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Abstract

This article introduces random projections applied as a data reduction technique
for Bayesian regression analysis. We show sufficient conditions under which the
entire d-dimensional distribution is preserved under random projections by reducing
the number of data points from n to k € O(poly(d/e)) in the case n > d. Under
mild assumptions, we prove that evaluating a Gaussian likelihood function based on
the projected data instead of the original data yields a (1+ O(g))-approximation in
the fo-Wasserstein distance. Our main result states that the posterior distribution
of a Bayesian linear regression is approximated up to a small error depending on only
an e-fraction of its defining parameters when using either improper non-informative
priors or arbitrary Gaussian priors. Our empirical evaluations involve different
simulated settings of Bayesian linear regression. Our experiments underline that
the proposed method is able to recover the regression model while considerably
reducing the total run-time.

1 Introduction

Using a linear map II € R™** whose choice is still to be defined, we transform the original
data set [X,Y] € R™ () into a sketch, i.e., a substitute data set, [ILX, IIY] € RF*(@+1)
that is considerably smaller. Therefore, the likelihood function can be evaluated faster
than on the original data. Moreover, we will show that the likelihood is very similar to the
original one. In the context of Bayesian regression we have additional prior information
Ppre(3) in terms of a prior distribution over the parameters 8 € R? that we would like to
estimate. Our main result will be to show that the resulting posterior distribution

Ppost (BIX, Y) o L(BIX,Y) - pore ()

will also be approximated within a small error.

The main idea of our approach is given in the following scheme:

X,v] —— X, 10Y]

! \
ppost(ﬁ’X7 Y) e ppost(b)lHXa HY)

More specifically we can choose k € O(poly(d/e)) which notably is independent of the
number of data points n. Thus, the run-time of all subsequent calculations does not
further depend on n. For instance, a Markov Chain Monte Carlo (MCMC) sampling
algorithm may be used to obtain samples from an unknown distribution. Using the
reduced data set will speed up the computations from several days to a few hours while
the samples remain sufficiently accurate to resemble the original distribution and also to
make statistical predictions that are nearly undistinguishable from the predictions that
would have been made based on the full original sample.



2 Background and Related Work

Our proposed method projects the data set into a lower-dimensional subspace. Dimen-
sionality reduction techniques, like e.g. principal component analysis [16], are commonly
used in statistics. However, their focus is usually on reducing the number of variables.
Our method aims to reduce the number of observations while keeping the algebraic struc-
ture of the data. This leads to a speed-up in the subsequent (frequentist or Bayesian)
regression analysis, because the run-time of the common algorithms usually heavily de-
pends on n.

Frequentist linear regression can be solved relatively straightforwardly using ordinary
least squares. Bayesian regression, on the other hand, is typically computationally de-
manding. In some cases, calculating the posterior distribution analytically is possible,
but in general, MCMC methods are standard in Bayesian analysis. They are reliable,
but can take considerable time, before they converge and consequently sample from the
desired posterior distribution. The run-time grows with the number of observations in
the data-set.

There are multiple approaches trying to reduce the run-time of MCMC by employing more
efficient algorithms. Approximate Bayesian Computing (ABC) and Integrated Nested
Laplace Approximations (INLA) both fall into this category.

The main bottleneck of a lot of Bayesian analyses is the repeated evaluation of the
likelihood. The main idea behind ABC is to avoid these evaluations by approximating
the likelihood function using simulations [9]. INLA [24, 19] on the other hand is an
approximation of the posterior distribution that is applicable to models that fall into
the class of so-called latent Gaussian models. Both methods lead to a considerable
speed-up compared to standard MCMC methods. Note however, that the speed-up is
achieved by changing the algorithm, which is used to conduct the analysis. This is
different in our approach, which reduces the number of observations in the data set
while approximately retaining its statistical properties. The run-time of many algorithms
including MCMC algorithms depends on the number of observations, which means that
our proposed method also results in a speed-up of the analysis. In this article, we have
only used MCMC methods for the analysis, but other algorithms that are based on the
likelihood can also be used.

3 Preliminaries

A linear regression model is given in equation (1):

Y = XB+¢. (1)

Y € R” is a random variable containing the values of the response. n is the number
of observations in the data set. X € R™? is a matrix containing the values of the d
independent variables. & ~ N(0,021,) is an n-dimensional random vector which mod-
els the unobservable error term. Y is also assumed to follow a normal distribution,



Y ~ N(X3,0%I,). The corresponding probability density function is

FeIXB.) = (2m) F 12 exp (5 — XBYEG - X9)), 2)
where ¥ = o21,.

In a Bayesian setting, 3 € R is the unknown parameter vector, which is assumed to follow
an unknown distribution p(3|X,Y) called the posterior distribution. Prior knowledge
about f can be modeled using the prior distribution p(f). The posterior distribution is
a compromise between the prior distribution and the observed data.

In general, the posterior distribution cannot be calculated analytically. In this paper, we
determine the posterior distribution employing Markov Chain Monte Carlo methods.

Before going into details about subspace embeddings, let us first define the Frobenius
norm, which will be used as norm for matrices in this paper.

Definition 1 (matrix norms). For a matriz A € R"*? the Frobenius norm is defined as

n d 1/2
lAllr = (ZZ&%)

i=1 j=1

and the spectral norm is defined by

A
||A||2 — sup || x”F

zeRA\{0} [E4FS '

In the special case of a vector y € R, both matrix norms coincide with the Euclidean
length of y, i.e.,

J 1/2
Iyl r = [lyll> = (Z yf) :
=1

In several places throughout the paper it may be helpful to think only in terms of matrix
norms and to treat the Euclidean norm of a d-dimensional vector as spectral norm of a
d x 1 matrix.

The following definition of so called e-subspace embeddings will be central to our work.
Such an embedding can be used to reduce the size of a given data matrix while preserving
the algebraic structure of its spanned subspace up to (1 & ) distortion. Before we
summarize several methods to construct a subspace embedding for a given input matrix
we give a formal definition. Here and in the rest of the paper we assume 0 < ¢ < 1/2.

Definition 2 (e-subspace embedding). Given a matrizx U € R™? with orthonormal
columns, an integer k < n and an approximation parameter 0 < ¢ < 1/2, an e-subspace
embedding for U is a map I1 : R® — R* such that

(1= Uz[; < [TUz[3 < (1 +€)[|Ux]]3 (3)
holds for all x € R?, or, equivalently
|UTTTIU — 1|y < e. (4)



There are several ways to construct an e-subspace embedding. One of the more recent
methods is using a so called graph-sparsifier that was initially introduced for the efficient
construction of sparse sub-graphs with good expansion properties [3]. The work of [4]
adapted the technique to work for ordinary least-squares regression. While the initial
construction was deterministic they also gave alternative constructions combining the
deterministic decision rules with non-uniform random sampling techniques. Subspace
preserving sampling of rows from the data matrix for /-regression was introduced in [11]
and generalized to more general subspace sampling for the p-norm. All the aforemen-
tioned methods have in common, that their (possibly random) construction depends on
the input itself. For the streaming setting introduced in [20] this is not desirable be-
cause for instance one needs two passes over the data to perform the subspace sampling
procedures, one for pre-computing the probabilities and another for the actual sampling.
In order to make e-subspace embeddings suitable for the design of single-pass streaming
algorithms, we consider a different approach of so called oblivious subspace embeddings
in this paper. These can be viewed as distributions over appropriately structured k& x n
matrices from which we can draw a realization II independent of the input matrix. It
is then guaranteed that for any fixed matrix U as in Definition 2, IT is an e-subspace
embedding with probability at least 1 — 4.

In this paper we consider three different approaches for obtaining oblivious e-subspace
embeddings:

1. The Rademacher Matrix (BCH): II is obtained by choosing each entry independently
from {—1, 1} with equal probability. The matrix is then rescaled by \/LE This method has

been shown in [26] to form an e-subspace embedding for essentially k = O(42/%))  This

52
was later improved in [7] to k = O(%Q(I/é)). While this is the best reduction among
the methods that we used in the present work, the BCH embedding has the disadvantage
that we need ©(ndk) time to apply it to an n x d matrix.

2. The Subsampled Randomized Hadamard Transform (SRHT) (originally from [1]) is
an embedding that is chosen to be Il = RH,, D where D is an m x m diagonal matrix
where each entry is independently sampled from {—1,1} with equal probability. The
value of m is assumed to be a power of two. It is convenient to choose the smallest such
number that is not smaller than n. H,, is the Hadamard-matriz of order m and R is a
k x m row sampling matrix. That is, each row of R contains exactly one l-entry and is
0 everywhere else. The index of the l-entry is chosen uniformly from [m] i.i.d. for every
row. The matrix is then rescaled by \/LE The target dimension of this family of matrices

was shown to be k = O( (ﬂ+@)2 102(4/9)y 15] which improved upon previous results from
[12]. Compared to the BCH method this is worse by essentially a factor of O(logd). It
can be shown that k& = Q(dlogd) is necessary due to the sampling based approach by
reduction from the coupon collectors theorem, see [15] for details. The benefit that we
get is that due to the inductive structure of the Hadamard matrix, the embedding can
be applied in O(ndlog k) time which is considerably faster.

3. The most recent construction that we considered in this article is called the Clarkson
Woodruff (CW) sketch [8]. In this case the embedding is obtained as II = ®D. D is

constructed in the same way as the diagonal matrix in the SRHT case. Given a random



map h : [n] — [k] such that for every i € [n] its image is chosen to be h(i) =t € [k] with
probability % ® is again a binary matrix whose l-entries can be defined by ®;),; = 1.
All other entries are 0. This is obviously the fastest embedding. It can be applied to
any matrix X € R™? in O(nnz(X)) = O(nd) time, where nnz(X) denotes the number
of non-zero entries in X. This is referred to as input sparsity time and is clearly optimal
since this is the time needed to even read the input. However, its disadvantage is that
the target dimension is k = Q(d?) [21]. Basically this is necessary due to the need to
obliviously hash the standard basis vectors for R? perfectly. Improved bounds over the
original ones from [8] show that k = O(%) is enough to draw an e-subspace embedding
from this distribution of matrices [22].

The results of our work are always conditioned on the event that the map Il is an e-
subspace embedding omitting to further mention the error probability of §. The reader
should keep in mind that there is the aforementioned possibility of failure during the
phase of sketching the data.

Note that while the size of the resulting sketches does not depend on n, this is not true
for the embedding matrices I € R¥*". However, due to the structured constructions that
we have surveyed above, we stress that the sketching matrices can be stored implicitly by
the use of hash functions of bounded independence this has been proved for the different
constructions for example in |2, 7, 22|. Common choices are the BCH scheme also used
in [2] and the fast universal hashing scheme introduced in [10]. A survey on different
methods can be found in [25]. These hash functions can be evaluated very efficiently
using bit-wise operations and can be stored using a seed whose size is only O(logn).
Note that even this small dependency on n is needed only for the sketching phase. After
the sketch has been computed, the space requirements will be independent of n.

The linearity of the embeddings allows for efficient application in sequential streaming
and in distributed environments, see e.g. [7, 18, 29]. The sketches can be updated in
the most flexible dynamic setting, which is commonly referred to as the turnstile model
[20] and allows for additive updates of rows, columns or even single entries. Note that
by using negative updates, even deletions are possible in this setting. For distributed
computations note that the embedding matrices can be communicated efficiently to every
machine in the computing cluster. This is due to the small implicit representation by
hash functions. Thus, every machine can compute a sketch on its own share of the data
and communicate it to one dedicated central server. A sketch of the entire dataset can
be obtained by simply summing up the single sketches since

and consequently

X = Z X,

=1

For two probability measures v, v over R?, let A(, ) denote the set of all joint probability
measures over RY x R? with marginals v and v respectively.



Definition 3 (Wasserstein distance, cf. [28]). For p € [1,00) let (R, |-||,) denote d-
dimensional £,-space. Given two probability measures v,v on R? the Wasserstein distance
of order p between v and v is defined as

Wp(7,v)

—( inf — P dA ’
(mﬂwméww“x e <Ly0

or equivalently

WP(7> I/)
—inf {E [z =yl " |2 ~ 7,y ~ v}

From the definition of the Wasserstein distance we can derive a measure of how much
points drawn from a given distribution will spread from 0. The Wasserstein weight can
be thought of as a norm of a probability measure.

Definition 4 (Wasserstein weight). For p € [1,00) let (R, |-||,) denote d-dimensional
ly-space. We define the Wasserstein weight of order p of a probability measure v as

Wo(7) = Wp(7,9)
|

=(A»w%<h);=EUm%P

where § denotes the Dirac delta function.

4 Theory

4.1 Embedding the likelihood

In this section we introduce and develop the theoretical foundations of our approach and
will combine existing results on ordinary least squares regression to bound the Wasserstein
distance between the real likelihood function and its counterpart evaluated only on the
considerably smaller sketch. Empirical evaluations supporting our theoretical results will
be conducted in the subsequent section.

The following Observation is standard (cf. [14, 17]) and will be helpful in bounding the
l5-Wasserstein distance of two Gaussian measures. It allows us to derive such a bound
by inspecting their means and their covariances separately.

Observation 1. Let Z;, Z, € R? be random variables with finite first moments i1, iy <

0o and let Z7" = Zy — py respectively Z3' = Zy — o be their mean-centered counterparts.
Then it holds that

E [[|Z1 - Zo[l3] = [l — poll3 + E [ 27" — Z5"|13]



Proof.

E [||1Z1 — Z|)3]
E (|12 — i+ p1 — Za + po — pial|3]
= E[IZ7" = Z5" + i — polf3]
E (127" — Z5"([5 + [l — p2l3]
+2 (i — )" B2 — Z5]
\—:6_/
= E 12" = Z3"5]) + llm — pall3

]

In our first lemma we show that using an e-subspace embedding II for the columnspace
of [X, Y], we can approximate the least squares regression problem up to a factor of 1+¢.
That is, we can find a solution v by projecting IIY into the columnspace of 11X such
that || Xv — Y|z < (1+¢) mingega [|[ X5 — Y|,. Similar proofs can be found in [6, 4]. We
repeat the result here for completeness.

Lemma 5. Given X € R Y € R", let Il be an (¢/3)-subspace embedding for the
columnspace of [X,Y]. Let~y = argmingcga | X3 — Y3 and let v = argming g |[TL(X3 — Y)|]3.
Then

Xy =Y < (1+e) | Xy =Y

Proof. Let [X,Y] = UXVT denote the SVD of [X,Y]. Now define n; = SVT[yT, —1]T
and 7, = VT [vT, —1]T. Using this notation we can rewrite Un; = Xy —Y and similarly
Uny, = Xv —Y. We have that

(1—¢/3) |Unall; < [TUn.|I3
< HHU771H§
<

(1+e/3) [|Unf3.

The first and the last inequalities are direct applications of the subspace embedding
property 3, where the middle inequality follows from the optimality of v in the embedded
subspace.

Now by rearranging and resubstituting terms this yields

1+¢/3 9
Xy—-Y
(1505 ) I - v

< (I+o)[IXy =Yl

Xy = Y3

O

In the following we investigate the distributions proportional to the likelihood functions
px L(BIX,Y) and p’ oc L(B|IIX,I1Y) and bound their Wasserstein distance.

We begin with a bound on the distance of their means v and v respectively.
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Lemma 6. Let X,Y,~v,v be defined as in Lemma 5. Then

2 € 2
v — v < o2 (X) Xy =Y.

Proof. Let X = UXVT denote the SVD of X. Let n = VT (v —v). First note that v and
v are both contained in the columnspace of V' (cf. [26]) which means that V7 is a proper
rotation with respect to v — v. Thus,

IX(v =)z = USVI(y = v)l3
= [ZVi(y =)l

> o (X)n?

Z O-IQTIHI(X)T/ZQ
i X) [V (v = )13

Oain(X) 17 = V13-

min

v

Consequently, it remains to bound || X (v — v)||3. This can be done by using the fact that
the minimizer ~ is obtained by projecting Y orthogonally onto the columnspace of X.

Therefore we have X7 (X~ —Y) = 0 (cf. [7]). Furthermore by Lemma 5 it holds that
| Xv —Y]3 < (1+¢)||Xy—Y|3 Now by plugging this into the Pythagorean theorem
and rearranging we get that

IX(v =)z = Xv =YXy -YI;
< el Xy-YI;

Putting all together this yields the proposition:
1

2 2
=i < g IX G-l
9

< —— [ Xy=Y
< XY

]

Now using Observation 1 we may assume w.l.o.g. that v = v = 0 holds. We still have to
bound inf E [|| Z]* — Zi||3], the least expected squared Euclidean distance of two points
drawn from a joint distribution whose marginals are the original distribution and its
embedded counterpart. Of course we can bound this quantity by explicitly defining a
properly chosen joint distribution and bounding the expected squared distance for its
particular choice.

Lemma 7. Let p < L(G|X,Y) and p’ < L(BIIIX,IIY). Let Zi", Z3* be the mean-centered
versions of the random variables Zy ~ p and Zy ~ p' that are distributed according to p
and p’ respectively. Then we have

infE [[|Z7" — Z5"|)3] < tr (XTX)7).



Proof. Our plan is to design a joint distribution that deterministically maps points from
one distribution to another in such a way that we can bound the distance of every pair of
points. This can be done by utilizing the Dirac delta function §(-), which is a degenerate
probability density function that concentrates all probability mass at zero and has zero
density otherwise. Given a bijection f : R? — R¢ we can define such a joint distribution
X € A(p,p’) through its conditional distributions A(z |y) = d(x — f(y)) for every y € R
It therefore remains to define f.

Using the embedding IT and applying (4), the columnspace of a matrix is expanded or
contracted respectively by a factor of at most 1 +¢. Let A = USVT and IA = USVT
denote the SVDs of A and IIA respectively. Now consider vectors z, 2’, v,y € R? where
2 and ¢/ are contained in the columspaces of V and V respectively. Additionally assume
the following properties:

L 3ez0: o'l = [ly']2 = ¢
2. x =XV

3. y=xVTy

4. Ir>0: 2 =71y

Observe that by the first property 2’ and 3 lie on a d-dimensional sphere with radius ¢
centered at 0. Therefore, there exists a rotation matrix R € R®? such that 3/ = Ra'.

The second item defines a map of such spheres to ellipsoids (also centered at 0) given by
the bijection V7. The third property is defined analogously.

The fourth property urges that z and y both lie on a ray starting from 0. Note that any
such ray intersects each ellipsoid exactly once.

Our bijection can be defined accordingly as
f:RT — RY
z o~ SVITRVE 2
by composing the map V7, defined in the second item, with the rotation R and finally

with SV from the third property. The map is bijective since it is obtained as the
composition of bijections.

Now in order to bound the distance || Z* — Zi"||3 for any realization of (Z{", Zi') according
to their joint distribution defined above, we can derive a bound on the parameter 7.

Substituting the first two properties into the third one, we get that

YWy = Tf]f/Ty’



which can be rearranged to

y’Ty'T _ (y’Tf/)i”E(VTx’)
)

= TV
< D) WV,

< (14 WV,
= (14¢)c

The first inequality follows from &; > /1 — ¢ o0; and the second from the assumption
e < 1/2. This eventually means that 7 < (1 + ¢) since y'7y’ = ¢? by the first property.

A lower bound of 7 > (1 — ¢€) can be derived analogously by using 6; < v/1 + ¢ o;.

Now we can conclude our proof. It follows that

nfE [| 2 — Z23] < B[22 - 23]
= Ex[lleZ1"3]
= & Ex[llZ7]3]
= S ((XTX)™)
The last equality holds since the expected squared norm of the centralized random vari-
able is just the trace of its covariance matrix. O

Combining the above results we get the following lemma.
Lemma 8. Let Il be an (¢/3)-subspace embedding for the columnspace of X. Let p
L(BIX,Y) and p’' < L(B|IIX,1TY). Then

E
Wip,p) < —5 | Xp—-Y[3+tr ((XTX)™)

Proof. The lemma follows from Observation 1, Lemma 6 and Lemma 7. m

Under mild assumptions we can argue that this leads to a (1 + O(e))-approximation of
the likelihood with respect to the Wasserstein weight (see Definition 4).

Corollary 9. Let II be an (¢/3)-subspace embedding for the columnspace of X. Let
pox LIBIX,Y) and p' o< L(BITIX,ITY). Let k(X) = Omax(X)/omin(X) be the condition
number of X. Assume that for some p € (0,1] we have || X |2 > p||Y]||2. Then

Wh(p') < (1+@\/5) Wa(p).

Proof. By definition, the squared Wasserstein weight of order 2 of p equals its second
moment. Since p is a Gaussian measure with mean p and covariance matrix (X7 X)™!,
we thus have

W5 (p) = [lull3 + tr (X7 X)) .

10



Similarly we have that
Wi (') = Iz + tr (XTITIIX) ™)

Since II is an e-subspace embedding for the columnspace of X we know from its definition
(3), that all the squared singular values of X are approximated up to (1 & &) error and
so are their inverses. Therefore we have that

tr (XTI'IIX) ™) < (T4e)tr (XTX)7).

It remains to bound ||v||3. To this end we use the assumption that for some p € (0, 1] we
have || X pull2 > p||Y||2- By the Pythagorean Theorem this means that

IXu—YI2 = (V3= [Xul?
1
< ||Xu||§(;—1>
| X 113
2

Now we can apply the triangle inequality and Lemma 6 to get

vl < lullz + lv = pll2
NG

< — || Xpu—-Y

<l + Lo 1K= Yl
NG

< — || X

< Nl + o Xl
NG

< —||X

< ol + o Xl

- rmuﬁ%axwuuz
_ (1+"”“<f) ﬁ) Il

Note that @ > 1 and ¢ < /e. The claim follows since this implies (1 +¢) < (1 +

0 ey -

We stress that the assumption that there exists some constant p € (0,1] such that
| Xulla > p||Y]2 is very natural and mild in the setting of linear regression since it
means that at least a constant fraction of the dependent variable Y can be explained
within the columnspace of the data X (cf. [11]).

4.2 Bayesian Regression
So far we have shown that using subspace embeddings to compress a given dataset for

regression yields a good approximation to the likelihood. Note that in a Bayesian re-
gression setting Lemma 8 already implies a similar approximation error for the posterior

11



distribution if the prior is chosen to be an improper, non-informative uniform distribution
over R?. For regression models and especially for regression models on data sets with
large n, this covers a considerable amount of the cases of interest, confer [13]. We will
extend this to arbitrary Gaussian priors leading to our main result: an approximation
guarantee for Gaussian Bayesian regression in its most general form.

To this end, note that since the posterior distribution is given by

Ppost (B1X,Y) o LIX, Y[B) - ppre(5)

we know that up to some constants, the logarithm of the posterior can be described by
1X8 = Y5+ [S(8 = m)ll3 (5)

where m is the mean of the prior distribution and S is derived from its covariance matrix

by ¥ = (STS)~!. Now let
X Y
Z_{S} and Z—|:Sm:|.

With these definitions we can rewrite equation (5) above to get ||Z3 — z||3. This, in turn,
can be treated as a frequentist regression problem in the same way as we did in the proof
of Lemma 8. For this we only have to use a subspace embedding for the columnspace
of [Z, z] instead of only embedding [X,Y]. We will see that this is not necessary. More
precisely, embedding only the data matrix is sufficient to have a subspace embedding for
the entire columnspace defined by the data and the prior information and therefore to
have a proper approximation of the posterior distribution. This can be formalized in the
following lemma.

Lemma 10. Let M = [My, Mo)T € R(m+m2)%d e an arbitrary matriz. Suppose 11 is
an e-subspace embedding for the columnspace of M. Let I,, € R"*"2) be the identity
matrix. Then

ImT 0
= (k+n2)>< (nl +n2)
P { : [m] R

s an e-subspace embedding for the columnspace of M.

Proof. Fix an arbitrary x € R%. We have

I[PMz]3 — || M|
I, )5 + ([ Moz |5 — || Myz][; — || Maw]l3]
[ITLM 25 — (| M 3]

< el Mzl
< el Muz|; + | Moal|l3
= e Mz
which concludes the proof by linearity. O]

This lemma finally enables us to prove our main theoretical result.

12



Theorem 11. Let II be an (¢/3)-subspace embedding for the columnspace of X. Let
Dpre(B) be an arbitrary normal distribution with expected value m and covariance matriz

> = (STS). Let
X Y
Z = {S} and z= {Sm] .
Let i = argmingega || Z8 — z||2 be the posterior expected value. Let p o< L(B|X,Y) Ppre(B)
and p' oc L(BIIIX,ITY") - ppre(B). Then
W; (p.p')
1Zn— 23+t ((272)7).

< —

Omin(Z)
Proof. From our previous reasoning we know that approximating the posterior distribu-
tion can be reduced to approximating a likelihood function that is defined in terms of the
data as well as the parameters of the prior distribution. This has been shown by rewriting
Equation (5) above as ||Z83 — z||3. Therefore we can apply Lemma 8 to get the desired
result given an (e/3)-subspace embedding for the columnspace of Z. Using Lemma 10
we know that it is sufficient to use an (€/3)-subspace embedding for the columnspace of
[X,Y] independent of the covariance and mean that define the prior distribution. ]

Similar to Corollary 12 we have the following result concerning the posterior distribution.

Corollary 12. Let Il be an (¢/3)-subspace embedding for the columnspace of X. Let
Ppre(B) be an arbitrary normal distribution with expected value m and covariance matriz

Y= (STS)*l. Let
X Y
Z_[S] and Z_[Sm]'

Let i = argmingega || Z8 — z||2 be the posterior expected value. Let p o< L(B|X,Y) Ppre(B)
and p' o< LBILX,IIY) - ppre(B). Let k(Z) be the condition number of Z. Assume that
for some p € (0,1] we have ||Zu||2 > pl|z||2. Then we have

Wa(p') < (1 + # \/E) Wa(p).

5 Simulation Study

We use simulated data to validate the proposed method empirically. The data sets consist
of n = 50000 observations and d = 50 variables. This is by no means a very large data
set, however, we need to be able to analyze both the sketched versions of the data set and
the original data set. Four different data sets have been analyzed. The main difference
between these is the simulated error variance o.. o. takes values of 1, 2, 5, and 10
respectively. This is done to check whether the differences in the fs-norm grow with
growing variance, as is expected according to the theory.

In the simulated data sets, some or all of the variables may have an influence on the
dependent variable Y. Additionally, an intercept is modeled, giving a total of 51 variables.
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Figure 1: Comparison of fitted values of the regression model based on the original data
set (full model) and on a sketched data set obtained using the CW approach

The MCMC sampling was done using software programs R [23] and R-package rstan [27].
The sketches are calculated using our R package. The number of observations of the three
sketched data sets is kpoyg = 20546, ksryr = 20547, and keow = 16 384, respectively.
Please note that the sizes of the BCH sketch and the SRHT sketch are almost the same,
while the CW sketch is smaller. This might seem contrary to chapter 3, where we state
that the target dimension of the CW sketch is higher compared to the others. However,
the reason for this is the relatively small number of variables d. For higher values of d,
the CW sketch will result in a higher & compared to the other sketching approaches.

Following the theory, the posterior distributions, represented by the MCMC samples,
should be very close to one another. To evaluate this empirically, we compare the MCMC
samples resulting from the full data set (referred to as “full model”) with each of the
MCMC samples resulting from a sketched model. Figure 1 shows the fitted values of
the full model on the z-axis, using the mean of the full MCMC sampler for each of the
variables. On the y-axis are the predicted values for the full data set we get when using
the mean of the sketched MCMC sampler based on sketching approach CW for each
variable. All pairs of fitted values are on or close to the bisecting line, indicating that
the sketched model gives a very similar result to the full model.

Figure 2 shows the difference between the fitted values based on the sketched models
and the fitted values based on the original model for one data set. For all three sketch-
ing approaches, the median of the differences is 0, the largest values show an absolute
deviation of around 2. The boxes only cover a small area around 0, indicating that all
three sketching approaches predict the dependent variable very accurately (compared to
the original model) for a majority of the observations. The differences show a similar
structure for all three methods. The box and spread of the whiskers is slightly larger
for SRHT, but generally speaking, the location and variation of all boxes are almost the
same.

We compare the resulting posterior distributions of all parameters using boxplots. Two
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Figure 2: Differences between fitted values based on the full model and fitted values based
on three sketched models obtained using the approaches CW, SRHT, and BCH

examples are shown in Figure 3. In this boxplot, we can see that our method adds some
variation to the MCMC sample, the boxes and the spread of the samples are larger. The
extra amount of variation for the sketches based on SRHT and BCH is very similar,
while the sketched based on CW shows slightly more extra variation. Given that this
sketching approach results in the smallest sketched data set for our simulated data sets
(not in the general case), this indicates a trade-off between the amount of reduction and
the additional variation in the parameters.

The medians may differ from the full model, however, we did not find evidence of syste-
matic bias for any of the sketching approaches. The position of the boxes may sometimes
show no overlap (as for the full model versus the model based on an SRHT sketch in
Figure 3), but the general location remains the same. When looking at the 95% credible
intervals, 0 either lies in the interval for all four models or it does not lie in the interval
for all of them, which means that one would not consider a variable “important” for the
explanation of the dependent variable in one model, but consider it “unimportant” in
another model.

Table 1 shows the run time for the Bayesian analysis of the data set. For the original
data set, this only includes the run-time of the MCMC algorithm. For the sketched
data sets, the value gives the total run-time, including both our sketching algorithm and
the MCMC algorithm. The speed-up gained by applying our sketching algorithm first
is evident. Note that the run-times for the respective sketching algorithms are given in
seconds, while the run-time for the complete analysis is given in hours. This underlines
that the sketching requires only a very small part of the total run-time.

If we add more observations to our data set, we expect the run-time of the MCMC
analysis to take longer. However, the size of the sketched data set is independent of the
number of observations in the original data set. For that reason, the MCMC analysis
on the sketched data sets would take around the same time. It would take longer to
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Figure 3: Boxplots of the distribution of MCMC samples for two selected parameters
based on the model on the original data set (full model) and sketched data sets using the
sketching approaches CW, SRHT, and BCH

sketching approach run-time for analysis (hours) sketching time (seconds)

full 338.872 -
CW 93.353 0.573
SRHT 111.010 1.338
BCH 114.576 97.475

Table 1: Comparison of run-times

calculate the sketches, but the effect would be barely noticeable. The comparative run-
time advantage of our method grows with the number of observations, while the difference
between the posterior distributions stays the same.

Note that our method assumes that the model is correctly specified, i.e. that all inde-
pendent variables have a linear influence on the dependent variable or no influence at all.
This is the case for our simulated data sets, but it will not be true in general. For this
reason, the regression model needs to be built carefully, doing some pre-checks before
calculating the sketch. If a wrong model is used, e.g. by treating a variable with logarith-
mic influence as a linear variable, the results will still be close to the non-sketched linear
model. However, diagnostic plots such as residual plots may show different features,
which may make identifying problems in the model harder.

6 Conclusion

Our paper deals with random projections as a data reduction technique for Bayesian
regression. In a series of theoretical results, we have shown that we can apply random
projections to achieve a so-called oblivious subspace embedding for the columnspace of
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the given data matrix if the likelihood is modeled using standard linear regression with
a Gaussian error term. The size of the sketched and reduced dataset is of the number n
of observations in the original data set. Therefore, subsequent computations can operate
within time and space bounds that are also independent of n regardless of the algorithm
that is actually used. We show that the likelihood function is approximated within
small error. Furthermore, if an improper, non-informative uniform distribution over R
or an arbitrary Gaussian distribution is used as prior distribution, the desired posterior
distribution is also well approximated within small error. We also show our results to
be (14 O(e)) approximations to the distributions of interest in the context of Bayesian
linear regression.

In our simulation experiments, we found that the approximation works much better than
the theoretical bounds guarantee. Important values like the mean, median, and quantiles
are recovered

For future research, we would like to generalize our results to other classes of distribu-
tions for the likelihood and to more general priors. The recent results on frequentist ¢,
regression might give rise to efficient streaming algorithms also in the Bayesian regression
setting.
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