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RANDOM RECURSIVE CONSTRUCTIONS:
ASYMPTOTIC GEOMETRIC AND TOPOLOGICAL PROPERTIES

R. DANIEL MAULDIN1 AND S. C. WILLIAMS

ABSTRACT. We study some notions of "random recursive constructions" in
Euclidean m-space which lead almost surely to a particular type of topological
object; e.g., Cantor set, Sierpiriski curve or Menger curve. We demonstrate
that associated with each such construction is a "universal" number a such
that almost surely the random object has Hausdorff dimension a. This number
is the expected value of the sum of some ratios which in the deterministic case
yields Moran's formula.

We introduce the notion of a "random recursive construction" and prove several
basic facts about such constructions. We give specific examples which lead to
random Cantor sets, Sierpinski curves or Menger universal curves. It is perhaps
best to begin with a specific example of such a construction. To this end, let us
make some notation. Let N be the set of positive integers and R the real numbers.
If S is a set, let 5* be the set of all finite sequences of elements of S including
0, the empty sequence. If a = (ai,..., an) and ß — (bi,..., bm) are elements
of S, then |q| = n, the length of a, and a * ß = (ai,... ,an,bi,... ,bm). Now,
consider the following construction of a Cantor subset of [0,1], the unit interval.
(Of course, by a Cantor set we mean a compact, perfect, 0-dimensional metric
space.) Set J® = [0,1] and, by recursion, if Ja = [a,b], for a G {0,1}*, then set
Jo-,0 = [a,a + x(b — a)] and JCT*i = [o + y(b — a), b], where the point (x, y) is chosen
from the triangular region A = {(s,t) | 0 < s < t < 1} according to the uniform
distribution. It follows from the results given in this paper that with probability
one, the set

K = f]       (J     ̂
n    [ct6{0,1}™

is a Cantor set and the Hausdorff dimension of K, dimH(K), is (\/Ï7 - 3)/2.
The paper is organized into four sections. In §1, we define the notion of a

random construction and prove a few basic facts concerning such a construction.
We demonstrate that with each construction there is a number a such that with
probability one the object constructed has Hausdorff dimension < a. In this section,
we relate our results to some deterministic results of P. A. P. Moran [15].

In §2 (Theorem 2.1), we show that certain commonly occurring constructions
have finite moments of all orders. This result is necessary for our proof that with
probability one the Hausdorff dimension is a.
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326 R. D. MAULDIN AND S. C. WILLIAMS

In §3, we construct a random measure associated with the construction. For
each object Ku generated by the construction there corresponds a Borel measure
vw supported on KM such that if ß < a and E is a set with finite ß — m measure,
then Vu(E) — 0. More accurately, in Theorem 3.6, we show that there is a sequence
of measures i/w,n supported by Kw such that if ß < a and ß-m(E) < oo, then there
is some no with uu)tno(KUJ) > 0 and i^,no(.E) = 0. This, of course, implies that
dimH(Koj) — ex. Our methods involve a probabilistic mixture of some deterministic
results of Moran and of Rogers and Taylor [15, 16]. We remark that there is
at least one major unsolved problem in this context. The problem is that we do
not have conditions under which one can be guaranteed that with probability one,
a - m(Ku) > 0, although this seems to be the case with many constructions. We
comment on this at the end of §3. By a — m(E), we mean the measure of E with
respect to the Hausdorff measure defined by the function h(x) — xa.

In the fourth and last section, we give a number of specific examples of construc-
tions which we hope illustrate some of the possibilities. We give several examples
of random Cantor subsets of [0,1]. In Example 4.6, we construct random Cantor
subsets of [0,1] x [0,1] with Hausdorff dimension 1. In Example 4.7 we generate
random Sierpiñski curves. In Example 4.8 we generate random locally connected
nonplanar continua. We are unable at this time to show that they are Menger
curves. In Example 4.9 we modify the construction to generate random Menger
curves.

Our construction and the results we prove have features in common with sev-
eral other processes of current interest, and we believe our methods may be useful
in their development. For example, our construction incorporates two features
common to the theses of Mandelbrot [11, 12]. It certainly maintains a degree of
randomness and yet at the same time preserves some properties of self-similarity.
Perhaps even closer to the heart of the matter is the definition of fractal geom-
etry and a fractal given by Cannon [4]. A random construction codifies certain
geometric-algorithmic processes which by their nature exhibit some random behav-
ior. The examples given in the last section indicate what one can say about the
asymptotic geometric or topological shape of particular constructions. Falconer
gives a more complete listing of recent references and a development of some of the
central general issues [7]. Related topics are treated by Zähle [19].

1. Random constructions and the ^-function. Our general model is as
follows: We fix a Euclidean space Rm and a nonempty compact subset J of Rm.
We further require that J is the closure of its interior in Rm. We assume we have
a probability space (fi, S, P) and are given a family of random subsets of Rm,

J - I J0 | a G N* = (J N" I ,
I n=0 J

satisfying three properties.
(1) Jo(cj) = J for almost all oo G fi. For every a G N* and for almost all oo, if

Ja(ui) is nonempty, then Ja(uo) is geometrically similar to J.
(2) For almost every uo and for every a G N*, Jo-»i(w), Ja*2(to), Ja*Á^),- ■ ■ 1S

a sequence of nonoverlapping subsets of Ja(u). (A and B nonoverlapping means
intAnintS = 0.)
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RANDOM CONSTRUCTIONS 327

(3) The random vectors rCT = (Ta+i,Tat2,...), a G N*, are i.i.d., where Tatn(uo)
equals the ratio of the diameter of Jv*n(u) to the diameter of Ja(uo) if JCT(w) is
nonempty. (For convenience, let Tq)(uo) — diameter of J.)

We shall call such a system J a construction. Our constructions require only a
"stochastic ratio self-similarity". We now define the random set K by

oo

(l.i) k(uo)=n u j<»-
n=l o-€N"

Our interest centers on the asymptotic properties of this random set K.
For convenience, let 0° = 0. Then X^£=i ^ct*p(Co') counts the number of nonempty

J<t*p(w), if Jo-(^) is itself nonempty.

THEOREM 1.1. Suppose E(J2™=1T%) > 1. Then, with positive probability,
K is nonempty. Moreover, given that K is nonempty, then almost surely K has
Hausdorff dimension a, where a is the least ß > 0 such that E(^2^=1 T%) < 1.

We shall establish this theorem by proving several simpler theorems. But first
we shall show that a is well defined, relate our results to some results of P. A. P.
Moran [15], and motivate the hypothesis E(J2n°=i T°) > 1.

Let X denote m-dimensional Lebesgue measure and define $: [0, oo) —► [0, oo] by

(1.2) *(/?) = E ( Y tA =e(y Tain\ ,

where a can be any member of N*. Now, using the monotone convergence theo-
rem and the fact T¿ G [0,1] for each i, we see that $ is nonincreasing and right
continuous. We have

oo

(1.3) Y A(int(J«)) < A(int(J))
71=1

and by the scaling property of A,

(1.4) A(int(J„)) = T-A(int( J)).
Thus,

oo

(1.5) YTn<1     a-S-
71=1

Therefore, $(m) < 1. From these facts it follows that a is well defined. (An
example with a = m is given in Example 4.5.)

Concerning the calculation of a, note if $(y) < oo, then $ is continuous on
[y, +oo) and if, in addition, $(0) > 1, then $ is strictly decreasing on [y, oo). Thus,
if $(0) > 1 and $(/?) = 1, then ß — a. However, as Example 4.5 shows, in the
general case, $(a) may be less than 1.

An interesting special case of our construction occurs on a n-ary tree; i.e., for
some fixed n G N, our construction is

oo

Ja\aG{l,2,...,nY=[){l,2,...,ny
y=i
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328 R. D. MAULDIN AND S. C. WILLIAMS

or what is essentially the same in our construction using N*, we have Ylk=i ^k — n
a.s. In this case, $ is a finite valued continuous function, and if further $(0) > 1,
then $(ß) = 1 has a solution, and so trivially $(a) = 1. This will be used later.

As a further special case, if tq¡ is distributed as point mass at (ti, t2,..., tn, 0,0,
0,...), where £i, t2,..., tn > 0, Theorem 1.1 implies K has Hausdorff dimension a
where a satisfies the equation i" + t2 + ■ ■ ■ + t" — 1. This result was proved by P.
A. P. Moran in [15]. In this sense, a = min{/3 > 0 | E(T? + T^ +■■•■)< 1} and
E(Ty +T2 -\-) = 1, in the special case when $ is continuous, are generalizations
of Moran's equation.

For each d 6 N", we define the random variable la by

M
(1.6) la = diameter^) = J J Ta\n,

71 = 0

where |<r| is the length of the finite sequence a and a[n is the sequence obtained by
restricting a to its first n terms. (cr|0 — 0 — empty sequence.) For each n G N,
we let 7n denote the tr-algebra a — ({T7:1^1 < n}) = a — ({r7: |^| < n}). For each
neN and ß > 0, S0,n is the random variable

(1.7) Sß,n = Y t
o-eN"

We note the useful fact concerning conditional expectations:

(1.8) E{Sß,n+i\7n) = *{ß)Sß,n,
where oo • 0 = 0. In order to derive (1.8), we use (1.7) and (1.6) to obtain the
formula

(1.9) Sß,n+1 =Yl° Yt0
ffEN"        Lp=l

We obtain (1.8) by taking conditional expectations on both sides of (1.9), noting
that 1$ is ^-measurable for |cr| < n and noting

--e(yt^p]^^)

since ra is independent of 7n for n — \a\.
Now, we shall motivate the hypothesis $(0) > 1.
Clearly, 5Ujn counts the number of nonempty Ja for a G N". In fact, {So,«}^!

is a classical Galton-Watson branching process, in case P(J2T® < oo) = 1 (see [1,
pp. 7-8]). Further, $(0) is the mean number of offspring of a single parent in the
branching process. It is well known that if $(0) < 1, then either {Sn,«}^! is a
process bound for extinction (5n,n —► 0 as n —> oo a.s.) or it is trivial (So,« = 1 a.s.,
for each n). Thus, if $(0) < 1, either K = 0 a.s. or K is a point a.s. or K = J a.s.
On the other hand, if $(0) > 1, a slight generalization of the well-known result is
S = lim Soin exists a.s. and S G {0, oo} a.s.

If $(0) > 1, then P(S = oo) > 0. It is clear from what we have said that the
only interesting case is $(0) > 1. This will be assumed throughout the remainder
of the paper but often stated for emphasis.
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THEOREM 1.2.  Suppose $(0) > 1. Then for almost all uo,

(1.10) uS{u) = oo if and only if K(uo) ¿ 0".

PROOF. Clearly, if S(oo) ^ oo, then almost surely S(uo) = 0. Thus, there is some
n G N such that Srj,n(w) = 0. This means K(oo) Ç UCTeN" ̂(w) = 0-

For the converse we consider two cases: Case A: P(EtÎLi ^n < °°) = 1 aim
CaseB:P(£~=1T0 = oo)>0.

Case A. Since P(J2n=i ^n < °°) = 1> then a.s., for each n, LbeN" ^(w) ^s a
finite union of compact sets and thus is itself compact. Therefore, if S(u) = oo,
then fïnLi UctgN" ^(w) ^ 0, by the intersection property of a nested sequence of
nonempty compact sets.

Case B. Suppose P(Yln=:i ^n = °°) = Ô > 0. We claim that for any tr, the
following statement is true for almost all w:

(1.11) "If £~=1 T°„n(w) = oo, then there exists k G N
such that T* t(w) = 1 and E~ ^fc,» = °°."

To see this, let A be the event Yln°=iT¡r*n = °°> &k the event Vn < k, if
T0tn = 1, then Y%Li T°»n*> < oo and 5^ be the event Vn G N, if T°,n = 1, then
Yl'jLi ^tntj < °°. Let ^ consist of all finite subsets of N and Gk be the random
set {n < k[T°tn = 1}. Thus,

DeH
P(A n ßoo) < P(A nBk)=Y p(A n ßfe and D = Gfc)

oo

Yt°/ j    a*n*Y P\A,D = Gk;VnGD
DeH

j < oo
3=1

and, by independence,

= y p(A and ^ = CfcX1 - <5)#D'

where #E denotes the cardinality of E. Thus,
oo

P(A n ßoo) < ^ P(A and #Gfc = i)(l - «)\
7=1

Fix peN. Then
p

P(A n £«,) < 5^ P(A and #Gfc = t) + (1 - é)î'+1P(A and #Gfc > p + 1)
t=i

or,
P(A n ßoo) < P(A and #Gfc < p) + (1 - 8)p+1.

Letting k —y oo, we obtain

P(AnB00)<(l-8Y+1.

Now, letting p -> oo, we find P(AnB00) = 0 or P(ßoo|A) = 0. This yields (1.11).
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330 R. D. MAULDIN AND S. C. WILLIAMS

From (1.11), it is easy to see that the following statement is true almost surely:

(1.12) "If Jc(uo) ¿ 0 and £~=iT°*nM = oo, then there exists a se-
quence of natural numbers fci, k2, ks,... which depend on oo, so that
Ja*k¡*k2*-*kt(^) ^0 for each t. Thus, 0 ^ f|f=i J<r*k,*- -*kt(u) Ç
K(uo)\

Thus, we only need to establish that

(1.13) P   3<T G N* Ja ± 0 and Y r°*N = °° oo    = 1,

in order to complete the proof in Case B.
Let A be the event (V<r G N*[JCT ¿ 0 -> E^i7?.« < °°1)- For each k, let

A(k) denote the event (Vo- G Nfc[JCT ̂ 0 -» Y,ñ=i TS*n < °°])- Then, concerning
indicator functions, we have 1a < lA(n) and E(lA(n)[7n) = (1 - 8)s°<n. Now,
E(lA\7n) —» 1a as n —» 00. But, also, E(1a[7u) < (l-8)So'n -» (l-8)s as n —► 00
almost surely. Therefore, for almost all oo, if S(lo) = 00, then uo £ A.    Q.E.D.

To begin the demonstration of Theorem 1.1, we know, according to (1.5), $(m) <
1. Thus, if $(0) > 1, E(Sm+hn) = (diam(J)r+1(*(m+-l)") and£(£~=1 Sm+i,n)
= (diam(J))m+1/(l - $(m + 1)) < +00. This implies £CT€N„ l?+1 -* 0 a.s. So,
supCTgNr» l™+1 -* 0 a.s. Therefore,

(1.14) if *(0)> 1,      sup la -+0   a.s.
(TgN"

THEOREM 1.3. Suppose $(0) > 1. Then almost surely the Hausdorff dimen-
sion of K is < a.

PROOF. Since <£>(a) < 1, by (1.8), {Satn}^-1 is a positive supermartingale and
thus converges to some real random variable X. For each a G N*, there exists a
random m-sphere Ma so that JCT Ç Ma and the radius of MCT is l„. According to
(1.14), supaGN„ la —y 0 as n —> 00. So,

(1.15) a-m(K)<\im   V (diam(MCT))Q < 2aX < 00,
77—»OO      ^—-*

ctEN"

where q — m is the a-dimension Hausdorff measure.    Q.E.D.
REMARK. If $(a) = 1, then {5Q,n}rf=i is a martingale.
We will now begin consideration towards showing the Hausdorff dimension of K

is almost surely > a. First, some involved calculations concerning moments seem
necessary.

2. The moments of X.

THEOREM 2.1. Suppose $(0) > 1, k0 G N and E((J2ñ=iT£)k°) < 00. Then
{(Sa,n, 7n)}n°=i is Lp-bounded for all p G [1, fco]. Consequently, X = limn Sa,n has
a finite moment of order ka-

lt is sufficient to establish the following lemma.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RANDOM CONSTRUCTIONS 331

LEMMA 2.2.   For every k G [1, ko], {E(Sk n)}^=1 G l°° and for any 7 > a
any z€ (0,1], {[E(S^n)]'}^=1 G I1.

PROOF. For each p, n G N, let SPilin denote ECTe{i    p}" Q- For any k G (0,00
E(Skn¡n) < (di&m(J))~tkpnk. Consider

// /„ \\*

(2.1) E(S£.run+1\7n) = E

Thus, if k is also an integer,
V

E   « IX; 11 i*|
.<re{l,...,p}»       Vj=1

(2.2) ^.„+1 I 7n)=        Y       II */<0 II "£Í5>
/:{l,...,fc}->At=l 2 = 1

where A = {!,...,p}n, xa = Q for each a G A, mp,10 = E[(E?«iWl
and rj(/) = #{A G ker(/)|#A = j} with ker(/) = {f~x(Í)[i G A}.  Notice that
Ylj=i mp-Xj depends only on ker(/), the partition of {1,..., k} induced by /. So,
for each partition n, let mp;1,j denote this number. Thus,

(2-3) E(Sk.nn+1\7n) = Y mp-n^kn,
ttGP

where P is the set of all partitions and kn = Eker(/)=7r Il¿=i xf(i)- Our notation is
consistent with that given by Doubilet [6]. So, according to [6, Theorem 2, equation
13], we have

(2-4) E(sk.ltn+yjn) = Y mp-n,* Y M71"'*7)^;
7T6P cr>7r

interchanging order of summation,

(2.5) = Y s° E //(7r'CT)mpn,T'
UEf 7T<(T

where the Möbius function /x, the order < and the sCT's are as given in [6].
In our particular case,

(2-6) *=n S^ln,
1=1

where a(j) = #{A G a|#(A) - ¿}. Now, set B = {r/: {1,...._,*} -> Z+| £j=1 y»j(j)
= A;}, and

(2.7) cpn,7j = E E^'^Pn.T-
o-eP 7r<tT
ff=7)

We have

(2.8) E(Sk,^n+l\7n) = £ <™ f[ «£&»■
77GB J=l
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332 R. D. MAULDIN AND S. C. WILLIAMS

Taking expectations, and using the triangle inequality we find

k

(2.9) E(S^,n+l)<Y\C^,v\E\USp-lln
n&B \j=l

Let mltj = E(Ç}2°11 T^)J). If 7 > a and j G [0, ko], then mnj < 00 and mp-nj —»
m7j as p —> 00 for j = 1,..., k. Thus, cp.n^ —► c^>r) (where c-,,,, is defined similarly
to Cp;lt„). But, 5¿;7 g converges upward to S? as p —> 00. Taking limits in (2.9)
as p —» 00, we find

(2.10) E(Sktn+1)<YKr,\E
nEB

nqVtí)
3=1

Let £ denote the unique element of B such that £(1) = k. We calculate clt£. Note
there is only one a G P such that â = £, namely the discrete partition. Also, if
n < a, then 7r = a. So, according to (2.7) clt% = p(a,a)mly(T = ($(7))*. We can
rewrite (2.10) as

(2.11) £(S*n+1) < *(-Y)fc^(SÍ,„) + E \c™\E
neB

noi(j)°31,n
3=1

From this we derive by backwards recursion,

(2.12)   E(sk>n+l)<<¡>(1)k^r0k+ Y K,,lE$Wfc(n"t)¿;
776B t=0
nïi

J=l

Easily, -E(S^n) = $(7)™$ implies Lemma 2.2 for k = 1 since 4>(a) < 1 and
$(7) G (0,1) if 7 > a. As another special case, let k = 2. Then J5 has only two
elements (2,0) and (0,1). Thus,

$(7)2(n+l) + |Cx(oa)|¿$(7)2(n-t)$(2^t(2.13) E(S2¡n+i) < I?

In particular,

E(Sln+i)<l20a

t=o

(2.14)
i + kwo.DlE^2")'

t=o

< /2q-i '0 1 + lCa,(0,l)l
< OO,l-$(2a).

since $(2a) < 1 (because $(0) > 1). Actually, from (2.7) we have

Ca,(o,i)=Varí¿T«j.
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< l2zl

If 7 > a, then $(7) G (0,1) and $(27) G (0,1).  Using the fact if 0,6 > 0, then
(a + b)z <az + bz for any z G [0,1], we find
(2.15)

00 oo oo     n

Y\EKn)]z < E$w2an/oz'7 + K(o,i)izEE*w2*(n"t)*(2'Y)*i^
71=0 71 = 0 71 = 0 t = 0

1 1 1 1
1 - $(7)2* + ^'(O-1)1    1 - $(7p  '  1 _ $(2t)* J   K °°-

If 1 < k < 2, and z G (0,1], then [E(Skín)]z < [E(S1¡n)]z + [£(S*n)]*.   Thus
Lemma 2.2 is true for A; G [1,2].

Suppose Lemma 2.2 is true for k G [1, k — 1], where k < ko and k is an integer.
If n G B with î)^f, then 7/(1) < k - 2 and J^=iVU) < k - 1: Thus there
are nonnegative reals n,...,»■&, depending on 77, so that n(f)/k — 1 < r3- < 1
and Ej=iri = 1- Let p(v,J) — l/r¿. Then for each n G B with 77 ̂  £,
E*=i 1/P(V,J) = 1. p(v,f)v(f) < k - 1, and if 77(¿) ̂ 0, then n(j)p(n,j) > 1,
i.e., p(n,j)n(f) G [l,k — 1] if r/(j) ^ 0. By Holder's inequality,

(2-16) ^(n^(s)<nii^2iu,i)-
Substituting into (2.12), we find for z G (0,1]

(2.17) [£(S*„r < ̂ (1)zknqzk+ Y Kn\Z Y^l)zk{n-l-t] I! llO^J)'
77es t=o j=i

Let H^ = {II^Jll^lSo- If »?0") = 0, then obviously Wnj G ¿°°. If i/(j) > 0,
then Wn,j G l°° by the induction hypothesis and n(j)p(r],j) G [l,k—l]. But, since
77 t¿ £, there is some j > 2 so that 77 (j) > 1 which implies W„¿ G I1 since j'7 > a if
7 > a and j > 2. Thus if 7 > a, then

/ \ 00

i2-«) nii^iu.)   e/i-
- '=1 't=o

Obviously, using $(q) < 1,
A-

(2.19) sup([E(Sk¡n)]z) < irk + Y \c^\z   Y II WS&kv,3l    < °°-
n&B \t=0j=l J
vît '

If 7 > a, then $(7) G (0,1). Using this fact, summing both sides of (2.17), making
a change of variables and an obvious approximation, we obtain

00 nzk y^00   rrfc     \\c¡nU)iiz
O 9lY\    X^\T?(Qk    \]z ¿     -JO_1    V^  U       |g^t=0llj = l ll^n.t llp(7?J)
(2.20) 2J£(6-,,n)J   < ! _ $f )afc + A. lcTf.«il -! _ gM,fc- < °°-

71=0 V   '' Tjë5 V   ''
vtt

Since for any r G [k - 1, k] and z G (0,1],
(2.21) [E(S;,n)]z < [E(SkyJ)]z + [E(Sk,n)]z,
we have extended Lemma 2.2 to [l,k]. This completes the induction.    Q.E.D.
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3. The random construction measure.  We shall now define, for almost all
oo, a bounded countably additive measure v^ on the Borel sets of Rm satisfying:

(1) vw has total mass X(oo),
(2) vu{K(w)) = X(oo).

We shall call v the random measure of the construction J. Throughout this section
a is the number defined in Theorem 1.1.

First, we define the random functional F on Cc(Rm) = {/ G C(Rm)|/ has
compact support}: for / G Cc(Rm),

(3.1) F(f) = lim   Y fM%>
O-GN"

where sa G Ja when Ja ^ 0.

THEOREM 3.1. Suppose $(0) > 1. For almost all oo and for all f G Cc(Rm),
Fu(f) is well defined and is a positive linear functional of norm X(oo).

PROOF. For each a G N*, we define a random variable Xa by

(3.2) Xa = lim Sa,n,
71—>00

where
71

(3-3) Sa-n=    Y    llTa*[ri\i\-
776N" t=l

For each a G N*, Xa exists almost surely and has the same distribution as
X/(diam(J))Q. Further for each n G N, {Xa:a G N"} is an independnet fam-
ily and, as a family, independent of Jn. We note

(3.4) X= £ %X°-

The set fi' — {u G fi | Va G N*, X„(uo) exists and limn^oo sup^eNn l-,(w) = 0}
has probability one. Suppose / G Cc(Rm). For convenience, if p,q G N, then let
£P,q(u>) denote

Y /(a.M)/?M- Y /M"))EM •
crgNP crGN'

Temporarily fix k G N and suppose p,q> k. Then
(3.5)

£p,*= E^f E /wn^hw- E /(^^n^hiti
ctGN* \776NP-fc t=l 77GNi-fc t=l

< E<*
<rGNfc

SUp     |/(s<t»7,) - f(sCT)[Sa.p-k + \f(S(,)\ ¡Sc-p-k - Sa;q-k\

+    sup    |/(s<T»T,)-/(s(7)|S(Ti,_jk

<   Y ^[diam(/(JCT))(5CT;p_fc + 5a;(3_fc) + ||/||00|SCT;p_fc-5f,;q_fc|].
(TGN*1
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Thus,

hm   e„,,(w) < 2 Y Ç{u)àiam{f{Ja{u>)))Xa{w)
p,q—t-oo Á—*

(3.6) ffGNfc

< 2 sup dia.m(f(Jt7(oo)))X(uo)

if w G fi'. But, if w G fi', supCTgNíc diam(/(JCT(w))) —> 0 as fc —> oo. Thus,

(3.7) lim   £p Joo) = 0   if w G fi'.
p,q—>oo      '

Obviously, i7^ is linear positive and for any / G Cc(Rm) so that J Ç /_1(1), we
have FM) = lim„^ooECTGN"^(w) = K[w). Thus, ||FJ| = X(oo). We let i/„
denote the Borel measure on Rm so that Fu}(f) = /Rm f(x) duM(x).

THEOREM 3.2.   Suppose $(0) > 1. If A is a compact subset o/Rm, then

(3.8) u(A) =  lim      V     Z"XCT    a.s.
n—»no        ¿—^71—»OO

ctGN"
j„nA?i0

In fact,

(3.9) ^    /£XCT I u(A)    as n -» oo a.s.
o-GN"

j„nA#0

PROOF. Fix w G fi' and k G N. Let £ > 0. Since E^gn* l%{u)Xa(oo) is finite,
there is a finite set M Ç Nfc such that Ectgn*\m ^(w)^»(w) < £- Let / be a
continuous map of Rm into [0,1] such that /_1(1) = A and Ja C /-1(0) if a G M
and Ja n A = 0. Now

^(A)< /"    /^w=  lim    V  f(sa(oo))l«(uo)

= }™0   E        E      /(W^C^M
<TGNfc7iGNn-fc

(3.10) <**    y     E &,(«)
CTGNfc        tjGN"-*

J„(u))nA#0

+Ä   E     E w«).
CTGNfc\M    i)6N"-'

J„(w)nA=0

Note

So,

Ä   E     E  a,M = E'-M^M-*oo

^(A)<       Y      lo(oo)Xa(oo) + e.
<TGNfc

J„(w)nA^0
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Or,

(3.11) vu(A)<       Y      kM-M").
Jv(u)C\A^:<3

Since, for any a G N*, l%Xa = E£Li l%*nx<r*n, we have

(3.12) Y    EM**M>     E    '»*»•
ctGN* ffGN^1

j„(w)nA#0 j„(w)nA^0

Let pw(A) = hm„ECTGN";Anj„(oj)^0'CT(w)A^o-(w). Suppose B is a compact subset
of Rm disjoint from A; then there is a k G N so that if a G Nfc, then Ja meets at
most one of A and B. Thus, pu(A) + p^(B) < X(uo). Further,

(3.13) vu{A) + v„{B) < pM) + v»(B) < pM) + pu(B) < X(oo).
Find compact sets Bi C B2 Ç B3 C ■ ■ ■ Ç Ac so that v(Bn) Î u(Ac). We see

(3.14) X{u>) = vw(A) + ¡UAC) < pM + ^(Ac) < X(uo),

i.e., pM) = ^(A).    Q.E.D.
THEOREM 3.3.   Suppose $(0) > 1. Almost surely v(K) = X.

PROOF. Since K = Pl^Li U<t€N" ¿a is a nested intersection,

v(K)= lim v[  M   JA.
71—»OO I        ^^ /71—»OO

VctGN"

Temporarily fix n and let Ai Ç A2 Ç A3 Ç • • • be an increasing sequence of finite
subsets of N™ such that (J Aj = N". According to Theorem 3.2, we have, for each
i,

v ( U «M = &     E     «
j„n./„#0

for some o-gAí

>£EE ç.,*™» = E £*-•
ct€A¿ rjGN*1 o-GAj

m U ^) > E '"^ ^oo E %x° = x-   Q-ED-

Thus,

X>

THEOREM 3.4.  IfE(X) > 0, then P(v(K) > 0 | K £ 0) = 1.
PROOF. By hypothesis, £(X) > 0 and so P(X > 0) = 8 > 0. Recall that

for each a G N", X„ exists a.s. and has the same distribution as X/(diam J)a.
Further, for each n G N, {Xa [a G Nn} is an independent family and, as a family,
also independent of Jn. We note again

(3.15) X=  Y l°X°-
trGN"
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As in the proof of Theorem 1.2 we consider two cases:

A:        ?fe<ooUl    and    B:        P (£ Tn° = ooj > 0.

Case A. We will establish that for each n and q,

(3.16) P(X > 0 and S0,n > q) < (1 - o)qP(S0,n > q).
Since P(EtT=i Tn < °°) = 1, the random index set Dn = {a G N" | /„ > 0} is
finite. Let F be a finite subset of Nn. Using (3.15) we see

P(X = 0 and F = Dn) = P(X„ = 0 for a G F and F = Dn)
= (l-8)*FP(Dn = F),

due to independence. Now, inequality (3.16) follows by summing over finite F such
that #F > q and using (1 - 8)*F < (1 - 8)".

From (3.16), we calculate

(3.17) P(X > tí) > P(X > 0 and S0,n > q) > [1 - (1 - 8)i]P(S0,n > q).
Noting P(So,n > q) —► P(S = oo) as n —> oo, and letting n —> oo in (3.17), and
then letting q —y oo, we find

(3.18) P(X > 0) > P(S = oo).
But a.s.    "if S — 0, then there is some n G N so that So n = 0; i.e., X =
E„GNnk^=0"- Thus,
(3.19) "if X > 0, then S = oo"    a.s.
Combining (3.18), (3.19), Theorems 1.2 and 1.3, we find

«K £ 0 if and only if X > 0 if and only if u(K) > 0"    a.s.
Case B. Suppose P(E~=i Tn = °°) > °- As in the proof of Theorem 1.2,

with probability one, "if S = oo, then there is some a G Nfc such that J„ ^
0 and EíjLi^n = °°". But) since {X^.n}^, is an independent family with
common distribution, the distribution of X/(diam J)a, and since this family is
independent of T\v\+i, we have with probability one "if Jn y= 0 and Et^i ^n*n —
oo, then there is some k G N such that T°ti. = 1 and X^ > 0, i.e., X =
Ectgnm 1%X° Z la*kxv*k = i°T£fcX„.fc > 0". Thus, we may conclude with the
following statement: Almost surely "if S = oo, then X > 0".    Q.E.D.

The next theorem is a probabilistic mixing of the deterministic methods of Rogers
and Taylor [16] and Moran [15].

THEOREM 3.5. Suppose the construction J is such that there exists 8 > 0 so
that with probability one, if T¿(w) > 0, then T¿(w) > S. If $(0) > 1, then, for
almost all oo, for all ß < a and for all Borel E Ç Rm, if ß — m(E) < oo, then
v»{E) = tí

PROOF. Since for any 7 > 0, 8m ■ YT=iTx < YT=iTr < l a-s-> we have
EZi Ti  ^ V<5m a.s. It follows that

(3.20) E\{t'Tñ    zws«)*«».
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Consequently, by Theorem 2.1, E(Xt) < oo for all t G (0, oo).   Fix k > 0, and
ß < a; then for any t > 0,

E([ir0yxi)P{%Xa > kl?) <

and, by independence,
k*

,(a-ß)tE(C~P)t)E(Xt)
diam(J)Qtfct

which implies

(3.21)

V   P(laX    -  h!0) < E(S(a-ß)t,n)E(Xt)
l^niax„>kia)<     diam(J)Qtfct

_ $((a - ß)t)nE(Xt)
kl diam(J)at

o-GN

Choose io such that $((a - ß)t0) < 1. Thus,
oo

Y P& £N"3 laaXa > klßa)

^((a~ß)to)nE(Xt°)(3.22)
77=0

71=0
rc*° diam( J)at°

< oo.

Thus by the Borel-Cantelli lemma, P(3N 9 Vn > JV, if a G Nn, then l%Xa <
kl%) — 1. Fix oo so that i/w is defined and for which there is N(oo) G N so that if
a G Nn, n > N(oo), then l^(oo)Xa(oo) < kl^(oo). For each x G K(J) and p G N, let
AXtP = {a G N*\x G Ja(oo),la(oo) - diam(Ja(w)) < 2~p and diam(JCT| \„\_i(oo)) >
2~P}.

Suppose E is a compact subset of Rm with ß — m(E) < oo. Suppose Li,L2,...
is a cover of E by closed m-spheres so that diam(L¿) < e/2 for each i, where
£ = 1 A min{l0(oo) > 0\a G N^'}. For each i, there exists a p¿ G N so that
2-i-Pi < diam(Lj) < 2~p\ For each i, consider D% = \J{AXtPt\x G LiDEr\K(oj)}.
Now, Di is an antichain in the lattice N* with the natural partial order: a < n iff
3£ 3 a * £ = n. Thus, the set {Ja(oo):a G Di} is a nonoverlapping collection. For
any y G Li, \JaeD ^" — E(y,21~Pi). By the definition of AXiPi, if a G Ax,Pi, then
diam(JCT(w)) > 82~Pi, implying

A(Int JCT(w)) >
8 ■ 2-P'
diam(J)

Let Ni denote the cardinality of Di ; then
" 8 ■ 2-P' 1

A(IntJ).

Ni diam(J) A(int(J))< Y A(IntJff(w))
o-eDi

< X(B(y,21-p')) = 2~PimX(B(0,2)),

i.e.,

(3.23) N, < diam(J) AW,2)) =
A(Int(J))  -      <
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For any a G Dt, l^(oo)Xa(oo) < kl% < k[2^f < 2ß k diam(Lt)ß, implying,

(3.24) Y ÇM-M") < 20kMdiam(Li)l3.
o-eDi

For each i, let 71(2) denote max{|er|:c7 G Di}. Then

(3.25) uu(EnLi)<      Y      ¿?M^M < E'"M^M'
EnLiDjajt0

by Theorem 3.2 and the fact l%(u)Xa(u)) = J2ñ=i Cn(u)x<"n(w). Combining
(3.24) and (3.25) we find i/u(E) < 2ßkM'£ldi&m(Li)ß. Therefore, vu{E) <
2ßkMß - m(E) -> 0 as k -> 0.    Q.E.D.

THEOREM 3.6.   Suppose $(0) > 1.   Then P(K has Hausdorff dim > a|/C ^¿
0) = 1.

PROOF.  For each n G N, we define an auxiliary construction Jn = {Jna]a G
N*}by

for k = 1.lai
t'n

_ í Ja,     if ¿[cr|fc] > (l/n)l\a\k-i\
\ 0,     otherwise,

and Tn.a = l[i/n,oo)(Ta) ■ Ta.
Now,

(3.26) *n(/3) = £ ( E l[i/n,oo)(i;)^ J Î *(/3),

by the monotone convergence theorem. Thus, there is some JV0 ë N so that for all
n > N0, $n(0) > 1.

Let Kn(uo) = flptzi U<tgnp ̂ n^M- Obviously,

(3.27) IfnM Ç Kn+i(oo) C K(oo)

for all n. (For later use, note Snil,k = Eitgn* 'n;<T-)
For each n, let 7n = P(Kn is empty) and let 70 = P(K is empty). For each

n,p G N, let Cn;p denote P(E~ 1 ?S;, = p), and C0;P denote P(E~ 1 T° = p).
By a well-known formula (see [1]):

00

(3-28) iP = YCp^qP-
q=0

(This formula is correct even if PÇ^'Tn = °°) > 0.)
Set ^p(x) = -x + E^lo Cp-qxq. Clearly, ipp is defined on [0,1] for each p. Also,

for p > No or p = 0, 7P is the unique root of ipp in [0,1) (see [1, p. 4]). Moreover, ipp
is strictly convex for p> No and ipo is either strictly convex or linear with negative
slope. By (3.27), 7P > 7P+i > 70 for p G N. Thus, 7œ = limp^O07P exists and
7oo > 7o- Now Cp.q -» Co-q as p -+ 00 if q < 00. Easily, {V>n}£°=1 converges
uniformly to Vo on [0,7/vo]. Thus, 0 = ipn(ln) -* V'oboo), i.e., V'ofaoo) = 0. This
implies 7oo = 70 or

(3.29) lim P(Kn(oo) = 0) = P(K(oo) = 0).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



340 R. D. MAULDIN AND S. C. WILLIAMS

Now (3.29) together with (3.27) imply:

(3.30) For almost all u, llK(oo) ̂  0 iff for some n > N, Kn(oo) ¿ 0".

For each n, let an be the "a" for the construction J„. Note that since T„;¿ < 1,
for all i and ß > 0,

oo oo

(3.31) ETn;fe<ET^-
fc=l k=l

Since Tn-k £ (0,1/n), we have according to (1.5)
oo oo

(3-32) (i/nr£r°;fc<£r™fc<i.
fe=l fc=l

Thus, for each n, $„(0) < nm. So, for all n > No, $„ is finite valued, continuous,
strictly decreasing, and $n(an) = 1. Also, <&n < $n+i < $ for each n. Thus,
cxn < ûn+i < a for all n> No- This implies a^ = liuin^oo cxn < a. But,

1 = *»(<*„) > ^„(Ooo) = ^ | ¿Tpa«l[1/ni0o)(Tp) j Î $(aoo)

as n —> oo. Therefore, 1 > $(ooo) which implies Qoo > ex, i.e., a = a^.
We derive from (3.31) and (3.32)

(3.33) ^i(E^)   W™
Thus, by Theorem 2.1, {Sna k}k%i 1S an L2-bounded martingale. This implies
E(Xn) = E(Sn.anfi) = (X(J)r» > 0.

For each n > No, Jn satisfies the hypothesis of Theorem 3.5. Suppose ß < a
and K(oo) ^ 0. Then almost surely there exists an n > No so that an > ß and
/Cn(o;) t^ 0. By definition of i/n;ü, and Theorem 3.4, un.^(K(oo)) = vn.^(Kn(oo)) =
Xn(oo) > 0. Thus, by Theorem 3.5, almost surely ß — m(K(oo)) = oo. We can
conclude that if ß < a, then almost surely ß — m(K(oo)) = oo if K(oo) / 0.    Q.E.D.

In what has preceded, we have required of our construction only a "stochastic
ratio self-similarity". In order to ask a question of interest, we will now introduce
a version of a construction being "stochastically geometrically self-similar".

We let G denote the set of geometric similarity maps with domain J. In other
words,

G = {f:J -* Rn|3A G (0, oo) so that for all x, y G J, \\f(x) - f(y)\\ = X\\x - y\\},
where || • || is the Euclidean norm in Rm. Also, let Jp be the a-algebra of subsets
of fi generated by {Ja\ \a\ < p}.

Note 3.7. Suppose a G N?, P(Ja + 0) > 0 and Fa: fi X J -> Rm satisfies:
(1) Fa is Jp x S(J)-measurable.
(2) F„(oo, J) = J„(oo), if Ja(oo) / 0 for almost all oo.
(3) F„ G G a.s.

Define JCT =jJ,„|ij G N*} by Ja.„(oo) = [F^oo,-)]'1^^)). Then given J„ ¿
0, we have JCT is a construction (in fact fa-0 is equal in distribution to tc¡).  We
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say a construction J is stochastically geometrically self-similar if for each a G N*
with P(J„ ± 0) > 0, there is a Fa satisfying (l)-(3) of Note 3.7 so that JCT given
Ta ^ 0 is distributed the same as J, i.e., if B is a Borel subset of [2J]N , then
P(JCT G ß|JCT t¿ 0 and £0 = P(J G ß). All the examples given in §4 have this
property.

Question 3.8. Suppose J is a stochastically geometrically self-similar construction
indexed by an n-ary {1,..., n}*, n < oo, and P(Ti > 0; i = 1,... ,n) = 1 and
P( Ji fi Jfc ,¿ 0 if (i ^ j)) — 0. Then is it true for almost all oo that

0 < a - m(K{w))1

For the deterministic case, this was proved by Moran [15]. At least we know the
following facts in this case. Let a — E(cx - m(K)). Since our construction is
geometrically self-similar, for \a\ = k, we have

a = E(a - m(Ka)\Jk and Ja ^ 0).

Also, since for these constructions Ja ^ 0 a.s., we have

a = E(a-m(ka)\Jk).

We now claim

To see this, note

a — m(K) = (diam( J))a '

a-m(K)=      Y      cx-m(KnJa)=      Y      a-m(Ka),
tre{l,...,n}k aE{l,...,n}k

where Ka is the set obtained by pruning the tree to start at a with Ja.   For
a G {1,... ,n}k, let Fa be a random geometric self-similarity map,

a - m(K(oo)) = ,,.*,„        £       l^a - m(Fa(oo,-))-1(K(7(oo)).
1 H   n    »£{!,... ,n}*

This implies

g(a-m(K)|4)=      J £      ^[a-mOMJfc]
<TG{l,...,n}fc

[diam(J)]a

Now, letting k —y oo, we find

aXa — m(K)
[diam(J)]c

Using Theorem 2.1, it is easy to see {Sa)„}£Li is a L2-bounded martingale and
E(X) > 0. Thus, by Theorem 3.4, we see X > 0 a.s., so either a - m(K) > 0 a.s.
or a — m(K) = 0 a.s.
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4. Examples.
EXAMPLE 4.1. Let us note that the following simple deterministic process shows

that X(oo) may not yield a — m(K(oo)). Set J0 = [0,1], Jo = [|, |] and Ji = [§, |].
Given JCT = [a, b], set

Ja.o = [a + (b - o)/8, a + 3(6 - o)/8]
and

J„i = [a + 5(6 - a)/8, a + 7(6 - a)/8].
The Hausdorff dimension of the final Cantor set is a — ^.   In this construction

X(oo) = 1 a.s., whereas it can be shown that \ - m(K(oo)) — w|.
EXAMPLE 4.2. We return to the example described in the introduction of a

random Cantor subset of [0,1]. It follows from Theorem 1.1 that the Hausdorff
dimension of such a set in this construction is the number a such that

1 = E(T? + T2a) = 2 f   f xa + (1 + y)a dydx.
JO   Jx

In this case a = (s/V7 - 3)/2.
EXAMPLE 4.3. Another method of constructing a Cantor subset of [0,1] may be

described as follows.
Choose a number u from [0,1] with respect to the uniform distribution, then

choose x from [0, u] with respect to the uniform distribution on [0, u] and indepen-
dently choose a number y from [u, 1] with respect to the uniform distribution on
[u, 1]. Set Jo = [0,x] and Ji = [y,l]. Continue this process by rescaling to each
interval already determined. Again, according to Theorem 1.1, with probability
one, we obtain a Cantor set with Hausdorff dimension a — \¡2 — 1, where

l = $(a)= f    - f  xadx+-^— [ (l-y)ady   du.
Jo  VuJo i-y-Ju

This example arose naturally in the course of our study of random homeomorphisms
of [0,1] [6]. In that paper, a measure P is constructed on H, the space of orientation
preserving homeomorphisms of [0,1], which has the property (Theorem 4.16) of [8]
that if B is a Borel subset of [0,1], then

(*) X(B)= f X(h(B))dP(h).
Jh

In particular, if B is the Cantor subset of [0,1] constructed by repeatedly removing
the middle half interval, then X(B), the Lebesgue measure of B, is zero. Therefore,
according to (*) for P-a.e. h, X(h(B)) = 0. Example 4.3 shows that for P-a.e. h,
the Hausdorff dimension of the Cantor set h(B) is \/2 - 1. The measure P was first
studied by Dubins and Freedman [5].

EXAMPLE 4.4. Choose x from [0,1] according to the uniform distribution and
then choose y from [x, 1] according to the uniform distribution on [x, 1]. Set Jo =
[0, x] and Ji = [y,i]. Continue this procedure by rescaling to each of the intervals
already obtained. With probability one, we obtain a Cantor set with Hausdorff
dimension a, where

1 = E(T? + 'T?)= f    xa + -^- [ (l-y)ady
JO    l 1 - x Jx

In this case a = (-\/5 — l)/2.

dx.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



RANDOM CONSTRUCTIONS 343

EXAMPLE 4.5. We give a construction to show that the final Cantor set may
have the same dimension as the dimension of J@: Choose the positive integer n
with probability 2~™. Then partition the interval J0 = [0,1] into 2" +n intervals
of equal length, set J¿ = [2i/2n2+n, (2i + l)/2"2+n], i = 0,..., 2n2+n~1. Continue
this construction. We have

00

w = E2-
71=1

1
277 ¿ +71

ß
2n + 7Î-1

Thus, ${ß) = +-00 if ß < 1 and $(1) = \.
EXAMPLE 4.6. We construct at random a Cantor subset of [0,1] x [0,1] with

Hausdorff dimension 1. Choose four numbers pi,p2,p%,p<i independently from
[0,1]. Let xi — min(pi,p2), x2 = max(pi,p2), £3 — min(/Z3,/¿4) and £4 —
max(p3,p4). Let Ji = [0, si] x [0, si], where si = min(£i,£3), let J2 = [1 — S2,1] x
[0, s2], where s2 — min(x3,1 - x2). Let J3 be the largest square with one vertex
at (1,1) which lies in the rectangle [x2,1] x [2:4,1]. Similarly, let J4 be the largest
square with one vertex at (0,1) which lies in the rectangle [0, £1] X [2:4,1]. Finally,
consider the rectangle [£1,2:2] X [£3,2:4] and its center ((£1 +■ x2)/2, (£3 + £4)/2).
Let J5 be the largest square lying in this rectangle and having the same center.
Iterate this process. According to our results, with probability one the final object
is a Cantor subset of [0,1] X [0,1] with Hausdorff dimension a where

1 = $(a)

One can check

1 = $(a) = 5

////       (piAp2Ap3Ap4)adpidp2dp3dp4.
JJJJ[o,i]*

cl   rp4    rp.3    rp-2

4! /    /      /      /     p"dpidp2dp3dp
Jo Jo    Jo    Jo

or
1 = $(Q) = 5!/(a + l)(a + 2)(a + 3)(a + 4).

Obviously, a — 1.
Example 4.7 (SiERPiNSKi Universal Curve). Set J<z = [0, l]x[0,1]. Choose

£i)£2)£3) and £4 from (\,\) independently and each according to the uniform
distribution. Set Jx - [0, £1] x [0, xi], J2 - [l-x2,1] x [0, x2], J3 = [0, £3] x [l-£3,1]
and J4 = [1 — £4,1] x [1 — £4,1]. Since ^ < £i,£2 < 5, we have 1 — (£1 +■ £2) <
min(2;i,X2). Set J5 = [xi, 1 — £2] X [0,1 — (£1 + £2)]. Thus, J5 is a square having
one side a subset of a side of Ji and one side a subset of J2. Similarly, let Jo be
the square having one side in common with Ji, one side in common with J3 and
one side on the F-axis. J-¡ is a square similarly placed in relation to J2 and J4,
and Jg is similarly placed in relation to J3 and J4. Thus, the first stage in this
construction is analogous to the first stage in the construction of Sierpiñski's carpet
[17]. Of course, in Sierpiñski's construction there is no random element, one simply
partitions the unit square into nine congruent subsquares and deletes the middle
square. Our construction is more like a Swiss flag:

J«

Je

Ja

h Ji
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Now, one iterates this process. In order to see that the final set is a topological
Sierpiñski curve, we use Whyburn's topological characterization [18]. It is easily
seen that our final set is locally connected (since for each e > 0, it can be expressed
as the union of finitely many subcontinua of diameter < e) and its complement
with respect to S2, the two-sphere, is the union of countably many open disks
Di, D2, D3,... such that for each i and j, the boundary of D¿ is a simple closed
curve and if i ^ j, Di n Dj = 0. These properties characterize Sierpiñski's curve.

According to Theorem 1.1, the Hausdorff dimension of the final Sierpiñski curve
is a, where

1/2    /-1/2rl/¿ cl/¿    fl/¿
1 = $(<*) = 24/      xadx + U4 /      (í-(x + y))a

Jl/3 Jl/3   Jl/3
dydx

24
a + 1 2^+1     3<*+i a + 2

1/3
1 1

3Ö+T — ga+i

We know that $(1) > 1 [7, p. 107] (actually $(1) = f and $(2) < 1). Numerical
studies show that a = 1.8947.

EXAMPLE 4.8. Set J0 = [0,1] x [0,1] x [0,1]. Choose £¿, i = 1,2,... ,8, indepen-
dently from the open interval (5,5) and each according to the uniform distribution.
Let Ji be a cube lying in J with edge length £¿, with faces parallel to the coordinate
planes and with one vertex at (ii,i2, ¿3), where i — l + ii+ i22 + i^22. Let Jg be a
cube lying in J with edge length 1 — (xi + x2) having one face a subset of a face of
Ji, one face a subset of a face of J2, and one edge on the £-axis. Continue placing
cubes in this manner, until there are a total of twenty cubes. Then iterate this
construction inside each of these twenty cubes. The first stage of this construction
is somewhat like the first stage in the construction of Menger's universal curve [14,
p. 345]. (There is a sketch of this curve in the second edition between pp. 346
and 347.) Of course, in Menger's construction, one partitions the unit cube into 27
congruent subcubes and then one deletes the center cube and the six other cubes
having a face in common with it. It is easy to see that the final set K is a locally
connected continuum and that every nonempty open subset of K contains K$, the
complete graph on five vertices and also contains #3,3. Thus, our final object is
certainly nonplanar. If we knew K were one-dimensional, then we could use R. D.
Anderson's result [2, Theorem XII] to conclude that K is a Menger curve, but we
have been unable to show this.

According to Theorem 1.1, the Hausdorff dimension of the final universal curve
is a, where

1/2    /-1/2
1 = $(Q)=48/      xadx + 432 /      (1 - (x + y))adydx

Jl/3 Jl/3   Jl/3
48

a + 1 2a + l        3<*+l + a + 2

1/3
1 1

30+1 ~~ 6a+1

We have 2 > $(2) > 1 and $(3) < 1. Numerical studies show that a = 2.5968.
REMARK. Our Example 4.7, concerning Sierpiñski curves, is in accordance with

the category version. Mazurkiewicz showed that for almost all (in the sense of
category) continuous maps / of [0,1] into [0,1] x [0,1], the image /([0,1]) is a
Sierpiñski curve [13].   On the other hand, our Example 4.9, concerning Menger
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curves, stands in contrast with the category version for almost all continuous maps
/ of [0,1] into [0, l]3, the image set is an arc [10].

Example 4.9 (Menger Universal Curve). Let J0 = [0,1] x [0,1] x [0,1].
Choose Xi, i = 1,2,..., 8, independently from the open inteval (0, ^) with common
uniform distribution. Construct subcubes Ji,..., Js as in Example 4.8. Let k(xi •
x2) be the least positive integer greater than 3(1 — X\ — x2)/(xi A £2). Now, place
fc(£i,£2) nonoverlapping subcubes of J with equal edge length, each with an edge
on the i-axis and forming a chain from Ji to J2. Similarly, join each pair of
the original eight cubes which are adjacent. This completes the first stage in the
construction. Iterate this process in each of the subcubes obtained so far. As in
Example 4.8, it is easy to see that K is a locally connected continuum and every
nonempty open subset of K is nonplanar. To conclude that K is a Menger curve,
we first estimate the Hausdorff dimension of K. We have

f1'2   a i1/2  f1/2 /l-x, -x?\ß
$(/?) = 16/      xßdx + i8 /      ¿Kzi.zaH-rr-*—^)   àxxdx2.

Jo Jo     Jo \  k(xi,x2)   )
In particular,

3 Jo     Jo k(xx,x2)
2  , ,0 i1/2 /1/2(*iA£2)

C2

rl/¿    ci

<^+48/       /       K"x y "¿l (1 - £1 - £2) dxi dx2
3 Jo     Jo

<¡ + ie
Cl/¿     ÇX2

j       /     xi(l - xi — x2) dxi dx2
Jo     Jo

/■1/2    /-1/2
/       /       £2(1 - £1 - x2)dxi dx2

Jo      Jx2
2 /"1/2    çx2

< - + 32 /       /     x\ — %\ — £2£i dxi dx2.
3 Jo     Jo

So, $(2) < %.
Since $ is finite valued, we have that diniH(K) — a < 2. This means that the

topological dimension of K is < 1 [9, p. 8]. Thus, with probability one, K has
dimension one and according to Anderson's theorem, K is a Menger curve.
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