space of dimensi6V the measured points will lie very close to thieedimensional
manifold describing the combinations of locations and dpdkat the limbs go through during walking or
running.

In machine learning and statistics, almost all the work gai@#ng intrinsic low dimensionality consists
of algorithms for learning the structure of these manifplds more precisely, for learning embeddings
of these manifolds into low-dimensional Euclidean spacaethls work we devise a simple and compact
data structure that automatically exploits the low inicndimensionality of data on a local level without
explicitly learning the global manifold structure.



2.3 Intrinsic dimensionality

How should intrinsic dimensionality be formalized? In tiiaper we explore three definitions: doubling
dimension, manifold dimension, and local covariance disien
The idea fordoubling dimensiomppeared in Assouad (1983).

Definition 1 For any pointz € R” and anyr > 0, let B(z,r) = {z : |= — z|| < r} denote the open ball
of radiusr centered at:. The doubling dimension ¢f c R” is the smallest integet such that for any ball
B(z,7) C RP, the setB(x,r) N S can be covered by balls of radiusr/2.

(It is well known that the doubling dimension is at méxtD).) This definition is convenient to work with,
and has proved fruitful in recent work on embeddings of metpaces (Assouad, 1983; Heinonen, 2001;
Gupta, Krauthgamer, and Lee, 2003). It implies, for instatice existence afnets of sizeO((l/e)d), for

all e. In our analysis, we will repeatedly use such approximati@md take union bounds over these rather
than over the data set.

How does this relate to manifolds? In other words, what isditiébling dimension of @-dimensional
Riemannian submanifold &”? We show (Theorem 13 in Section 4) that itl$d), subject to a bound on
the second fundamental form of the manifold.

We also consider a statistical notion of dimension: we say @hsetS haslocal covariance dimension
(d, e, r) if neighborhoods of radius. r have(1—e) fraction of their variance concentrated id-alimensional
subspace. To make this precise, start by lettifigo3, . .., 0%, denote the eigenvalues of the covariance
matrix; these are the variances in each of the eigenveatectains.

Definition 2 SetS ¢ R” has local covariance dimensidd, ¢, r) if its restriction to any ball of radius< r

has covariance matrix whose largeseigenvalues satisfy

1—e€
d

0?2 -(0%4—'-'—1—0’%).

2.4 Main results

Suppose an RP tree is built from a data Xet- R”, not necessarily finite. If the tree hadevels, then it
partitions the space int2F cells. We define theadiusof a cellC ¢ R” to be the smallest > 0 such that
X NC C B(x,r) for somez € C. Our first theorem gives an upper bound on the rate at whichetties
of cells in an RPTree-Max decreases as one moves down the tree

Theorem 3 There is a constant; with the following property. Suppose an RPTree-Max is lusihg data
setX c RP. Pick any cellC in the RP tree; suppose th& N C has doubling dimensior d. Then
with probability at leastl/2 (over the randomization in constructing the subtree roaded’), for every
descendant’ which is more tham d log d levels belowC', we haveradiugC’) < radiugC)/2.

Our next theorem gives a result for the second type of RPTire¢his case, we are able to quantify the
improvement per level, rather than amortized over levelscat that an RPTree-Mean has two different
types of splits; let’s call them splitsy distanceand splitsby projection

Theorem 4 There are constant8 < ci, co, c3 < 1 with the following property. Suppose an RPTree-Mean
is built using data sefX ¢ R of local covariance dimensiofi, ¢, 7), wheree < ¢;. Consider any cell’

of radius< r. Pick a pointz € S N C at random, and le’ be the cell that contains it at the next level
down.



e If C'is split by distance then
E[A(SNC)] < A(SNO).

e If C'is split by projection, then

C3

E[A%(SnCY)] < (1 - E) AZ(SNC).

In both cases, the expectation is over the randomizatioplitting C' and the choice of € SN C.

2.5 Alower bound for k-d trees

Finally, we remark that this property of automatically atitag to intrinsic dimension does not hold féfd
trees.

Theorem 5 There is a data seX ¢ R” which has doubling dimensios log D and for which thek-d tree
contains cells at leveD — 1 with radius> radiug X) /2.

This bad example is very simple, and applies to any variaktdfrees that uses axis-aligned splits.

3 An RPTree-Max adapts to doubling dimension

In this section, we prove Theorem 3. The argument makes hess/pf the smalé-covers guaranteed by
low doubling dimension, and the properties of random pt@es.

A very rough proof outline is as follows. Suppose an RP tréwil using data sek ¢ R” of doubling
dimensiond, and thatC' is some cell of the tree. IX N C lies in a ball of radiusA, then we need to
show that aftelO(d log d) further levels of projection, each remaining cell is conéa in a ball of radius
< A/2. To this end, we start by covering N C with balls By, Bs, ..., By of radiusA /v/d. The doubling
dimension tells us we needl = O(d%?). We’'ll show that if two ballsB; and B; are more than a distance
(A/2) — (A/+/d) apart, then a single random projection (with jittered $ids a constant probability of
cleanly separating them, in the sense tBawill lie entirely on one side of the split, ang; on the other.
There are at mos¥? such pairs, j, and so afte®(d log d) projections every one of these pairs will have
been split. In other word€)(dlog d) levels belowC' in the tree, each cell will only contain points from
balls B; which are within distancéA /2) — (A/+/d) of each other. Hence the radius of these cells will be
< AJ2.

Returning to the two ball$3; and B;, we says that a split igoodif it completely separates them. But
there are alstvad splits, in which the split point intersect®oth the balls. The remaining splits aneutral
(Figure 2). Most of our proof consists in showing that thebyataility of a good split is strictly greater than
that of a bad split.

For instance, to lower-bound the probability of a good splé show that each of the following sequence
of events occurs with constant probability.

e B; and Ej, the projections of3; and B; onto a random line, have a certain amount of empty space
between them.

e The median of the projected data lies very close to this ersydge.

e Picking a split point at random near the median will sepaét&om Ej.

We begin by reviewing some relevant properties of randorjeption.
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Figure 2: CellC of the RP tree is contained in a ball of radifys Balls B; and 3; are part of a cover of this
cell, and have radiud /v/d. From the point of view of this particular pair, there aresthkinds of splits:
good, bad, and neutral.

3.1 Properties of random projections

The most obvious way to pick a random projection fr&f to R is to choose a projection directian
uniformly at random from the surface of the unit sph&fé~!, and to send: — v - .

Another common option is to select the projection vectomfra multivariate Gaussian distribution,
u~ N(0,(1/D)Ip). This gives almost the same distribution as before, andghtst easier to work with
in terms of the algorithm and analysis. We will therefore tlnsg type of projection, bearing in mind that all
proofs carry over to the other variety as well, with slighénbes in constants.

The key property of a random projection frdk¥ to R is that it approximately preserves the lengths of
vectors, modulo a scaling factor ¢fD. This is summarized in the lemma below.

Lemma 6 Fix anyx € R”. Pick a random vectot/ ~ N(0, (1/D)Ip). Then for any, 3 > 0:

<o ] < B

(b) P[|U'$|Zﬁ.M] <

A
1N

ml
=@
V]
~
¥

Proof. See Appendixl

3.2 How does random projection affect the diameter of a set?

Recall that the split rule looks at a random projection of diaga and then splits @pproximatelyat the
median. The perturbation added to the median depends omatimetér of the projected space.

Suppose seX c R” has doubling dimensiod. Let X denote its random projection inf®. How does
diam(X') compare to diarfiX)? (Define the diameter of a sétin the obvious way, asup, s [l — y|.)

Obviously dianfX) < diam(X), but we would in fact expect it to be much smalledit< D. One way to



get a rough upper bound is to consider a coveKdfy balls of radius diaffiX)+/d/D; we know(D /d)%/?
such balls are sufficient. Applying Lemma 6(b) to the distabetween each pair of ball-centers and taking
a union bound, we find that with constant probability:

dlog D

the projected distance between every pair of ball-cengers idiam(X) - 5

(give or take a factor of two). Thus this is also an upper baam¢half) the diameter of the projected Set
In fact, it is possible to get a slightly better bound whiclaws off thdog D factor:

diam(X) < diam(X)-O( %).

To get this, we do not drop the radius from dig¥) to diam(X)\/d/D in one go, but rather decrease
it gradually, a factor of two at a time. This technique was destrated in Indyk and Naor (2005); the
following uses an adaptation of their proof.

Lemma 7 Suppose sek c RP” is contained in a ballB(x(, A) and has doubling dimensios Let X
denote the random projection &f into R. Then for any) < ¢ < 1, with probability> 1 — § over the choice

of projection, X is contained in an interval of radius- % +1/2 (d+1n %) centered aff.

Proof. See Appendixl

3.3 Most projected points lie close to the median

Lemma 7 tells us that a set " of radiusA and doubling dimensiod projects to an interval iR of radius
atmostO(A-/d/D). In fact,mostof the projected points will be even closer together, aeatral interval
of sizeO(A/v/D). We will use this fact to argue that the median of the projqieints also lies in this
central interval.

Lemma 8 SupposeX C RP” lies within some balB(z, A). Pick any0 < §,¢ < 1 such thatse < 1/¢2.
Letu be any measure oX. Then with probability> 1 — é over the choice of random projection orig all

but ane fraction of X (measured according tp) lies within distance /2 In i . AD of zg.

Proof. See Appendixl
As a corollary, the median of the projected points must ligrag with high probability.

Corollary 9 Under the hypotheses of Lemma 8, for éiny § < 2/¢?, the following holds with probability
at leastl — ¢ over the choice of projection:

Imedian( X) — Zo| < %- 21n§.

Proof. Let i be the uniform distribution ovek and use = 1/2.1



3.4 The chance that two faraway balls are cleanly separatedyta single split

We now get to the main lemma, which gives a lower bound on thlegiility of a good split (recall Figure 2).

Lemma 10 SupposeX C B(zo,A) has doubling dimensiod > 1. Pick any two ballsB = B(z,r) and
B’ = B(Z,r) such that

e their centers: andz’ lie in B(xg, A),

e the distance between these centerigis- 2'[| > £A — r, and

o the radiusr is at mostA /(512v/d).
Now, suppose you pick a random projectidnwhich sendsX to (say))? C R, and then you pick a split
point at random in the rangmediar{ X) + \6/—%. Then with probability at least/192 over the choice ot/
and the split pointX N B and X N B’ will completely be contained in separate halves of the .split

Proof. This is a sketch; full details are in the Appendix.

Let B and B’ denote the projections of N B andX N B’, respectively. There is a reasonable chance
the split point will cleanly separat® from B, providedthe random projectior/ satisfies four critical
properties:

1. B andB’ are contained within intervals of radius at mast(16v/D) aroundz and’, respectively.
2. 12-7%| > A/(4VD).

3. Zandz’ both lie within distanc8A /v/D of Z.

4. The median of lies within distance3A /v/D of .

It follows from Lemmas 6 and 7 and Corollary 9 that with proitigbat least1/2, the projectionl/ will
satisfy all these properties. If this is the case, then welsay “good”, and the following picture oX is
valid:

Q(A/VD)

B
- o
L — |
|
|

mediar(X)

O(A/VD)

The “sweet spot” is the region betwedn and B’; if the split point falls into it, then the two balls
will be cleanly separated. By properties (1) and (2), thgtlerof this sweet spot is at leadt/(4v/D) —
2A/(16v/D) = A/(8v/D). Moreover, by propertles (3) and (4), we know that its etfiraust lie within
distance3A /v/D of Z, (since bothz andZz’ do), and thus within distand@A /+/D of med|an{X) Thus,
under the sampling strategy from the lemma statement, thidrbe a constant probability of hitting the
sweet spot.

Putting it all together,

1 A/(S\/_) 1

P[B, B’ cleanly separated> P|U is good - P|B, B’ separatefd/ is good > —,

as claimedl



3.5 The chance that two faraway balls intersect the split pait

We also upper bound the chance of a bad split (Figure 2). Fdfital qualitative result, all that matters is
that this probability be strictly smaller than that of a gcemit.

Lemma 11 Under the hypotheses of Lemma 10,

~ ~ . . . 1
P[B, B’ both intersect the split poiht < 381

Proof. See Appendixl

3.6 Proof of Theorem 3

Finally, we complete the proof of Theorem 3.

Lemma 12 SupposeX C R has doubling dimensiod. Pick any cellC in the RP tree; suppose it is
contained in a ball of radiug\. Then the probability that there exists a descendardt @fhich is more than
Q(dlog d) levels below and yet has radius A /2 is at mostl /2.

Proof. SupposeX N C C B(zg, A). Consider a cover of this set by balls of radius- A/(512v/d). The
doubling dimension tells us that at mast= (O(d))? balls are needed.

Fix any pair of ballsB, B’ from this cover whose centers are at distance at 1&2% — r from one
another. Fok = 1,2, ..., let p; be the probability that there is some ckellevels belowC which contains
points from bothB and B’.

By Lemma 10,p; < 191/192. To expresgy in terms ofpy_1, think of the randomness in the subtree
rooted atC' as having two parts: the randomness in splitting €eland the rest of the randomness (for each
of the two induced subtrees). Lemmas 10 and 11 then tell as tha

pr < [P[top split cleanly separatd3 from B’| - 0 +
[P[top split intersects botB and B'] - 2py._1 +
[P[all other split configurations py_1

I S SR
192 384 “Pr-1 102 384 ) PRl

1
= |1--— —1.
( 384>Pk1

The three cases in the first inequality correspond resgd¢tio good, bad, and neutral splits@{Figure 2).
It follows that for some constant andk = ¢’dlog d, we havep, < 1/N?2.

To finish up, take a union bound over all pairs of balls from tloger which are at the prescribed
minimum distance from each othdr.

IN
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Figure 3: Hilbert's space filling curve: dimensional manifold that has doubling dimensiywhen the
radius of balls is larger than the curvature of the manifold.

4 The doubling dimension of a smooth manifold

SupposeM is a d-dimensional Riemannian submanifold Bf’. What is its doubling dimension? The
simplest case is whel is ad-dimensional affine set, in which case it immediately hassdrae doubling
dimension a®?, namelyO(d). We may expect that for more genefdl, small enough neighborhoodisve
this doubling dimension.

Consider a neighborhoott/ N B(x,r) (recall that balls are defined with respect to Euclidearadist
in R rather than geodesic distance a#). If this neighborhood has highurvature (speaking infor-
mally), then it could potentially have a large doubling dim®n. For instance)M N B(z,r) could be
a 1-dimensional manifold and yet curve so much tB42”) balls of radius-/2 are needed to cover it (Fig-
ure 3). We will therefore limit attention to manifolds of bwded curvature, and to valuesro$mall enough
that the pieces a#/ in B(z,r) are relatively flat.

To formalize things, we need to get a handle on how curved thrifold M is locally. This is a
relationship between the Riemannian metricddrand that of the spad®” in which it is immersed, and is
captured by the differential geometry concepsetond fundamental forntor any pointp € M, this is a
symmetric bilinear formB : T, x T}, — Tpi, whereT), denotes the tangent spacepaindTpL the normal
space orthogonal t6,. For details, see Chapter 6 of do Carmo (1992). Our assumpticurvature is the
following.

Assumption. The norm of the second fundamental form is uniformly bourloedomex > 0;
that is, for allp € M and unit norny € TpL andu € T}, we havew < k.

u,

We will henceforth limit attention to balls of radiu3(1/x).

An additional, though minor, effect is that N B(x, ) may consist of several connected components,
in which case we need to cover each of them. If thereNai@mponents, this would add a factorlof N
to the doubling dimension, making@(d + log N).

Almost all the technical details needed to bound the dogldiimension of manifolds appear in a sep-
arate context in a paper of Niyogi, Smale, and Weinberged@Pthenceforth NSW. Here we just put them
together differently.

Theorem 13 SupposéV/ is a d-dimensional Riemannian submanifold®P that satisfies the assumption
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above for some > 0. For anyz € R” and0 < r < 1/2x, the setM N B(x, r) can be covered by - 20(4)
balls of radiusr /2, whereN is the number of connected componentd/of B(z, ).

Proof. We'll show that each connected componenf\éin B(z, ) can be covered bg°(@ balls of radius
r/2. To this end, fix one such component, and denote its restmicti B(z, ) by M’.

Pickp € M’, and letT,, be the tangent space @t Now consider the projection df/’ onto 7,; let f
denote this projection map. We will make use of two factshtadtwhich are proved in NSW.

Fact 1 (Lemma 5.4 of NSWJhe projection magf : M’ — T, is1 — 1.

Now, f(M') is contained in al-dimensional ball of radiugr and can therefore be covered #Y(%) balls
of radiusr /4. We are almost done, as long as we can show that for any sucB luall},, the inverse image
f~1(B) is contained in a>-dimensional ball of radius/2. This follows immediately from the second fact.

Fact 2 (implicit in proof of Lemma 5.3 of NSWhor anyz, y € M/,
1f(x) = F)IP = [l = yl* - (1= r*2).

Thus the inverse image of the cover in the tangent spacesysetdver of\/’. I

5 An RPTree-Mean adapts to local covariance dimension

An RPTree-Mean has two types of splits. If a @@lhas much larger diameter than average diameter, then
it is split according to the distances of points from the meatherwise, a random projection is used.
The first type of split is particularly easy to analyze.

5.1 Splitting by distance from the mean
This option is invoked when the points in the current celll, tteem S, satisfyA?(S) > cA%(S).

Lemma 14 Suppose tha\?(S) > cA%(S). LetS; denote the points ii¥ whose distance tmear(S) is
less than or equal to the median distance, andSigbe the remaining points. Then the expected squared
diameter after the split is

1S1] 12 52| o 1 2Y
—A —A < [=4+=]A .
5 (S1) + 3] (S9) < 5 + - (S)

Proof. See Appendixl

5.2 Splitting by projection: overview

Suppose the current cell contains a set of poiitss R for which A2(S) < ¢A%(S). We will show
that a split by projection has a constant probability of @dg the average squared diamete; (S) by
Q(A%(S)/d). Our proof has several parts:
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1. First of all, the random projection has a predictableatfigon certain key properties 6f such as its
average squared diameter. Moreover, it is possible to givmese characterization of the distribution
of the projected points; we will use this to upper-bound tiierages of various functions of the
projected data.

2. The definition of local covariance dimension tells us thatdata lie near d-dimensional subspace.
To make use of this, we operate in the eigenbasis of the @n@imatrix ofS, designating by the
principal d-dimensional subspace, and bythe remainingD — d dimensions.

3. When picking a random projectidi ~ N (0, (1/D)Ip), we first consider just its componetit; in
the principal subspacH . If we project ontol/; and splitS into two partsSy, Se at the median, then
the average squared diameter decreases by a factgt @fith constant probability.

4. Finally, usingU in place ofU does not change this outcome significantly, even thoughahgibu-
tion of Uz, to U is much larger than that @f;.

5.3 Properties of the projected data

How does projection into one dimension affect the averagaregl diameter of a data set? Roughly, it gets
divided by the original dimension. To see this, we start \thith fact that when a data set with covariance
A is projected onto a vectdr, the projected data have varianidé AU. We now show that for randorfi,
such quadratic forms are concentrated about their expeatads.

Lemma 15 Supposed is ann x n positive semidefinite matrix, afd ~ N (0, (1/n)I,,). Then for any
a, 3> 0:

(@) P[UTAU < o -E[UTAU]] < e~ ((1/2)=2)/2 ' and
(b) PIUTAU > - E[UTAU]| < e~ (B=2)/4,

Proof. See Appendixl
In our applications of this lemma, the dimensiomvill be eitherD or d.

Next, we examine the overall distribution of the project@ings. WhenS C R”™ has diameter), its
projection into the line can have diameter ugto but as we saw in Lemma 8, most of it will lie within a
central interval of siz&(A/\/n). What can be said about points that fall outside this int@rva

Lemma 16 SupposeS C B(0,A) C R™. Pick any0 < § < 1/e%. PickU ~ N(0,(1/n)I,). Then with
probability at leastl — § over the choice of/, the projectionS-U = {z-U : z € S} satisfies the following
property for all positive integers.

The fraction of points outside the intervél—k—ﬁ, +’\"’/—Aﬁ> is at most% e~k /2,

Proof. This follows by applying Lemma 8 for each positive integdwith corresponding failure probability
§/2%), and then taking a union bound.
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5.4 Properties of average diameter

The average squared diamemi‘(S) has certain reformulations and decompositions that mgbariicu-
larly convenient to work with. These properties are consaqas of the following two observations, the
first of which the reader may recognize as a standard “bidan@e” decomposition of statistics.

Lemma 17 Let X, Y be independent and identically distributed random vaesbinR", and letz € R"
be any fixed vector.

@ E[IX — 2I?] =E[IX ~EX|?] + |l - EX]2
() E[IIX ~Y|?] = 2E [|X — EX|]”].

Proof. Part (a) is immediate when both sides are expanded. For élse part (a) to assert that for any
fixedy, we haveR [ X — y[|*] = E [|X — EX|]?] + |ly — EX||*. We then take expectation ovEr= .1

Corollary 18 The average squared diameter of a Setan also be written as:

2

zesS

Proof. A%(S)issimplyE [||X —Y|?], whenX,Y are i.i.d. draws from the uniform distribution ov&rl

In other words,Ai(S) is twice the average squared radius$%fthat is, twice the average squared
distance of points irt from their mean. If we define

radius; (S, /1) = 7§ Z = plf®

zeS

we see at once that? (S) = 2 inf, radius, (S, xz). In our proof, we will occasionally consider values;of
other than meaib).

At each successive level of the tree, the current cell i$ syib two, either by a random projection or
according to distance from the mean. Suppose the pointg icuirent cell aré, and that they are split into
setsS; and.S,. It is obvious that the expected diameter is nonincreasing:

|5

|51
A(S) >

Z 3] A5 +

Tor A(S2),

This is also true of the expected average diameter. In faetcan precisely characterize how much it
decreases on account of the split.

Lemma 19 Suppose s&f is partitioned (in any manner) int§; and.S;. Then

B |Sa| _2|84] - ]Sy
A4(S) - {ysy A%(S1) + Gl 2N (S, )} = W|ymean(51)—meanisz)uz.

Proof. See Appendixl
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5.5 The principal subspace

The local covariance dimensiq@, ¢, r) tells us that ifS is sufficiently small (if it is contained in a ball
of radiusr), then its variance is concentrated neakdimensional subspace. Specifically, if its covariance
matrix (henceforth denoted c@¥)) has ordered eigenvalue§ > --- > o3, then the top eigenvalues
satisfy

1—e¢
of > ——-(of+---+0p).

Let H denote thel-dimensional subspace spanned by thed@genvectors, and its orthogonal comple-
ment. Without loss of generality, these are the firand the last) — d coordinates, respectively.

Suppose we pick a random unit vector in subspBcand projectS onto it. By the local covariance
condition, we'd expect the projected data to have an avesqgared diameter of at leagt — €) A% (S)/d.
We now formalize this intuition.

Lemma 20 Pick Uy ~ N(0, (1/d)I) x {0}P~%. Then with probability at least/10, the projection of5
onto Uy has average squared diameter

(1 - 9A%(S)

2. <
AL(S-Ugy) > 1

Proof. See Appendixl

In what follows, we will assume for convenience tltahas mean zero.

Suppose we projed onto a random vectdyy; chosen from the principal subspafe Splitting S - Uy
at its median value, we get two subssisand.S,. The means of these subsets need not lie in the direction
Uy, but we can examine their componepts 1o € R in this particular direction. In fact, we can lower
bound the benefit of the split in terms of the distance betvtieese two points.

To this end, define gai;, S2) to be the reduction in average squared diameter occasignge Isplit
S1USy; — 51,55, that is,

: S |52
ainS,. S = AL(S;USy) — — o A2igy - 1%l aeg
g r( 1 2) A( 1 2) |Sl|+|S2| A( 1) |Sl|+|S2| A( 2)
. 28| 28, .
= 2|’ad|U§ S1 U S —7rad|u§ S —7rad|u§ S9).
1(51U82) — g gy radus (S — g g radivs: (S2)

Likewise, define gaifS;, S, 11, p2) to be (the lowerbound we obtain for) the gain if instead ohgghe
optimal centers medf;) and meafsS,) for the two pieces of the split, we instead useandu.. That s,

2|51
|51 + [ S|

Lemma 21 SupposeS ¢ R” has mean zero. Choose any unit vedigre R? and splitS into two parts
S1 and .S, at the median of its projection onid’, that is,

Si={xeS:z-W >mediaS-W)}, So={zxeS:z-W <medianlsS-W)}.

radiusil(Sl,,ul) LSQ‘radiugA(Sg,pg).

gain(Sy, So, i1, p2) = 2radius) (S U Ss) — S+

Letu; anduo denote the D-dimensional) components wiear{.S; ) andmear{.S2) in the directionl¥. Then
the decrease in average diameter occasioned by this split is

_ _ 1
gain(S1, 52) > Qain(Si, Sz, p, i) = 5l — pezl|”.
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Figure 4: PointsS have mean zero. They are projected onto directionand split at the median to get
setsSi, Se. Instead of working with medt$;) and meafS;), we will work with their components in the
directionW, which we denote by, andyu,. Notice thatu; + pe2 = 0. We will also consider the split at the
mean:Sy, S5.

Proof. The first inequality is obvious. For the second, sifgeandS, are each half the size 6f,

. 2 2 2
gain(Si, S2, p1, p2) = 5] Z ][> — 5] Z & — pa ||* = 5] Z [z — paa|?
€S TEST €S2
2 2 2
= g2 @ WP =y (@ m) W)=y (0= o) - W)
5] 5] 5]
€S TEST TES2

where the second equality comes from noticing fhaéand s are nonzero only in the specific directioi.
Now we invoke Lemma 19 to get gdifl;, So, p1, 12) = (11 - W — po - W)% = L|pg — pa|*. 1

A useful property ofu; andus is that their midpoint is zero (Figure 4). Thus, if we are gsihnem as
centers for the two halves of our partition, we might as wglitsS at the mean (the origin) rather than at
the median.

Lemma 22 Under the hypotheses of the previous lemma, consider tbmattve partition
Si={xecS:x-W>0}, S5={zecS:2-W <0}

Then the decrease in average diameter occasioned by tlitigsspl

. . 1
galr(siasé) > ga'ms&,s&,ﬂl,ﬂg) > 5”/’61_M2H2
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Proof. The first inequality is obvious. The second follows from

gain(Sy, S5, w1, p2) > gain(Si, Sa, pi1, p2).

This is because both partitions are based only on projectionio directionit. Of the two, the former
partition is the optimal one with respect t9, 2. We finish up by invoking the previous lemnia.

We now have all the ingredients we need to lower-bound the gha projection-and-split that is re-
stricted to the principal subspaégé.

Lemma 23 Pick any$ > 0. Pick Uy ~ N (0, (1/d)I3) x {0}~ and splitS into two halvesS; and S,
at the median of the projection onto directiohy = Up /||Up || Letu; and u2 denote the D-dimensional)
components ahear{.S;) andmear{S:) in direction Uy . Also define an alternative split

Si={zeS:x-Uy>0}, Sh={reS:2-Uy<0}.
Then with probability at leastl/10) — ¢ over the choice of/;, we have

A%(S) (1—e— co)?
a " (aHUHu?logu/a)) |

_ 1
gain(S;, Sh, py, p2) > 5\\#1—M2|’2 2

Proof. Only the second inequality needs to be shown. To this endsidenthe projection ob onto Uy
(rather than/ 1), and let the random variabl& denote a uniform-random draw from the projected points.
Lemma 20 tells us that with probability at least10 over the choice o/, the variance ofX is at least
(1—€)A%(S)/(8d). We show that together with the tail bounds Br(Lemma 16), this mear{g; — |2
cannot be too small. For details see the Appertix.

5.6 The remaining coordinates

If the random projection were chosen specifically from salbsf/, then Lemma 23 says that we would be
in good shape. We now show that it doesn’t hurt too much to thiekprojection fronR”. If the projection
vector isU, we will use the split

S| ={xecS:x-U>0}, S§y={zxecS:2-U<0}

instead of theS| and S, we had before. As a result of this, some points will changessi@Figure 5).
However, the overall benefit of the partition will not degedoo much.

To make the transition from the previous section a bit smeEmtive will pick our random vectol/ ~
N(0,(1/D)Ip) in two phases:

e PickUy ~ N(0,31,) x {0}P~¢andU;, ~ {0} x N(0, 5-51p—_a).

o Setll = \/4 Uy + /254U

Lemma 24 PickU ~ N(0,(1/D)Ip), and define a partition of as follows.

S| ={recS:x-U>0}, S§y={zecS:2-U<0}

17
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x - fjH 0
O 7
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Figure 5: The plane determined by; andU7,.
Let 1, us be determined by as in the statement of Lemma 23. Then
gains!, 54) > Llm -l ~ gl —ml Y |e 0

z€(ST\SPU(S3\5)
whereUy = Uy /||Ux|l.

Proof. For each partitiors?, we keep using the centgr, from before. We can then compare the benefit
of partition (S, S%) to that of (S}, S5), both relative to the centefs, uo. The points which do not change
sides (that is, points i} which are also ir6}) incur no additional charge. Thus
gain(Sf,Sg) > ga“ﬁ( 1/7Sé/hul7,u2)
> gain(Sy, S, u1, o) — Z (additional charge for point).
z€(SY\S7)U(S3\S3)

The additional cost for a point il \ S} is

2
I

do - (p2 — ) Az -Unlllp — pel|
E (||95—#1 .

Likewise for points inS} \ S%. The bound then follows immediately from Lemma £3.

To show that the additional costs do not add up to very muchdivige the pointse € (S7\ S7)U (S5 \
S%) into two groups: those withe - Ul = O(AA(S)+/€/d), which is so small as to be insignificant; and
the remainder, for whick - ﬁH| could potentially be a lot larger. We’ll show that on accoahthe local
covariance condition, the overwhelming majority of poibé&ong to the first group.
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Lemma 25 Pick anys > 0. ChooseJ ~ N (0, (1/D)Ip). Then with probability at least.98 — 4, at most
a ¢ fraction of pointse € S satisfy:

~ Ay(S e 1
z e (SU\S))U(SE\ S, and ‘xUH‘ > ﬁ%)"’?‘m'

Proof. We will show that becaLise of the local covariancg conditadhbut ¢ fraction of the points have
a relatively small projection ontd’;,. Their projections ontd@/;; could, of course, be very largbut not if
they are in(S7 \ S7) U (S4 \ S%). There are several parts of the proof.

(1) With probability at least — e=* > 0.98, the directionl/, satisfies

ISEA%(S)‘

2 q -
A%(S-UL) < Do d

SinceA%(S - Uyp) = 2(Ur) cov(S)Uy, it has expectatioft[A2 (S - UL)] < eA%(S)/(D — d) by the local
covariance condition. Lemma 15(b) then bounds the charatéttls much larger than its expected value.

(2) With probability at least — §, at most & fraction of pointsz € .S have

9eA? (S)

This follows immediately from (1), by applying Chebysheirigquality.

(3) For any pointz € (S7\ S7) U (S4\ S5), we have

i) < oot 22

Consider the plane spanned®y andU;,. The projection of a point into this plane completely determines
its membership in the set andS! (Figure 5). We then have

@Ol oy _ UslVA/D
|z - Un| IULlI\V(D —d)/D
from which (3) follows easily.
Putting these together gives the lemrha.

This fraction of points could potentially have very higk ﬁH\ values, but the tail bounds of Lemma 16
assure us that the total contribution of these points mustriz.

Lemma 26 LetT denote the) fraction of S with the highest values f - ﬁH]. Then
1 ~ IA(S) 1
— z-Uyg| < —=———-0 log— | .
'Sb;‘ | = o] (V gé)
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x3

Figure 6: A bad case fdt-d trees. Here the intrinsic dimension is jdstlog D), and yetk-d trees need
levels in order to halve the diameter.

Putting it all together, we have that with constant probghithe split reduces the expected average
diameterA? (S) by Q(A%(S)/d).

Lemma 27 Suppose sef has A%(S) < cA%(S) and has local covariance dimensidd, ¢, r), where
r > A(S). Then there are constants, ¢z, cs > 0 such that ife < ¢, then with probability at least,, a
random projectiorl/ produces a partitiorS}, S with
: AZ(S
gain(sy. ) > cz- A,
cd
Proof. This follows directly from Lemmas 23, 24, 25, and 26. The oadiditional step is to argue that
|Ug | is likely to be close td.. 1

6 k-dtrees do not adapt to intrinsic dimension

Consider a seX ¢ R” made up of the coordinate axes betweenand+1 (Figure 6):

D
X = [J{tei: 1<t < +1}
=1

Hereey, ..., ep is the canonical basis &P .

X lies within B(0, 1) and can be covered 3D balls of radiusl /2. Itis not hard to see that the doubling
dimension ofX is d = log2D. On the other hand, &-d tree would clearly need levels before halving
the diameter of its cells. Thusd trees cannot be said to adapt to the intrinsic dimensigrafi data.

What makes:-d trees fail in this case is simply that the coordinate dioss are not helpful for split-
ting the data. If other directions are allowed, it is possitd do much better. For instance, the direction
(1,1,...,1)/v/D immediately dividesX into two groups of diametex/2: the points with all-positive
coordinates, and those with all-negative coordinates.s&giently, it is useful to choose directions corre-
sponding to subsets of coordinates (valuen those coordinate$), on the others), and it is easy to pick
log D such directions that will reduce the diameter of each cell to

20



Thus there existt = 1 + log D directions such that median splits along these directioglsl gells of
diameterl. And as we have seen, if we increase the number of leveldlgligh O (d log d), even randomly
chosen directions will work well.
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Figure 7: For each of these bins, its frequency and mean eatumaintained.

7 Appendix I: a streaming version of the RP tree algorithm

In many large-scale applications, it is desirable to preaeta in astreamingmanner. Formally, this is
a model in which the data arrive one at a time, and are readdiugtared in their entirety. Despite this
constraint, the goal is to achieve (roughly) the same result all data were available in memory.

RP trees can handle streaming because the random progecizonbe chosen in advance and fixed
thereafter. However, the split points themselves are basestatistics of the data, and some care must be
taken to maintain these accurately.

In the streaming model, we build the RP tree gradually, is@iith a single node which is split in two
once enough data has been seen. This same process is thed &ptile two children.

Let’s focus on a single node. Since the projection vecton@ated with the node is randomly chosen
and fixed beforehand, the data arriving at the node is effdgta stream of scalar values (each a dot product
of a data point with the projection vector). Let’s call thegsiencery, z-, . ... The node then goes through
three phases.

Phase 1. The mean and variance of thg are calculated. Call thegeando?.
This phase lasts during the firdt data points.
Phase 2.The data are partitioned info+ 6 bins, corresponding to the following intervals (Figure 7):

e three left-hand intervall, = (—oo, u — 30], lo = (u — 30, u — 20|, andly = (u — 20, u — o};

e k middle intervalshy, ..., b of equal width, spanningu — o, i + o);

e three right-hand intervals, = [+ o, u + 20), ro = [+ 20, u + 30), andrs = [ + 30, 00).
For each bin, two statistics are maintained: the fractiopaihts that fall in that interval, and their
mean. We'll usey(-) to denote the former, and(-) the latter.
This phase occupies the neXp data points.

Phase 3.Based on the statistics collected in phase 2, a split pogitasen at one of the interval boundaries.

The node is then split into two children.
This is just a decision-making phase which consumes noiaedditdata.

For Phase 3, we use the following rule.
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procedure CHOOSERULE (BinStatistics)
if p(l3) + p(rs) > 0.05
then Rule := (Jz — u| < 20)

Choose the boundailybetweerby, . .., b, that maximizes:
else p(left side)p(right side (m (left side) — m(right side))?
Rule := (z < b)

return (Rule)

In the simplest implementation the node does not updatistgtatafter Phase 2, and just serves as a data
splitter. A better implementation would continue to upddie node, albeit slowly. New examples (for
t > N7 + N») could lead to updates of the form:

pe — (1 —ay)pe—1 + apay

of — (I—a)op i+ oz —m)?

for oy < 1/t
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level 0: 1 center

centers of balls — level 1: 2¢ centers

<AJ2

level 2: 224 centers

Figure 8: A hierarchy of covers. At levél, there are2“? points in the cover. Each of them has distance
< A/2* to its children (which constitute the cover at lewel 1). At the leaves are individual points &f.

8 Appendix II: proofs

8.1 Proof of Lemma 6

SinceU has a Gaussian distribution, and any linear combinatiomadépendent Gaussians is a Gaussian,
it follows that the projectiorV - = is also Gaussian. Its mean and variance are easily seen erdarzd
|z||?/ D, respectively. Therefore, writing

VD

= m([]x)

we have thatZ ~ N(0,1). The bounds stated in the lemma now follow from propertiethefstandard
normal. In particularN (0, 1) is roughly flat in the rangé-1, 1] and then drops off rapidly; the two cases
in the lemma statement correspond to these two regimes.

The highest density achieved by the standard normily&. Thus the probability mass it assigns to
the interval[—a;, o] is at most2a/+/27; this takes care of (a). For (b), we use a standard tail boonthé
normal,P(|Z| > ) < (2/8)e 7" /%, see, for instance, page 7 of Durrett (1995).

8.2 Proof of Lemma 7

Pick a cover ofX C B(zy,A) by 2¢ balls of radiusA /2. Without loss of generality, we can assume the
centers of these balls lie iB(xo, A). Each such balB induces a subseY N B; cover each such subset by
2¢ smaller balls of radiug\ /4, once again with centers iB. Continuing this process, the final result is a
hierarchy of covers, at increasingly finer granularities (e 8).

Pick any centet: at levelk of the tree, along with one of its childrenat levelk + 1. Then|ju — v|| <
A/2F. Lettingw, v denote the projections of these two points, we have from Laréh) that

o-azn gy Q)] = elsmen(t) ] < 3 (5 )

Choosing3 = +/2(d + In(2/6)), and using the relatio(8/2)?* > k 4 1 (for all k > 0), we have

. A 3)F 5 (6" (ki1
elm-aze 5 ()] < 5E)
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Now take a union bound over all edges v) in the tree. There arg(*+1)? edges between levelsand
k+1,s0

: IR o A F
P Hk::Hulnlevelk:wnhchlldvmIevelk+1:|u—v|zﬁ-ﬁ-<%> ]

- i2(k+l)d.é 0 ke—(k+1)d
< 53

k=0

1) 1

- <
= 8 1-(5/3) =

where for the last step we obser#e> 3/2 wheneverd > 1.
So with probability at least -4, for all k, every edge between levdisandk + 1 in the tree has projected
length at mosB - (3/4)* - A/v/D. Thus every projected point i has a distance fror, of at most

A 3 3\ 4BA
1+ =+ - + .. = —.
& VD < 4 <4> ) VD
Plugging in the value of then yields the lemma.

8.3 Proof of Lemma 8

Setc = /2In1/(d¢) > 2.

Fix any pointz, and randomly choose a projectiéh What is the chance that lands far fromz,?
Define the bad event to W&, = 1(|7 — Zy| > cA/+/D). By Lemma 6(b), we have

H‘T—xOH < 26_02/2 S 56.

vD | ~ ¢
Since this holds for any: € X, it also holds in expectation over drawn fromu. We are interested in

bounding the probability (over the choice @) that more than aa fraction of i falls far fromz,. Using
Markov’s inequality and then Fubini’s theorem, we have

Ey[F,] < Py ||z — 2o > ¢

Py [Eu[Fz] > €] < BB, [Fal] _ Eu[Eu[fa] <5

as claimed.

8.4 Proof of Lemma 10

It will help to define the failure probabilitie§; = 2/e! andd, = 1/20.

Let B and B’ denote the projections of N B and X N B, respectively. There is a reasonable chance
the split point will cleanly separat& from B, providedthe random projectio/ satisfies four critical
properties.

Property 1: B and B’ are contained within intervals of radius at mdst (16v/D) around?
and?’, respectively.
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This follows by applying Lemma 7 to each ball in turn. H®rwe have that with probability at least- 4,

B is within radius
4r A 2e A
—_— d+In— ) < “4/2In — = ——=
VD ( ) ~ 128VD 61 16VD
of Z. Similarly with B’, so this property holds with probability at ledst- 24;.

Property 2: |2 — 2’| > A/(4V/D).
By Lemma 6(a), this fails with probability at most./5 for « = 1/(2 — (4r/A)) < 128/255.
Property 3: Z andZ’ both lie within distanceA //D of Z.

By Lemma 6(b), this happens with probability at ledst 202/+/21n(2/d2) (in that lemma, us¢d =
21n(2/62)).

Property 4: The median ofX lies within distance3A /v/D of .

By Corollary 9, this happens with probability at ledst J,.
In summary, with probability at leady2, all four properties hold, in which case we say the projectio
U is “good”. If this is the case, then the following picture &fis valid:

_wavp)
mediar( X) Ii; Iil
. . .
O(A/V/D) |

The “sweet spot” is the region betwedh and B'; if the split point falls into it, then the two balls
will be cleanly separated. By properties (1) and (2), thetlerof this sweet spot is at leadt/(4v/D) —
2A/(16v/D) = A/(8v/D). Moreover, by properties (3) and (4), we know that its ettiraust lie within
distance3A /v/D of Z, (since bothz and?’ do), and thus within distand&\ /v/D of mediar{X). Thus,

under the sampling strategy from the lemma statement, thiérbe a constant probability of hitting the
sweet spot.

Putting it all together,

P[B, B’ cleanly separatéd> P[U is good - P[B, B’ separatefd/ is good > ! A/(S\/_) - L

2 12A/\/_ 192’

as claimed.

8.5 Proof of Lemma 11

Defined; as in the previous proof. As before (property (1)), with @biiity at leastl — 24;, the projections
B and B’ lie within radii < A/(161/D) of their respective, 7.
In order for B and B’ to both intersect the split point, two unlikely events neetiappen: firstB needs
to intersectB’; second, the split point needs to inters&ctThese are independent events (one involves the
projection and the other involves the split point), so wd tadiund them in turn.
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First of all, using Lemma 6(a),

P[B intersectsB’] < P[zZ—%|< A/(8VD)]
2 A/(8vVD) _ j2 64

T (1/VD)-((Aj2) —r) ~ Vm 255

under the conditions on. Second,

P[split point intersects3] < M = i
12A/v/D 96

It follows that

P[B, B’ both intersect split poifit < 24, + P[B, B’ toucH - P[split point touches3]

o5 1 J2. 64 11
! T 255 96 384’

IN

as claimed.

8.6 Proof of Lemma 14
Let random variableX be distributed uniformly ovef. Then

. 1
P[|X —EX|?* > mediaf|X — EX|[]*)] > 3

by definition of median, s& [|| X — EX||?] > mediar{| X — EX||?)/2. It follows from Corollary 18 that
mediar(|| X — EX||*) < 2E [||X — EX|[]?] = A%(S).

SetS; has squared diametex?(S;) < (2mediar{||X — EX||))? < 4A%(S). Meanwhile, S, has
squared diameter at maAt(S). Therefore,

1S1] 1o 12| (o 1 9 I
flaaa} 21 < Z. z
A5 + A < 5 4BY(S) + 5 %)

and the lemma follows by using?(S) > cA%(9).

8.7 Proof of Lemma 15

This follows by examining the moment-generating functidnld’ AU. Since the distribution of/ is
spherically symmetric, we can work in the eigenbasisdofnd assume without loss of generality that

A =diag(ay,...,a,), whereaq, ..., a, are the eigenvalues. Moreover, for convenience we }ake = 1.
Let Uy, ..., U, denote the individual coordinates bf We can rewrite them a8; = Z;/\/n, where
Z1,...,Zy, are ii.d. standard normal random variables. Thus

1
U"AU = % a;U; - % a; Z3 .
This tells us immediately th&[U” AU] = 1/n.
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We use Chernoff’s bounding method for both parts. For (a)aftyt > 0,
P[UTAU < o-E[UTAU]] = P [Z 0 72 < a] =P [e_tZi LEAEN e—m}

s

— — ta HE [ —ta; ZQ}
. 1 1/2
= 1:[ (1 +2mi>

and the rest follows by using= 1/2 along with the inequality /(1 + z) < e=*/2for 0 < z < 1. Similarly
for (b), for0 < ¢t < 1/2,

IN

P[UTAU > g-EUTAU]] = P [Z a; Z2 > 5] =P [etz’i LS eﬂ

IN

E [et > az-Zz-z:|
— 1B HE [6taiZi2]

et

5 1 1/2
_ —t
- ¢ ]:I <1—2tai>

and it is adequate to choose- 1/4 and invoke the inequality/(1 — z) < e?* for 0 < = < 1/2.

8.8 Proof of Lemma 19

Let u, p1, 2 denote the means 6f, 51, andSs. Using Corollary 18 and Lemma 17(a), we have

Si |5
A% (S) — | A2 S1 2IAZ (S,
S| 2 1S 2
_ 2N, 2_|_1._ o _ 192l 2 g~y e
2
] >l = pll? = o= pal?) + D (e = pl® = llz = pal?)
S1 32
_ 205 2, 2|5 2

Writing 1+ as a weighted average pf andpus then completes the proof.

8.9 Proof of Lemma 20
By Corollary 18,

A%(S - Uy) = %Z((m—mear{S)yUH)z — 2(Us) oS U

zeS
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where cov.S) is the covariance of data s&t This quadratic term has expectation

E[2(Us) cou(S)Un] — 2(a%+é-+a§) . 2(1—6)(0%;—'“—1—0,23) _ (1—6)CZA§4(5)_

Lemma 15(a) then bounds the probability that it is much senéitlan its expected value.

8.10 Proof of Lemma 23

Only the second inequality needs to be shown. To this engjdenthe projection of ontoUy; (rather than
ﬁH). Let s be the median af - Uy, and let the random variabl§ denote a uniform-random draw from the
projected points. Lemma 20 tells us that with probabilityeaist1/10 over the choice ot/, the variance
of X is at least(1 — €)A%(S)/(8d). We'll show that together with the tail bounds 6h (Lemma 16), this
means|u; — pel/? cannot be too small.

Writing Y = X — s, and usindl(-) to denote & — 1 indicator variable,

var(X) E[(X —s)) = EY? = E[Y?2-1(Y >0)]+E[Y?-1(Y <0)]
E[2tY - 1(Y 2 0)] + BI(Y —t)*- 1(Y > 1)) +

E[-2tY -1(Y < 0)] + E[(Y +t)*- 1(Y < —t)]

<
<

for anyt > 0. The last inequality comes from noticing that

YZ2.1(Y >0)
Y2 1(Y <0)

2tY - 1(Y > 0) 4+ (Y — )2 - 1(Y > 1)

<
< AV LY <0)+ (Y +1)21(Y < —t)

and taking expectations of both sides. This is a convengnidlation since the linear terms give us— p:

E2Y - 1(Y > 0)] + E[<26Y - 1(Y < 0)] = (1 - Un) — 8) + (s — (2 - Unr)) = ¢ - |Ust ] - 12 — o]

A(S) 1
t = W@( log5>,

as a result of which we can be sure (with probability- O(4)) that the absolute value of the median is
|s| < t/2 (Corollary 9). Thereafter, the two other terms can be bodrzeLemma 16:
A2(5)>

E[(Y =t)> 1(Y > )|+ E[(Y +)?-1(Y < —t)] = O (5- —

We'll use

(with probability 1 — 6), whereupon

— € 2 o :
(1;%(5) < var(X) < t'HUHH'HMl—quJFO(‘S’ACES)>'

The lemma now follows immediately by algebraic manipulatiosing the relatiod\?(S) < cA%(S).
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