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Abstract

Recent advances suggest that encoding images through
Symmetric Positive Definite (SPD) matrices and then inter-
preting such matrices as points on Riemannian manifolds
can lead to increased classification performance. Taking
into account manifold geometry is typically done via (1) em-
bedding the manifolds in tangent spaces, or (2) embedding
into Reproducing Kernel Hilbert Spaces (RKHS). While
embedding into tangent spaces allows the use of existing
Euclidean-based learning algorithms, manifold shape is
only approximated which can cause loss of discriminatory
information. The RKHS approach retains more of the man-
ifold structure, but may require non-trivial effort to ker-
nelise Euclidean-based learning algorithms. In contrast to
the above approaches, in this paper we offer a novel so-
lution that allows SPD matrices to be used with unmod-
ified Euclidean-based learning algorithms, with the true
manifold shape well-preserved. Specifically, we propose
to project SPD matrices using a set of random projection
hyperplanes over RKHS into a random projection space,
which leads to representing each matrix as a vector of pro-
jection coefficients. Experiments on face recognition, per-
son re-identification and texture classification show that
the proposed approach outperforms several recent methods,
such as Tensor Sparse Coding, Histogram Plus Epitome,
Riemannian Locality Preserving Projection and Relational
Divergence Classification.

1. Introduction
Covariance matrices have recently been employed to de-

scribe images and videos [22, 13, 35], as they are known to
provide compact and informative feature description [7, 3].
Non-singular covariance matrices are naturally symmet-
ric positive definite matrices (SPD) which form connected
Riemannian manifolds when endowed with a Riemannian
metric over tangent spaces [20]. As such, the Rieman-
nian geometry needs to be considered for solving learning
tasks [35].

One of the most widely used metrics for SPD matrices
is the Affine Invariant Riemannian Metric (AIRM) [22].

The AIRM induces Riemannian structure which is invariant
to inversion and similarity transforms. Despite its proper-
ties, learning methods using this approach have to deal with
computational challenges, such as employing computation-
ally expensive non-linear operators.

To address the above issue, two lines of research have
been proposed: (1) embedding manifolds into tangent
spaces [21, 24, 27, 35, 36]; (2) embedding into Reproduc-
ing Kernel Hilbert Spaces (RKHS), induced by kernel func-
tions [2, 14, 16, 17, 28, 30, 34]. The former approaches
in effect map manifold points to Euclidean spaces, thereby
enabling the use of existing Euclidean-based learning al-
gorithms. This comes at the cost of disregarding some of
the manifold structure. The latter approach addresses this
by implicitly mapping points on the manifold into RKHS,
which can be considered as a high dimensional Euclidean
space. Training data can be used to define a space that pre-
serves manifold geometry [17]. The downside is that ex-
isting Euclidean-based learning algorithms need to be ker-
nelised, which may not be trivial. Furthermore, the result-
ing methods can still have high computational load, making
them impractical to use in more complex scenarios.
Contributions. In this paper we offer a novel approach for
analysing SPD matrices which combines the main advan-
tage of tangent space approaches with the discriminatory
power provided by kernel space methods. We adapt a re-
cent idea from techniques specifically designed for learn-
ing tasks in very large image datasets [12, 19]. In this
domain, image representations are mapped into a reduced
space wherein the similarities are still well-preserved [19].
In our proposed approach, we employ such a mapping tech-
nique to create a space which preserves the manifold geom-
etry while can be considered as Euclidean.

Specifically, we first embed SPD manifold points into
RKHS via the Stein Divergence Kernel [33]. We then gen-
erate random projection hyperplanes in RKHS and project
the embedded points via the method proposed in [19]. Fi-
nally, as the underlying space can be thought as Euclidean,
any appropriate Euclidean-based learning machinery can be
applied. In this paper, we study the efficacy of this em-
bedding method for classification tasks. We show that the



space is only as effective as the completeness of the train-
ing data generating the random projection hyperplanes, and
address this through the use of synthetic data to augment
training data. Experiments on several vision tasks (person
re-identification, face recognition and texture recognition),
show that the proposed approach outperforms several state-
of-the-art methods.

We continue the paper as follows. Section 2 provides a
brief overview of the manifold structure and its associated
kernel function. We then detail the proposed approach in
Section 3. Section 4 presents results on the study of the
random projection space discriminability as well as com-
parisons with the state-of-the-art results in various visual
classification tasks. The main findings and possible future
directions are summarised in Section 5.

2. Manifold Structure and Stein Divergence

Consider {X1 . . .Xn} ∈ Symd
+ to be a set of non-

singular d×d-sized covariance matrices, which are symmet-
ric positive definite (SPD) matrices. These matrices belong
to a smooth differentiable topological space, known as SPD
manifolds. In this work, we endow the SPD manifold with
the AIRM to induce the Riemannian structure [22]. As
such, a point on manifold M can be mapped to a tangent
space using:

logXi Xj = Xi

1
2 log(Xi

− 1
2XjXi

− 1
2 )Xi

1
2 (1)

whereXi,Xj ∈ Symd
+,Xi is the point where the tangent

space is located (i.e. tangent pole) and Xj is the point that
we would like to map into the tangent space TXiM; log(·)
is the matrix logarithm. The inverse function of this maps
points on a particular tangent space into the manifold is:

expXi y = Xi

1
2 exp(Xi

− 1
2 yXi

− 1
2 )Xi

1
2 (2)

where Xi ∈ Symd
+ is again the tangent pole; y ∈ TXiM

is a point in the tangent space TXiM; exp(·) is the matrix
exponential.

From the above functions, we now define the shortest
distance between two points on the manifold. The dis-
tance, here called geodesic distance, is represented as the
minimum length of the curvature path that connects two
points [22]:

d2
g (Xi,Xj) = trace

{
log2(Xi

− 1
2XjXi

− 1
2 )
}

(3)

The above mapping functions can be computationally
expensive. We can also use the recently introduced Stein
divergence [33] to determine similarities between points on
the SPD manifold. Its symmetrised form is:

Jφ(X,Y ) , log

(
det

(
X + Y

2

))
− 1

2
log (det (XY )) (4)

The Stein divergence kernel can then be defined as:
K(X,Y ) = exp{−σJφ(X,Y )} (5)

under the condition of σ ∈ { 12 ,
2
2 , ...,

d−1
2 } to ensure that the

kernel matrix formed by Eqn. (5) is positive definite [15].

3. Random Projection on RKHS

We aim to address classification tasks, originally formu-
lated on the manifold, by embedding them into a random
projection space, which can be considered as Euclidean,
while still honouring the manifold geometry structure. To
this end, we propose to use random projection on RKHS
with the aid of the Stein divergence kernel.

Random projection is an approximation approach for
estimating distances between pairs of points in a high-
dimensional space [1]. In essence, the projection of a point
u ∈ Rd can be done via a set of randomly generated hyper-
planes {r1 . . . rk} ∈ Rd:

f(u) = u>R (6)

where R ∈ Rd×k is the matrix wherein each column con-
tains a single hyperplane ri; f(·) is the mapping func-
tion which maps any point in Rd into a random projection
space space Rk. According to the Johnson-Lindenstrauss
lemma [1], it is possible to map a set of high-dimensional
points into much lower dimensional space wherein the pair-
wise distance between two points are well-preserved:

Lemma 3.1. Johnson-Lindenstrauss Lemma. For any ε
such that 1

2 > ε > 0, and any set of points S ∈ Rd with
|S| = n upon projection to a uniform random k-dimension
subspace where k = O(log n), the following property
holds with probability at least 1

2 for every pair u,v ∈ S,
(1 − ε)||u − v||2 ≤ || f(u) − f(v)||2 ≤ (1 + ε)||u − v||2,
where f(u), f(v) are projection of u,v.

Despite the success of numerous approaches using this
lemma to accomplish various computer vision tasks, most
of them restrict the distance function to the `p norm, Ma-
halanobis metric or inner product [5, 8, 18], which makes
them incompatible for non-Euclidean spaces. Recently,
Kulis and Grauman [19] proposed a method that allows
the distance function to be evaluated over RKHS. Thus,
it is possible to apply the lemma for any arbitrary kernel
K(i, j) = K(Xi,Xj) = φ(Xi)

> φ(Xj) for an unknown
embedding φ(·) which maps the points to a Hilbert space
H [19]. This approach makes it possible for one to construct
a random projection space on an SPD manifold, where the
manifold structure is well-preserved.

The main idea of our proposed approach, denoted as
Random Projection On SPD manifold for ImagE Classi-
fication (ROSE), is to first map all points on the manifold
into RKHS, with implicit mapping function φ(·), via the
Stein divergence kernel. This is followed by mapping all the
points in the RKHS φ(Xi) ∈ H into a random projection
space Rk. To achieve this we follow the Kulis-Grauman
approach [19] by randomly generating a set of hyperplanes
over the RKHS {r1 . . . rk} ∈ H which is restricted to be
approximately Gaussian. As the embedding function φ(·)



is unknown, then the generation process is done indirectly
via a weighted sum of the subset of the given training sets.

To this end, consider each data point φ(Xi) from the
training set as a vector from some underlying distribution
D with unknown mean µ and unknown covariance Σ. Let
S be a set of t training exemplars chosen i.i.d. from D,
then zt = 1

t

∑
i∈S φ(Xi) is defined over S. According

to the central limit theorem for sufficiently large t, the ran-
dom vector z̃t =

√
t(zt − µ) is distributed according to

the multi-variate GaussianN (µ,Σ) [26]. Then if a whiten-
ing transform is applied, it results in ri = Σ−

1
2 z̃t which

follows N (0, I) distribution in Hilbert space H. Therefore
the i-th coefficient of each vector in the random projection
space is defined as:

φ(Xi)
TΣ−

1
2 z̃t (7)

The mean µ and covariance Σ need to be approximated
from training data. A set of p objects is chosen to form the
first p items of a reference set: φ(X1), . . . , φ(Xp). Then
the mean is implicitly estimated as µ = 1

p

∑p
i=1 φ(Xi),

and the covariance matrix Σ is also formed over the p sam-
ples. Eqn. (7) can be solved using a similar approach as for
Kernel PCA, which requires projecting onto the eigenvec-
tors of the covariance matrix [19]. Let the eigendecomposi-
tion of Σ be UV UT , then Σ−

1
2 = UV

1
2UT , and therefore

Eqn. (7) can be rewritten as [19]:

φ(Xi)
TUV

1
2UT z̃t (8)

Let then define K as a kernel matrix over the p ran-
domly selected training points, where K = ΛΘΛT . Based
on the fact that the non zero eigenvalues of V are equal to
the non-zero eigenvalues of Θ, Kulis-Grauman [19] showed
that Eqn. (8) is equivalent to:∑p

i=1
ω(i)(φ(Xi)

Tφ(X)) (9)

where

ω(i) =
1

t

p∑
j=1

∑
l∈S

Kij
− 1

2Kjl−
1

p

p∑
j=1

p∑
k=1

Kij
− 1

2Kjk (10)

where, for S, a set of t points are randomly selected from
the p sampled points. The expression w(i) in Eqn. (10) can
be further simplified by defining e as a vector of all ones,
and eS as a zero vector with ones in the entries correspond-
ing to the indices of S [19]:

w = K
1
2

(
1

t
es −

1

p
e

)
(11)

In terms of calculating the computational complexity of
the training algorithm, according to Eqns. (9) and (11), the
most expensive step is in the single offline computation
of K

1
2 , which takes O(p3). The computational complex-

ity of classifying a query point depends then on three fac-
tors: computing the kernel vector which requires O(pd3)

operations, projecting the resulting kernel vector into ran-
dom hyperplane which demands O(pt) operations (where
t < p), and finally applying a classifier in the projection
space which can be done with one versus all support vec-
tor machine O(nb) operations, where n is the number of
classes and b is the number of hyperplanes used in defining
the hyperplane [19]. Hence the complexity of classification
for a single query data is equal to O(p3 + pt + nb) which
is more efficient than Relational Divergence based Classi-
cation (RDC) [2], which is later shown to be the second
best approach in the experiment part. The RDC represents
Riemannian points as similarity vectors to a set of training
points. As similarity vectors are in Euclidean space, RDC
then employs Linear Discriminant Analysis as a classifier.

3.1. Synthetic Data

As later shown in the experiment section (for instance
the result shown in Fig. 2), the discriminative power of the
random projection space depends heavily on the training
set which generates the random projection hyperplanes. To
overcome this limitation, we propose to use generated syn-
thetic SPD matrices X1, ...,Xn ∈ Symd

+ centred around the
mean of the data (denoted by Xµ), where the mean of the
training set can be determined intrinsically via the Karcher
mean algorithm [22].

We relate the synthetic data to the training set, by enforc-
ing the following condition on the synthetic SPD matrices:

∀Xj ∈ S and ∀Xi ∈ G : (12)

dg(Xµ,Xj) 6 max(dg(Xµ,Xi))

whereG is the training set, S is a set of t training exemplars
chosen i.i.d. from some underlying distribution D, Xµ is
the mean of the training set andXj is a generated synthetic
point.

The constraint in Eqn. (12) considers a ball around the
mean of the training data, with the radius equal to the
longest calculated distance between mean and the given
training points:

r = max(dg(Xµ,Xi)) (13)

Then we need to generate SPD matrices which are lo-
cated within r radius from the mean (Eqn. 13). It is not
trivial to generate SPD matrices which follow Eqn. (12), as
it establishes a relation between generate SPD matrices and
the original training points. To address this, we apply the re-
lationship between the geodesic distance and the given Rie-
mannian metric in a tangent space. LetXi,Xj ∈ Symd

+ be
two points on the manifold and xi,xj ∈ TXiM be the cor-
responding points on the tangent space TXiM. The norm
of vector xixj is equivalent to dg(Xi,Xj) [22]. There-
fore, it is possible to find a point Yi along the geodesic Xi

andXj whose geodesic distance toXi satisfies (12).
Along with the above definitions, we introduce the fol-

lowing definition and proposition:



Definition 3.2. Any point on an SPD manifold Xi ∈
Symd

+ is said to have normalised geodesic distance with
respect toXj ∈ Symd

+ if and only if dg(Xi,Xj) = 1.

Proposition 3.3. For any two SPD matrices X,Xµ ∈
Symd

+, there exists Xg on the geodesic curve defined on
X and Xµ, which has normalised geodesic distance with
respect to Xµ. The point Xg can be determined via:

Xµ
1
2

(
Xµ
− 1

2XXµ
− 1

2

)c
Xµ

1
2 , where c = ζ

dg(X,Xµ)
, for

ζ = 1.

To prove the above proposition, we let X,Xµ ∈ Symd
+

to be two given points on an SPD manifold. In order to
normalise the geodesic distance of X with respect to Xµ,
we map point X into tangent space TXµM. As a tangent
space is considered as Euclidean space where the distance
between X and tangent pole Xµ is preserved, Euclidean
vector normalisation can be applied. Finally the normalised
point is mapped back to the manifold. These steps can be
presented as:

Xg = expXµ

(
ζ

dg(Xµ,X)
logXµ(X)

)
(14)

By plugging in (1) and (2) we obtain:

Xg = Xµ

1
2 exp

(
ζ

dg(Xµ,X)
log(Xµ

− 1
2XXµ

− 1
2 )

)
Xµ

1
2

If we let c = ζ
dg(Xµ,X) , based on the fact that X and Xµ

are SPD matrices, we arrive at:1

Xg = Xµ

1
2 exp

(
log
(
(Xµ

− 1
2XXµ

− 1
2 )c
))

Xµ

1
2

which proves that:

Xg = Xµ

1
2

(
Xµ
− 1

2XXµ
− 1

2

)c
Xµ

1
2 (15)

Having ζ is equal to 1 results a normalised geodesic dis-
tance with respect to Xµ. However in our case to sat-
isfy Eqn. (12), we use ζ = δ ×max(dg(Xµ,Xj)), where
δ ∈ [0, 1] is randomly generated number according to uni-
form distribution.

4. Experiments and Discussion
We consider three computer vision classification tasks:

(1) texture classification [25]; (2) face recognition [23] and
(3) person re-identification [9]. We first detail the experi-
ment set up for each application and discuss our results for
the comprehensive study of the random projection space
discriminability on the tasks. To this end, we first embed
the SPD matrices into RKHS via the Stein divergence ker-
nel, followed by mapping the embedded data points into
a random projection space. The resulting vectors are then

1See the appendix for proof of logXc=c logX , where X ∈ Symd
+.

Figure 1. Top row: example of pedestrians in the ETHZ
dataset [29]. Middle row: example images from the Brodatz tex-
ture dataset [25]. Bottom row: examples of closely-cropped faces
from the FERET ‘b’ subset [23].

fed to a linear Support Vector Machine classifier, which
uses a one-versus-all configuration for multi-class classifi-
cation [10, 30]

The parameter settings are as follows. As suggested
in [19], we have used t = min(30, 14n), where n is the
number of samples chosen to create each hyperplane. For
the number of the random hyperplanes we have used vali-
dation data to choose one of n, 2n or 3n. Based on empiri-
cal observations on validation sets, the number of synthetic
samples was chosen as either n or m, where m be the num-
ber of samples per class. In a similar manner, the value of σ
in Eqn. (5) was chosen from {1, 2, . . . , 20}.

We compare our proposed method, here denoted as
Random Projection On SPD manifold for ImagE Classifi-
cation (ROSE), with several other embedding approaches
(tangent spaces, RKHS and hashing) as well as several
state-of-the-art methods. We also evaluate the effect of aug-
menting the training data with synthetic data points, and re-
fer to this approach as ROSE with Synthetic data (ROSES).

For the person re-identification task we used the modi-
fied version [29] of the ETHZ dataset [9]. The dataset was
captured from a moving camera, with the images of pedes-
trians containing occlusions and wide variations in appear-
ance. Sequence 1 contains 83 pedestrians, and Sequence 2
contains 35 (Fig. 1). Following [2], we first downsampled
all the images and then created the training set using 10 ran-
domly selected images, while the rest were used to shape
the test set. The random selection of the training and testing
data was repeated 20 times. Each image was represented as
a covariance matrix of feature vectors obtained at each pixel
location:
Fx,y=

[
x, y,Rx,y , Gx,y , Bx,y , R

′
x,y , G

′
x,y , B

′
x,y , R

′′
x,y , G

′′
x,y , B

′′
x,y

]
where x and y represent the position of a pixel, while Rx,y,
Gx,y and Bx,y represent the corresponding colour informa-
tion. C ′x,y , C ′′x,y represent the gradient and Laplacian for
colour C, respectively.



For the task of texture classification, we use the Bro-
datz dataset [25]. See Fig. 1 for examples. We fol-
low the test protocol presented in [32]. Accordingly, nine
test scenarios with various number of classes were gen-
erated, To create SPD matrices, we follow [2] by down-
sampling each image and then splitting it into 64 regions.
A feature vector for each pixel I (x, y) is calculated as
F (x, y) =

[
I (x, y) ,

∣∣ ∂I
∂x

∣∣ , ∣∣∣ ∂I∂y ∣∣∣ , ∣∣∣ ∂2I∂x2

∣∣∣ , ∣∣∣ ∂2I∂y2

∣∣∣]. Each region is
described by a covariance matrix formed from these vec-
tors. For each test scenario, we randomly select 25 covari-
ance matrices per class to construct training set and the rest
is used to create the testing set. The random selection was
repeated 10 times and the mean results are reported.

For face recognition task, the ‘b’ subset of the FERET
dataset [23] is used. Each image is first closely cropped
to include only the face and then downsampled (Fig. 1).
The tests with various pose angles were created to evaluate
the performance of the method. The training set consists
of frontal images with illumination, expression and small
pose variations. Non-frontal images are used to create the
test sets. Each face image is represented by a covariance
matrix, where for every pixel I(x, y) the following feature
vector is computed:

Fx,y= [ I(x, y), x, y, |G0,0(x, y)|, · · ·, |G4,7(x, y)| ] (16)

whereGu,v(x, y) is the response of a 2D Gabor wavelet cen-
tred at x, y.

4.1. Random Projection Space Discriminability

We first compare the performance of the proposed ROSE
method with several other embedding methods: (1) Ker-
nel SVM (KSVM) using the Stein divergence kernel,
(2) Kernelised Locality-Sensitive Hashing (KLSH) [19],
and (3) Riemannian Spectral Hashing (RSH), a hashing
method specifically designed for smooth manifolds [6].

Tables 1, 2 and 3 report the results for each dataset.
ROSE considerably outperforms the other embedding meth-
ods on the texture and person re-identification applications,
while being on par with KLSH on the face recognition task.
This suggests that the random projection space constructed

Table 1. Recognition accuracy (in %) for the person re-
identification task on Seq. 1 and Seq .2 of the ETHZ dataset;
KSVM: Kernel SVM; KLSH: Kernelised Locality-Sensitive Hash-
ing; RSH: Riemannian Spectral Hashing. ROSE is the proposed
method, and ROSES is ROSE augmented with synthetic data.

KSVM KLSH RSH ROSE ROSES
Seq.1 72.0 81.0 58.5 90.7 92.5
Seq.2 79.0 84.0 62.7 91.5 94.0

Average 75.5 82.5 60.6 91.2 93.2

by the random hyperplanes over RKHS offers sufficient dis-
crimination for the classification tasks. In fact, as we use
linear SVM for the classifier, the results presented here fol-
low the theoretical results from [31] which suggest that the
margin for the SVM classifier is still well-preserved after
the random projection.

We apply the ROSES method (ROSE augmented with
synthetic data) on the three tasks in order to take a closer
look at the contribution of the training data generating the
random projection hyperplanes for space discriminability.
As shown in the results, there is notable improvement over
ROSE in the ETHZ person re-identification as well as Bro-
datz texture classification datasets. However, using syn-
thetic points gives adverse effect on the FERET face recog-
nition dataset.

The results suggest that the training data contributes to
space discriminability. This is probably due to the fact that
each random projection hyperplane is represented as a lin-
ear combination of randomly selected training points. As
such, variations and completeness of the training data may
have significant contributions to the resulting space. The
performance loss suffered on the FERET face recognition
dataset is probably caused by the skewed data distribution
of this particular dataset. Hence adding synthetic points
would significantly alter the original data distribution which
in turn affects space discriminability. From our empirical
observation (while working with RSH), we found that all
data points are grouped together when an intrinsic cluster-
ing method was applied to the the dataset. The very poor
performance of RSH on this dataset supports our view.

Table 2. Recognition accuracy (in %) for the texture recognition
task on BRODATZ dataset.

KSVM KLSH RSH ROSE ROSES
5c 99.3 88.7 96.6 99.3 99.8
5m 85.8 43.6 81.9 90.1 88.4
5v 86.2 82.6 76.9 91.6 88.6
5v2 89.4 52.0 80.9 90.5 92.7
5v3 87.4 73.0 79.1 88.6 91.3
10 81.3 47.0 72.5 86.7 87.0
10v 81.5 48.0 69.3 88.1 88.5
16c 79.6 33.7 65.7 84.1 85.7
16v 73.4 35.5 59.0 77.1 79.8

Average 84.88 56.0 75.8 88.5 89.1

Table 3. Recognition accuracy (in %) for the face recognition task
on the ‘b’ subset of the FERET dataset.

KSVM KLSH RSH ROSE ROSES
bd 39.0 70.0 13.5 70.5 52.0
bg 58.5 80.5 31.5 80.5 61.5

Average 48.8 75.2 22.5 75.5 56.8



Figure 2. Sensitivity of random projection space discriminability
to the number of selected data points for generating the random
hyperplanes, as well as the effect of adding synthetic data points
for improving space discriminability. The graphs compare the per-
formance of ROSE and ROSES on 5c (top) and 5m (bottom) sets
of the BRODATZ texture recognition dataset respectively.

To further highlight the proposed ROSES method we
set an experiment on two sequences ‘5c’ and ‘5m’ of the
BRODATZ dataset. In this experiment we reduce the num-
ber of data required for creating the mapping function step
by step. First step we use all the provided training data to
construct the random projection space. Then, we progres-
sively discard training data points from a particular class to
construct the space. We repeat this process until there is
only one class left. Both ’5c’ and ’5m’ have a total of 5
classes where each class has 5 samples for training. We ran
the experiment on every single combination for each case

(e.g. when two classes are excluded, there are 10 combina-
tions) and present the average accuracy.

As shown in Fig. 2, there is a significant performance
difference between the ROSE and ROSES methods, high-
lighting the importance of the training data generating the
random projection hyperplanes. This performance differ-
ence is more pronounced when more classes are excluded
from the training data. We note that this training set is dif-
ferent from the training set to train the classifier. Although
we exclude some classes in the training set for constructing
the random projection space, we still use all the provided
training data to train the classifier.

4.2. Comparison with Recent Methods

Table 4 shows that on the FERET face recognition
dataset the proposed ROSE method obtains consider-
ably better results than several recent methods: log-
Euclidean sparse representation (logE-SR) [13, 37], Ten-
sor Sparse Coding (TSC) [32], Locality Preserving Pro-
jection (RLPP) [17], and Relational Divergence Classifica-
tion (RDC) [2].

Table 5 contrasts the performance of the ROSES method
(ROSE augmented with synthetic data) on the BRODATZ
texture recognition task against the above methods. We
note that in this case the the use of synthetic data is nec-
essary in order to achieve improved performance. On av-
erage, ROSES achieves higher performance than the other
methods, with top performance obtained in 7 out of 9 tests.

Finally, we compared the ROSES method with
several state-of-the-art algorithms for person re-
identification on the ETHZ dataset: Histogram Plus
Epitome (HPE) [4], Symmetry-Driven Accumulation of
Local Features (SDALF) [11], RLPP [17] and RDC [2].
The performance of TSC [32] was not evaluated due to
the method’s high computational demands: it would take
approximately 200 hours to process the ETHZ dataset.
We do not report the results for LogE-SR due to its low
performance on the other two datasets. The results shown
in Table 6 indicate that the proposed ROSES method
obtains better performance. As in the previous experiment,
the use of synthetic data is necessary to obtain improved
performance.

Table 4. Recognition accuracy (in %) for the face recognition
task using log-Euclidean sparse representation (logE-SR) [13, 37],
Tensor Sparse Coding (TSC) [32], Riemannian Locality Preserv-
ing Projection (RLPP) [17], Relational Divergence Classification
(RDC) [2], and the proposed ROSE method.

LogE-SR TSC RLPP RDC ROSE
bd 35.0 36.0 47.0 59.0 70.0
bg 47.0 45.0 58.0 71.0 80.5

Average 41.0 40.5 52.5 65.0 75.2



Table 5. Performance on the Brodatz texture dataset [25] for
LogE-SR [13, 37], Tensor Sparse Coding (TSC) [32], Riemannian
Locality Preserving Projection (RLPP) [17], Relational Diver-
gence Classification (RDC) [2], and the proposed ROSES method.

LogE-SR TSC RLP RDC ROSES
5c 89.0 99.7 99.2 98.2 99.8
5m 53.5 72.5 86.2 88.0 88.4
5v 73.5 86.3 86.4 87.0 88.6
5v2 70.8 86.1 90.0 89.0 92.7
5v3 63.6 83.1 89.7 87.0 91.3
10 60.6 81.3 84.7 84.0 87.0
10v 63.4 67.9 83.0 86.0 88.5
16c 67.1 75.1 82.0 88.0 85.7
16v 55.4 66.6 74.0 81.0 79.8

Average 66.3 79.8 86.1 87.6 89.1

Table 6. Recognition accuracy (in %) for the person re-
identification task on Seq.1 and Seq.2 of the ETHZ dataset. HPE:
Histogram Plus Epitome [4]; SDALF: Symmetry-Driven Accumu-
lation of Local Features [11]; RLPP: Riemannian Locality Pre-
serving Projection [17]; RDC: Relational Divergence Classifica-
tion [2].

HPE SDALF RLPP RDC ROSES
Seq.1 79.5 84.1 88.2 88.7 92.5
Seq.2 85.0 84.0 89.8 89.8 94.0

Average 82.2 84.0 89.0 89.2 93.2

5. Main Findings and Future Directions

The key advantage of representing images in forms
of non-singular covariance matrix groups is that superior
performance can be achieved when the underlying struc-
ture of the group is considered. It has been shown that
when endowed with the Affine Invariant Riemannian Met-
ric (AIRM), the matrices form a connected, smooth and dif-
ferentiable Riemannian manifold. Working directly on the
manifold space via AIRM poses many computational chal-
lenges. Typical ways of addressing this issue include em-
bedding the manifolds to tangent spaces, and embedding
into Reproducing Kernel Hilbert Spaces (RKHS). Embed-
ding the manifolds to tangent spaces considerably simplifies
further analysis, at the cost of disregarding some of the man-
ifold structure. Embedding via RKHS can better preserve
the manifold structure, but adds the burden of extending ex-
isting Euclidean-based learning algorithms into RKHS.

In this work, we have presented a novel solution which
embeds the data points into a random projection space by
first generating random hyperplanes in RKHS and then pro-
jecting the data in RKHS into the random projection space.
We presented a study of space discriminability for various
computer vision classification tasks and found that the space
has superior discriminative power to the typical approaches

outlined above. In addition, we found that the space dis-
criminative power depends on the completeness of training
data generating the random hyperplanes. To address this is-
sue, we proposed to augment training data with synthetic
data.

Experiments on face recognition, person re-
identification and texture classification show that the
proposed method (combined with a linear SVM) outper-
forms state-of-the-art approaches such as Tensor Sparse
Coding, Histogram Plus Epitome, Riemannian Locality
Preserving Projection and Relational Divergence Classi-
fication. To our knowledge this is the first time random
projection space has been applied to solve classification
tasks in manifold space. We envision that the proposed
method can be used to bring superior discriminative power
of manifold spaces to more general vision tasks, such as
object tracking.

Appendix
Here we provide more details to support Proposition 3.3:

we show that for SPD matrices, log(Xc) = c× log(X). For
this proof we let c be a discrete number, however we note
that it can be extended to continuous c .

log(Xc) = log(X ×X × ...×X︸ ︷︷ ︸
c instances of X

) (17)

Replacing X ∈ Symd
+ with its singular value decomposi-

tion (SVD) as X = UV U>, the above equation becomes:

log(Xc) = log(UV U> × ...×UV U>) (18)

As X ∈ Symd
+, the eigenvalue matrix U is orthonormal,

and hence U>U = I. As such, the following equation is
valid:

log(Xc) = log(UV cU>) (19)

Similarly, as X ∈ Symd
+, log(Xc) = U log(V c)U>, where

log(V c) is the diagonal matrix of the eigenvalue loga-
rithm [35]. Hence we have:

log(Xc) = U log(V c)U>

= cU log(V )U>

= c× log(X)
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