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Abstract

High dimensional nearest neighbor search is a funda-
mental problem and has found applications in many do-
mains. Although many hashing based approaches have
been proposed for approximate nearest neighbor search
in high dimensional space, one main drawback is that
they often return many false positives that need to be
filtered out by a post procedure. We propose a novel
method to address this limitation in this paper. The
key idea is to introduce a filtering procedure within the
search algorithm, based on the compressed sensing the-
ory, that effectively removes the false positive answers.
We first obtain a sparse representation for each data
point by the landmark based approach, after which we
solve the nearly duplicate search that the difference be-
tween the query and its nearest neighbors forms a sparse
vector living in a small `p ball, where p ≤ 1. Our em-
pirical study on real-world datasets demonstrates the ef-
fectiveness of the proposed approach compared to the
state-of-the-art hashing methods.

Introduction
Nearest neighbor search is a fundamental problem and has
found applications in many domains. A number of efficient
algorithms, based on pre-built index structures (e.g. KD-
tree (Robinson 1981) and R-tree (Arge et al. 2004)), have
been proposed for nearest neighbor search. Unfortunately,
these approaches perform worse than a linear scan when the
dimension of the space is high (Gionis, Indyk, and Motwani
1999). Given the intrinsic difficulty of exact nearest neigh-
bor search, a number of hashing algorithms were proposed
for Approximate Nearest Neighbor (ANN) search (Kushile-
vitz, Ostrovsky, and Rabani 1998; Andoni and Indyk 2008;
Eshghi and Rajaram 2008; Arya, Malamatos, and Mount
2009), which aim to preserve the distance between data
points by random projection. The most notable hashing
method is Locality Sensitive Hashing (LSH) (Gionis, Indyk,
and Motwani 1999), which offers a sub-linear time search
by hashing similar data points into the same entry of a hash
table(s). Besides random projection, several learning based
hashing methods, mostly based on machine learning tech-
niques, were proposed recently (Goldstein, Platt, and Burges

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2004; Weiss, Torralba, and Fergus 2008; Dong et al. 2008;
Salakhutdinov and Hinton 2009; Kulis, Jain, and Grauman
2009; Wang, Kumar, and Chang 2010; B. and Darrell 2010;
Yu, Cai, and He 2010; Xu et al. 2011b; Norouzi and Fleet
2011; Wu et al. 2012). Despite the efforts, one common
drawback of these hashing methods is that they often return
many objects that are far away from the query, requiring a
post procedure to remove the irrelevant objects from the re-
turn list.

To overcome this shortcoming, we present a novel algo-
rithm, termed Random Projection with Filtering (RPF), that
effectively removes far away data points by introducing a
filtering procedure. Based on the compressed sensing the-
ory (Candès, Romberg, and Tao 2006), we show that most
objects in the returned list of our method are within a short
distance of the query. Specifically, we first learn a sparse
representation for each data point using the landmark based
method (Liu, He, and Chang 2010; Chen and Cai 2011;
Xu et al. 2011a), after which we solve the nearly duplicate
search that the difference between the query and its near-
est neighbors forms a sparse vector living in a small `p ball,
where p ≤ 1. Experimental results on real-world datasets
show that the proposed method outperforms the state-of-the-
art approaches significantly.

The rest of the paper is organized as follows: Section 2
reviews related work on nearest neighbor search; Section
3 presents the proposed algorithm and the related analysis;
Section 4 presents the empirical study, and Section 5 con-
cludes this work.

Related Work
Many data structures were proposed for efficient near-
est neighbor search in low dimensional spaces. A well
known algorithm is KD-tree (Robinson 1981) and its vari-
ants (Silpa-Anan and Hartley 2008). The other popular data
structures for spatial search are M-tree (Ciaccia, Patella, and
Zezula 1997) and R-tree (Arge et al. 2004). All these meth-
ods, though work well in low dimensional space, fail as di-
mension increases (Gionis, Indyk, and Motwani 1999).

A number of hashing algorithms have been developed
for approximate nearest neighbor search. The most notable
ones are Locality Sensitive Hashing (LSH) (Gionis, In-
dyk, and Motwani 1999) and its variants (Charikar 2002;
Datar et al. 2004; Lv et al. 2007; Eshghi and Rajaram 2008;
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Kulis and Grauman 2009; Raginsky and Lazebnik 2009).
These algorithms embed high dimensional vectors into a
low dimensional space by random projection. In LSH, sev-
eral hash tables are independently constructed in order to
enlarge the probability that similar data points are mapped
to the same bucket. However, due to the data indepen-
dence, LSH always suffers from the severe redundancy of
the hash codes as well as the redundancy of the hash ta-
bles (Xu et al. 2011b). It requires many hash tables to
achieve a reasonable recall and should make the trade off
between efficiency and accuracy. In addition to random pro-
jection, many learning based hashing methods were pro-
posed, including spectral hashing (Weiss, Torralba, and Fer-
gus 2008), semantic hashing (Salakhutdinov and Hinton
2009), laplacian co-hashing (Zhang et al. 2010a), self-taught
hashing (Zhang et al. 2010b), minimal loss hashing (Norouzi
and Fleet 2011) and semi-supervised hashing (Wang, Ku-
mar, and Chang 2010). Most of them performed the spectral
analysis of the data (Cai, He, and Han 2005; 2007b; 2007a;
Cai et al. 2007) and achieved encouraging performances in
the empirical studies. However, most of the learning based
hashing algorithms only employ a single hash table. When
higher recall is desired, they usually have to retrieve expo-
nentially growing number of hash buckets containing the
query, which may significantly drag down the precision (Xu
et al. 2011b).

Our method is based on the compressed sensing the-
ory (Donoho 2006; Candès, Romberg, and Tao 2006), which
has been successfully applied to multiple domains, such
as error control coding (Candes and Tao 2005), message-
passing (Donoho, Maleki, and Montanari 2009), and signal
reconstruction (Schniter 2010).

Algorithm
Our proposed algorithm contains two stages. In the first
stage, we use the landmark based approach (Liu, He, and
Chang 2010; Chen and Cai 2011) to obtain a sparse repre-
sentation for each data point. In the second stage, we intro-
duce a filtering procedure within the search algorithm based
on the compressed sensing theory, that effectively removes
the false positive answers. In order to reduce the storage
space and speed up the query process, we extend the pro-
posed algorithm to the binary codes finally.

Landmark Based Sparse Representation
The first stage of the proposed algorithm is to obtain the
sparse representations for all data points, that can well pre-
serve the structure of the data in the original space. Land-
mark based sparse representation (Liu, He, and Chang 2010;
Chen and Cai 2011) is proved to be an effective way to dis-
cover the geometric structure of the data. The basic idea is
to use a small set of points called landmarks to approximate
each data point which leads a sparse representation of the
data.

Suppose we have N data points V = [v1, · · · ,vN ],vi ∈
RD and let aj ∈ RD, j ∈ [m] be the landmarks that sampled
from the dataset. To represent the data points in the space
spanned by the landmarks, we essentially find two matrices

A ∈ RD×m and X ∈ Rm×N , whose product can approxi-
mate V ,

V ≈ AX.

where j-th column ofA is the landmark aj and each column
of X is a m-dimensional representation of v.

For any data point vi ∈ RD, its approximation v̂i can be
written as

v̂i =
m∑
j=1

xjiaj (1)

A natural assumption here is that xji should be larger if
vi is closer to aj . We can emphasize this assumption by
setting the xji to zero if aj is not among the t(≤ m)
nearest neighbors of vi. This restriction naturally leads to
a sparse representation for vi (Liu, He, and Chang 2010;
Chen and Cai 2011). Let E〈i〉 denote the index set which
consists t indexes of t nearest landmarks of vi, we compute
xji as

xji =
K(vi,aj)∑

j′∈Ei
K(vi,aj′)

, j ∈ E〈i〉, (2)

xji = 0 if j /∈ E〈i〉, where K(�) is a kernel function. In this
paper, we use the Gaussian kernel.

K(vi,aj) = e−
‖vi−aj‖

2h2 (3)

The sparse representations of data points enable us to use
the Restricted Isometry Property (Donoho 2006), which is a
key in the next stage.

Random Projection with Filtering
Let D = {x1, . . . ,xN} be the collection of N objects to
search, where each object is represented by a sparse vector
xi ∈ Rm as we discussed in the last section. We assume both
the dimension m and the number of objects N are large.

Given a query vector q ∈ Rm, an object x is a (R,S)-
nearly duplicate of q if (i) |x − q|2 ≤ R (i.e., x is within
distanceR of q), and (ii) |x−q|0 ≤ S (i.e., x differs from q
by no more than S attributes). It is the second requirement,
referred to as the sparsity criterion, that makes it possible to
design better algorithms for searching in high dimensional
space. Because of the sparse coding step in the first stage,
the conventional nearly duplicate search problem becomes a
(R,S)-nearly duplicates search problem.

Given a query vector q ∈ Rm, the objective is to find the
objects inD that are (R,S)-nearly duplicates of query q. To
motivate the proposed algorithm, we start with the random
projection algorithms for high dimension nearest neighbor
search, based on Johnson Lindenstrauss Theorem (Johnson
and Lindenstrauss 1984).

Theorem 1. (Johnson Lindenstrauss Theorem) Let U ∈
Rm×d be a random matrix, with each entry Ui,j i.i.d. sam-
ples from a Gaussian distribution N (x|0, 1). Let PU :
Rm 7→ Rd be the projection operator that projects a vec-
tor in Rm into the subspace spanned by the column vectors
in U . For any two fixed objects x,q ∈ Rm and for a given
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ε ∈ (0, 1), let DP = |PU (x− q)|22 and DO = |x− q|22, we
have

Pr
(
DP ≤

d(1− ε)
m

DO

)
≤ exp

(
− dε2

4

)
Pr
(
DP ≥

d(1 + ε)

m
DO

)
≤ exp

(
−
dε2[1− 2ε

3 ]

4

)
Based on Johnson Lindenstrauss theorem, a straightfor-

ward approach is to project high dimensional vectors into the
low dimensional space generated by a random matrix, and
then explore methods, such as KD-tree, for efficient near-
est neighbor search in the low dimensional space. The main
problem with such an approach is that in order to ensure that
all the objects within distance r of query q are returned with
a large probability, d has to be O(4[ε2(1− 2ε/3)]−1 logN),
which is too large for efficient nearest neighbor search.

An alternative approach is to first run multiple range
searches, each in a very low dimensional space, and then
assemble the results together by either anding or oring the
results returned by each range search. This approach does
guarantee that with a large probability, all the objects within
distance r of query q are found in the union of the objects re-
turned by multiple range searches. However, the problem is
that many of the returned objects are far away from the query
q and need to be removed. In case when one dimensional
range search is used, according to Johnson Lindenstrauss
Theorem, the probability of including any object x with |x−
q|2 ≥ r

√
(1 + ε)/(1− ε) can be min(1, d exp(−ε2/4)).

We evidently could make better tradeoff between retrieval
precision and efficiency by being more careful in designing
the combination strategy.

For instance, we could create multiple number (defined
as K) of d-dimensional embedding: for each d-dimensional
embedding, we merge the objects returned by every one-
dimensional embedding by anding; we then combine the ob-
jects returned by each d-dimensional embedding by oring.
The main shortcoming of this strategy is that it requires both
d and K to be large numbers, leading to a large number (i.e.
dK) of one-dimensional searching structures to be imple-
mented and consequentially low efficiency in search.

Before we present the proposed algorithm, we first extend
Johnson Lindenstrauss Theorem. Instead of using the pro-
jection operator PU , the extended theorem directly uses a
random matrix U to generate projection of data points, sig-
nificantly simplifying the computation and analysis. To this
end, first, we have the following concentration inequality for
a Gaussian random matrix U , whose elements are randomly
drawn from distribution N(x|0, 1/m).

Theorem 2. (Candes and Tao 2005) Let U ∈ Rm×d be
a Gaussian random matrix, with m > d. Let σmax(U) and
σmin(U) be the maximum and minimum singular values for
matrix U , respectively. We have

Pr
(
σmax(U) > 1 +

√
d

m
+ η + t

)
≤ exp(

−mt2

2
) (4)

Pr
(
σmin(U) < 1−

√
d

m
+ η − t

)
≤ exp(

−mt2

2
) (5)

where
η =

1

2m1/3
γ1/6(1 +

√
γ)2/3

with γ ∈ (0, 1).
Corollary 3. Let U ∈ Rm×d be a Gaussian random matrix
with m > d. Assume m and d are large enough. For fixed x,
with a high probability at least 1− 2e−d/2, we have

(1−
√
d/m)|PUx|2 ≤ |U>x|2 ≤ (1 + 3

√
d/m)|PUx|2

Proof. Using Theorem 2, for a fixed x, with a probability at
least 1− δ, for any vector x, we have

|U>x|2 =
√
x>UU>x ≥ σmin

√
x>V V >x

= σmin

√
x>V V >V V >x = σmin|PUx|2

≥

(
1−

√
d

m
+ η −

√
2 ln(2/δ)

m

)
|PUx|2

where V contains the eigenvectors of UU>. Similarly, we
have

|U>x|2 ≤ σmax|PUx|2

≤

(
1 +

√
d

m
+ η +

√
2 ln(2/δ)

m

)
|PUx|2

With sufficiently large d, we can replace η with
√
d/m. We

complete the proof by setting δ = 2e−d/2.

The following modified Johnson Lindenstrauss Theorem
follows directly Theorem 1 and Corollary 3.
Theorem 4. (Modified Johnson Lindenstrauss Theorem) Let
U ∈ Rm×d be a Gaussian random matrix. Assume m and
d are sufficiently large. For any fixed x,q ∈ Rm and for a
given ε ∈ (0, 1), let DU = |U>x−U>q|22, DO = |x−q|22,
p1 = (1 + 3

√
d/m)2 and p2 = (1−

√
d/m)2, we have

Pr
(
DU ≤

dp1(1− ε)DO

m

)
≤ exp

(
−dε

2

4

)
Pr
(
DU ≥

dp2(1 + ε)DO

m

)
≤ exp

(
−
dε2[1− 2ε

3 ]

4

)
To reduce the number of false positives, we explore the

sparsity criterion in (R,S)-nearly duplicate search by utiliz-
ing the Restricted Isometry Property (RIP) (Candes and Tao
2005; Candès, Romberg, and Tao 2006) for sparse vectors.
Theorem 5. (Restricted Isometry Property) Assume d < m
and let U ∈ Rm×d be a Gaussian random matrix whose
entries are i.i.d. samples fromN (x|0, 1/m). If S/m is small
enough, then with a high probability there exists a positive
constant δS < 1 such that for any c ∈ Rm with at most S
non-zero elements, we have

(1− δS)|c|2 ≤
√
m

d
|U>c|2 ≤ (1 + δS)|c|2

Since in (R,S)-nearly duplicate search, the nearest neigh-
bor x differs from a query q by at most S attributes, x − q
is a S-sparse vector and is eligible for the application of RIP
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condition. In the proposed algorithm, we utilize this property
in the nearly duplicate search to filter out the false positive
points.

We now state our algorithm for efficient (R,S)-nearly du-
plicate search. Let d be some modest integer so that (i) for
given ε ∈ (0, 1), d is large enough to make exp(−dε2/4) a
small value, and (ii) d is small enough that allows for effi-
cient range search in space of d dimensions. Choose K as
K = d(CS logm)/de, where C > 1 is a parameter that
needs to be adjusted empirically. We generate K random
matrices U1, U2, . . . , UK of size m × d whose entries are
i.i.d. samples from N (x|0, 1/m). For each random matrix
Uj , we map all the objects in D from Rm to Rd by U>j x,
denoted by Dj = {U>j x1, U

>
j x2, . . . , U

>
j xN}. We build a

search structure for each Dj and assume range search over
Dj can be done efficiently. We denote byMj(q, r) = {i ∈
[N ] : |U>j (xi − q)|2 ≤ r} the subset of objects whose pro-
jection by Uj is within distance r of query q. We introduce
a filtering procedure after merging the objects returned by
the range search. It discards the objects whose cumulative

distance to query (i.e.,
√

m
Kd

∑j
j′=1 |U>j′ (x− q)|22) is larger

than the threshold (1+ δS)R, where the factor
√
m/[Kd] is

used to scale the variance 1/m used in generating the pro-
jection matrix.

Theorem 6. LetM(q, R, S) be the set of (R,S)-nearly du-
plicate objects in D for query q, and M be the set of ob-
jects returned by Algorithm 1 for query q. We have (i) with a
high probability thatM includes all the objects in that are
(R,S)-nearly duplicates of query q i.e.,

Pr(M(q, R, S) ⊆M) ≥ 1−N exp(−
dKε2[1− 2ε

3 ]

4
) (6)

and (ii) all the returned objects are within a short distance
from q, i.e.,

max
i∈M
|xi − q|2 ≤

1 + δS
1− δS

R (7)

Proof. We denote by M(q, R) = {i ∈ [N ] : |xi −
q|2 ≤ R. For inequality in (6), it is sufficient to bound
Pr (M(q, R) ⊆M). If we don’t take into account the fil-
tering steps, using Theorem 4, for fixed x ∈ M(q, R), the
probability that x is not returned by a d-dimensional range
search is less than exp(−dε2[1− 2ε/3]/4). This probability
is reduced to exp(−dKε2[1 − 2ε/3]/4) after the union of
data points returned by K independent d-dimensional range
searches. By taking the union bound over all N data points
we have (6). Note that the filtering steps do not affect the re-
sult because of the RIP condition in Theorem 5. The second
inequality directly follows Theorem 5 because of the filter-
ing steps.

As indicated by Theorem 6, the returned listM contains
almost all the nearly duplicates, and most of the returned
objects are within distance of (1 + δS)/(1− δS)R. It is the
inequality in (7) that allows us to reduce the false positives.

Algorithm 1 Nearly Duplicate Search by Random Projec-
tion with Filtering (RPF)

1: Input
• RHam: Hamming distance threshold
• rHam: Hamming radius
• m: the number of landmarks
• t: the number of nearest neighbors
• q: a query

2: Initialization:M = ∅ and dq = 0
3: Obtain the sparse representations using Eq.(1)-(3).
4: Get the K hash tables T1, T2, ..., TK using Eq.(8).
5: for j = 1, 2, . . . ,K do
6: Run efficient search over Tj with Hamming radius

rHam
7: Return Mj(q, r) along with the distance informa-

tion, i.e., for i ∈ Mj(q, r), we compute dji =
|Tj(xi)− Tj(q)|1.

8: for i ∈M do
9: if i /∈Mj then

10: di = di + rHam
11: else
12: di = di + dji ,Mj =Mj \ {i}
13: end if
14: M =M\ {i} if di ≥ RHam
15: end for
16: for i ∈Mj do
17: di = dq + dji
18: M =M∪ {i} if di < RHam
19: end for
20: dq = dq + rHam
21: end for
22: ReturnM

Scalable Extension to Binary Codes
There are two practical issues of the above algorithm.

First, the storage space needed to record the final represen-
tations is too large, especially while dealing with the large
scale datasets. Second, the search process for eachD is time
consuming, even using the KD-tree structure. In this sub-
section, we extend our algorithm to the binary codes (i.e.,
Hamming space). In the Hamming space, the encoded data
are highly compressed so that they can be loaded into the
memory. What’s more, the Hamming distance between two
binary codes can be computed very efficiently by using bit
XOR operation (Zhang et al. 2010b).

In (Charikar 2002), the authors proposed an algorithm to
generate binary codes based on rounding the output of a
product with a random hyperplane w:

h(x) =

{
1 if wTx ≥ 0
0 otherwise (8)

where w is a vector generated from a zero-mean multivariate
Gaussian N (0, I) of the same dimension as the input x. In
this case, for any two points xi,xj , we have the following
property:

Pr[h(xi) = h(xj)] = 1− 1

π
cos−1(

xTi xj∥∥xi∥∥∥∥xj∥∥ ) (9)
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(a) At 8 bits (b) At 16 bits (c) At 32 bits

Figure 1: Comparison of the performance on the patches dataset. (a)-(c) are the performances for the hash codes of 8 bits, 16
bits and 32 bits respectively.

It is important to note that our proposed algorithm also uti-
lizes the random projection method in the second stage,
hence, we can easily extend our algorithm to generate the bi-
nary codes. We define the new hash tables as T1, T2, ..., TK .
In each hash table, we retrieve the points within a specific
Hamming radius and we filter out the points whose accumu-
late Hamming distances are larger than a threshold before
returning the answers. It is reasonable to consider that the
Hamming radius is related to the reduced dimensions, and
the threshold is related to both the number of hash tables and
the reduced dimensions. Therefore, we assume the Ham-
ming radius rHam = αd and the threshold RHam = βKd.

Algorithm 1 presents the detailed steps of our approach.
There are several important features. First, we obtain the
sparse representations in step 3. Second, the filtering proce-
dure takes place in step 12. In this case, we remove the data
points whose accumulative distances are larger than RHam.
Third, in step 10, for x ∈M\Mj , we lower bound its dis-
tance to query q by di = di + rHam. Finally, we introduce
dq , the minimum distance to query q for any object x /∈M.
This quantity is used to bound the distance between query q
and any x ∈Mj \M, as shown in step 17.

Experiments
Compared Algorithms
We compare the proposed Random Projection with Filtering
(RPF) algorithm with the following state-of-the-art hashing
methods:

• Spectral Hashing (SpH) (Weiss, Torralba, and Fergus
2008)

• PCA Hashing (PCAH) (Wang et al. 2006)

• Learning to Hash with Binary Reconstructive Embed-
dings (BRE) (B. and Darrell 2010)

• Locality Sensitive Hashing (LSH) (Charikar 2002)

• Kernelized Locality Sensitive Hashing (KLSH) (Kulis
and Grauman 2009)

Datasets
The following three datasets are used in our experiment:

• patches1: It contains 59, 500 20x20 grey-level motorcycle
images. Each image in this database is represented by a
vector of 400 dimensions.

• LabelMe2: It contains 22, 019 images and each of them
is represented by a GIST descriptor, which is a vector of
512 dimensions.

• GIST1M3: We collect 1 million images from the Flickr
and use the code provided on the web4 to extract the GIST
descriptors from the images. Each GIST descriptor is rep-
resented by a 512-dimensional vector.

For each dataset, we randomly select 1k data points as
queries and use the remaining to form the gallery database.
Similar to the criterion used in (Wang, Kumar, and Chang
2010), a returned point is considered as a true neighbor if it
lies in the top 2 percentile points closest to a query. In this
paper, we use the Hamming ranking method to evaluate the
performances of all techniques. We first calculate the Ham-
ming distance between the hash codes of the query and each
point in the dataset. The points are then ranked according to
the corresponding Hamming distances, and a certain number
of top ranked points are retrieved (Xu et al. 2011b).

To perform Hamming ranking for the hashing methods
with multiple hash tables, i.e., LSH, KLSH, we compute the
Hamming distance of a point and the query by the minimal
Hamming distance found in all the hash tables. In RPF, we
rank the retrieval points according to the accumulate Ham-
ming distance. LSH, KLSH and RPF employ five hash tables
in all the experiments.

Parameter Selection
In the first stage, for the purpose of efficiency, we use ran-
dom sampling to select several data points as landmarks. In
all the experiments, the number of landmarks m, the nearest
number t and the bandwidth h are set to 200, 40 and 0.8 re-
spectively. We do not use a very large number of landmarks
due to the consideration of efficiency. In the second stage,

1http://ttic.uchicago.edu/∼gregory/download.html
2http://labelme.csail.mit.edu/instructions.html
3http://www.zjucadcg.cn/dengcai/Data/NNSData.html
4http://www.vision.ee.ethz.ch/∼zhuji/felib.html

645



(a) At 8 bits (b) At 16 bits (c) At 32 bits

Figure 2: Comparison of the performance on the LabelMe dataset. (a)-(c) are the performances for the hash codes of 8 bits, 16
bits and 32 bits respectively.

Table 1: The precision, training time and test time of all the algorithms at 32 bits on the GIST1M dataset. Both the training time
and test time are in second.

Number of Retrieval Points 100 250 500 1000 2500 5000 Training time Test time
SpH 0.3576 0.3278 0.3013 0.2749 0.2369 0.2082 39.9546 0.0796

PCAH 0.3558 0.3199 0.2901 0.2614 0.2204 0.1918 29.6332 0.0022
LSH 0.4577 0.4303 0.4082 0.3832 0.3489 0.3183 5.7340 0.0019
BRE 0.5770 0.5400 0.5074 0.4719 0.4182 0.3720 138.3070 0.0208

KLSH 0.5021 0.4786 0.4575 0.4326 0.3940 0.3591 8.5742 0.0098
RPF 0.7349 0.6903 0.6507 0.6072 0.5387 0.4783 96.5935 0.0118

we set α = 0.5 and β = 0.8 according to the empirical
study based on the least squares cross-validation.

Results
Experiment on the patches dataset We first compare the
performance of our RPF method with other hashing meth-
ods on patches dataset. The performances of all the meth-
ods, in terms of the precision versus the number of retrieved
points, are illustrated in Figure 1. On one hand, we can ob-
serve that the precision decreases in all hashing approaches
when more data points are retrieved. On the other hand, all
the hashing algorithms improve their performances as the
code length increases. KLSH algorithm achieves a signif-
icant improvement from 8 bits to 32 bits. By introducing
the filtering steps based on the techniques of sparse coding
and compressed sensing, the proposed RPF method achieves
promising performance on this dataset and consistently out-
performs its competitors for all code lengths.

Experiment on the LabelMe dataset Figure 2 presents
the performances of all the methods on LabelMe dataset.
Similar to the results on patches dataset, with the effective
filtering steps, the proposed RPF algorithm achieves the best
performance for all the code lengths.

Experiment on the GIST1M dataset Table 1 presents the
performances of different methods at 32 bits on GIST1M
dataset. Considering the precision versus the number of re-
trieved points, we observe that the RPF algorithm greatly
outperforms other methods, which justifies the effectiveness
of the filtering approach. Considering the training time, we
can find that BRE is the most expensive to train, while LSH

need the least training time. KLSH needs to compute a sam-
pled kernel matrix which slows down its computation. Most
of the training time in the proposed RPF is spent on the
process to obtain the sparse representations. Although our
method is somewhat slower than others, it is still very fast
and practical in absolute terms. In terms of the test time, all
the hashing algorithms are efficient.

Conclusions
In this paper, we design a randomized algorithm for nearly
duplicate search in high dimensional space. The proposed
algorithm addresses the shortcomings of many hashing al-
gorithms that tend to return many false positive examples
for a given query. The key idea is designing a sparse repre-
sentation for the data and exploring the sparsity condition of
nearly duplicate search by introducing a filtering procedure
into the search algorithm, based on the theory of compressed
sensing. Empirical studies on three real-world datasets show
the promising performance of the proposed algorithm com-
pared to the state-of-the-art hashing methods for high di-
mensional nearest neighbor search. In the future, we plan to
further explore the sparse coding methods that can effective
and computationally efficient for large data sets.
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