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ABSTRACT

Context. In order to identify best crop genotypes for recommendation to breeders, and ultimately
for use in breeding, evaluation is usually conducted in field trials across a range of environments,
known as multi-environment trials. Increasingly, many breeding traits are measured over time,
for example with high-throughput phenotyping at different growth stages in annual crops or
repeated harvests in perennial crops. Aims. This study aims to provide an efficient, accurate
approach for modelling genotype response over time and across environments, accounting for
non-genetic sources of variation such as spatial and temporal correlation. Methods. Because the
aim is genotype selection, genetic effects are fitted as random effects, and so the approach is based on
random regression, in which linear or non-linear models are used to model genotype responses.
Amethod for fitting random regression is outlined in a multi-environment situation, using underlying
cubic smoothing splines to model the mean trend over time. This approach is illustrated on six
wheat experiments, using data on grain-filling over thermal time. Key results. The method
correlates genetic effects over time and environments, providing predicted genotype responses
while incorporating spatial and temporal correlation between observations. Conclusions. The
approach provides robust genotype predictions by accounting for temporal and spatial effects
simultaneously under various situations including those in which trials have different
measurement times or where genotypes within trials are not measured at the same times. The
approach facilitates investigation into genotype by environment interaction (G × E) both within
and across environments. Implications. The models presented have potential to increase
accuracy of predictions over measurement times and trials, provide predictions at times other
than those observed, and give a greater understanding of G × E interaction, hence improving
genotype selection across environments for repeated-measures traits.

Keywords: crop variety selection, cubic smoothing splines, linear mixed models, MET, MEMT,
multi-environment trials, random regression models, statistical genetics.

Introduction

The challenging objective of plant breeding programs is to improve crop performance 
through the development of new varieties. This requires the selection of the best 
performing breeding lines for traits of interest from breeding trials usually conducted 
across multiple environments (locations and years), known as multi-environment trials 
(METs). In order to optimise selection, it is important that the statistical methods used 
for analysing data from these breeding trials are as accurate and efficient as possible. 
A common approach for the analysis of METs is based on the linear mixed model (for a 
review, see Smith et al. 2005), which provides a flexible framework in which variety by 
trial effects can be modelled while accounting for within-trial error variation, for 
example due to spatial location, management practices and experimental design, even 
when data are unbalanced with not all varieties or breeding lines grown at all sites. 
Kelly et al. (2007) demonstrated the superiority of using linear mixed models with 
factor analytic (Smith et al. 2001) modelling of variety by trial effects, together with the 
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spatial modelling approach of Gilmour et al. (1997), for  
selection of superior varieties in the MET situation. 

Often, repeated measurements are taken on the plants 
within these breeding trials, for example multiple harvests 
in perennial crop trials, repeated sampling, or non-invasive 
measurements at various stages over the growth cycle of 
annual crops (e.g. with light detection and ranging 
(Rebetzke et al. 2016) or canopy temperature (Deery et al. 
2016) through high-throughput phenotyping). The aim of 
these trials is to obtain accurate predictions for genotype 
performance over time and across a range of environments. 
Therefore, interest lies in the overall performance of varieties 
across time, as well as the interactions between genotype and 
time, genotype and environment, and genotype, time and 
environment. 

Statistical analyses of data from such multi-environment, 
multi-time (MEMT) genotype selection trials need to model 
the genetic or genotype effects over time and sites in an 
appropriate way. These genotype effects may change over 
time and sites, and the effects may be correlated within and 
between sites. Because the aim of crop variety selection 
trials is selection of varieties, the standard approach is to 
treat these genotype effects as random effects. One approach 
to model the genotype effects over time is to model directly 
the variance–covariance matrix of genotype effects, for 
example using an unstructured genetic covariance model or 
factor analytic models. (Smith et al. 2007; De Faveri et al. 
2015; Verbyla et al. 2021). This approach may be extended 
to the MET situation, using separable site by time models with 
unstructured or factor analytic models for each component, or 
by using a full direct modelling of the variance–covariance 
structure for sites by times using a factor analytic model 
(Smith et al. 2007; De Faveri 2013). 

Although this approach may model the variance– 
covariance structure well, often the aim is to model the 
genetic response over time, and then to allow for prediction 
of genotype effects at times other than measurement times. 
The curves themselves may be of interest (De Faveri et al. 
2015), and hence, a model for the (usually smooth) trend 
for genotypes over time is desired. An approach that allows 
for this is to model the genetic profiles over time using a 
random regression (or random coefficients) model (Laird 
and Ware 1982). The random regression model is commonly 
used to model lactation curves and cattle growth data (Meyer 
1998, 2005a; Schaeffer 2004). It has also been applied in 
the genetic analysis of forestry trees at single sites (Apiolaza 
et al. 2000; Apiolaza and Garrick 2001; Wang et al. 2009), and 
single-site crop genetic analyses (De Faveri et al. 2015; 
Forknall et al. 2019), but its application in crop METs is 
limited. Often the random regression approach is imple-
mented via orthogonal polynomials, Legendre or cubic 
polynomials (Campbell et al. 2018); however, more flexible 
bases such as splines can be used, for example B-splines 
(Meyer 2005b) or cubic smoothing splines (Verbyla et al. 
1999; White et al. 1999; Huisman et al. 2002; DeGroot 

et al. 2003). Verbyla et al. (1999) used cubic smoothing 
spline random regression for modelling the unit effects in 
order to account for the temporal correlation between 
repeated observations, and De Faveri et al. (2015) used 
linear random regressions, with an underlying cubic 
smoothing spline for the mean response for persistence over 
time in a single lucerne breeding trial. 

In the linear random regression models, the random 
intercepts and slopes are correlated to ensure that the model 
remains invariant to translation (Verbyla et al. 1999). When 
there are further spline random regression terms in the 
model, it is desirable to correlate all random intercept, 
slope and spline terms to ensure the model is invariant to a 
change in basis (White et al. 1999; Welham 2008; De 
Faveri 2013). However, fitting these models with a full set 
of correlations to ensure invariance to a change of basis is 
extremely difficult and often fails. Fortunately, in practice, 
although the underlying mean trend may require flexible 
spline modelling, the random variety or genotype deviations 
from the mean can often be modelled using simpler structures, 
for example linear or quadratic polynomial random regres-
sions (Evans and Roberts 1979). 

The genotype effects are the primary aim; however, they 
may be masked by non-genetic effects, which include 
effects due to the design of the trial and residual effects. It 
is important to model these non-genetic effects, including 
spatial and temporal correlation between observations 
within a trial (Smith et al. 2007; De Faveri et al. 2015; 
Verbyla et al. 2021). 

In this paper, an approach will be presented for analysing 
data from MEMT crop genotype selection trials that accounts 
for both spatial and temporal variation and correlation within 
a trial, and also models the random genotype effects over time 
and trials, using underlying cubic smoothing splines, with 
linear deviations that are correlated across trials and times. 
The method of analysis was applied to data from a set of six 
experiments investigating repeated sampling of grainfill 
in wheat. 

Materials and methods

Motivating data

The motivating data come from a set of wheat genotype 
experiments conducted by CSIRO, investigating grain-filling 
over thermal days for 128 genotypes grown across six 
environments in 2017. The experiments were conducted at 
three locations (Narrabri, labelled N; Merredin, M; and 
Yanco, Y) with trials at each location being either irrigated 
(Ir) or rainfed (Rf), and hence grown as separate trials. The 
experiments were contained and managed in the national 
Managed Environment Facilities (Rebetzke et al. 2013). 
Each trial consisted of 128 entries in a partially replicated 
(p-rep) row–column design (Cullis et al. 2006) with 28 
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rows by 6 columns (168 plots) at M, 12 rows by 14 columns 
(168 plots) at N, and 10 rows by 16 columns at Y (160 plots). 

The wheat genotypes represented high and low grain-
filling wheats (Rebetzke et al. 2017) from four commer-
cial breeding populations assessed in a previous study 
(G. Rebetzke, unpublished data). Several commercial and 
overseas introduced high grain-filling wheat varieties were 
also included. Plots were managed to control disease, 
and nutrients applied to maximise grain yield potential 
for the site. At each site, an irrigated treatment and a 
rainfed treatment were applied, with irrigation determined 
by measures of crop water use and soil-water availability 
(data not shown). Plots were monitored regularly for 
development and 15 ears harvested from each plot from 
immediately before flowering through to plot maturity. At 
each harvest, 15 heads were randomly sampled twice-
weekly from each plot and then dried at 72°C for 4 days 
before weighing. Date of sampling was converted to 
thermal time (in degree-days) as the sum of daily mean 
temperature – base temperature (here assumed 0°C) from 
the first harvest (Day 0) to final harvest. 

The trait investigated in this paper is ear weight over 
thermal time through grain-filling from immediately before 
flowering to harvest maturity. Data were collected on 
genotypes and control varieties in each experiment, over 
multiple times (8–11 measurement times, depending on the 
location) during the growing season, at varying degree-
days, as given in Table 1. The aim of the trials to evaluate 
genotype responses for grainfill and investigate genotype by 
environment interaction for this trait. 

A plot of the raw grainfill data over degree-days for the 
128 genotypes in each environment is given in Fig. 1. The 
data show variation in ear dry weight over thermal time 
(in degree-days) between entries within a trial and differences 
between trials. The ear weight profiles follow a general 
similar overall trend with increasing weight over degree-
days up to a point where the profiles flatten out and either 
reach an asymptote or start to decline. There are clear 
differences between environments, with N trials increasing 
more rapidly at the start than the other trials. Y trials 
increase more gradually and do not reach weights as high 

Table 1. Trial layouts and measurement times.

Environment Rows Columns No. of
measurement

times

Sampling times
(degree-days)

M17Ir, M17Rf 28 6 11 0, 70, 189, 310, 428,
512, 610, 740, 895,

1012, 1207

N17Ir, N17Rf 12 14 8 0, 99, 191, 354, 467,
601, 782, 944

Y17Ir, Y17Rf 10 16 9 0, 109, 246, 394,
527, 665, 765, 915,

1078

yjsðiÞðtÞ = μjðtÞ + f jsðtÞ + ug,ijðtÞ + uo,jsðtÞ + ejsðtÞ (1) 

y = Xτ + Zgug + Zouo + e (2) 

where τ is a vector of fixed effects with design matrix X; ug is 
the h+m × 1 vector of genotype (or genetic) effects for 
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as the other trials. Note the difference in degree-day measure-
ment times among the different locations (N, M and Y).

Statistical methods

De Faveri et al. (2015) presented a single-stage random
regression analysis for repeated-measurement traits in crop
variety selection trials for individual environments, based
on a linear mixed model. A cubic smoothing spline was
used to model the overall, non-linear mean underlying
response profile, and a linear random regression was used
to model the genotype deviations from the overall trend. In
addition, the linear mixed model accounted for any residual
spatial and temporal correlation present. Here, we extend
the single-site approach to the multi-environment situation.

Suppose we have t trials in which m varieties are grown
(not all varieties need to be grown in all trials). The jth trial
consists of nj plots in a rectangular array consisting of cj
columns by rj rows (nj = rjcj) and hj measurement times
(degree-days in our study), which may vary across trials.
The measurement times are given by tjk (k = 1,2, : : : ,hj) for
the jth trial. The total number of trial by time combinationsP
is h t

+ =P j=1 hj, and the total number of observations

is N = t
j=1njhj.

If yjs(i)(t) is the observation at time t for spatial location s
(indexed by row and column) in trial j, with genotype i
planted in that plot, the models fitted to the grain-filling
data are of the form:

where all terms on the right-hand side are presented as
dependent on time, although some need not be in some
applications. The functions μj(t) represent an overall trend
for each trial; fjs(t) are fixed effects (there could be several
but they are represented by a single term here) that can
depend on the trial and spatial location; uo,js(t) are non-
genetic random effects that can depend on the trial and
spatial location; and ejs(t) are residual effects, for example
local spatial trends not explained by other terms in the
model. The term u (t) is the genetic effg,ij ect for genotype i
at time t in trial j, and these effects are of primary interest.

Eqn 1 presents the observations as a continuous function of
time, but the actual data are observed at the discrete sets
of times given by tjk. Thus, let yj be the hjnj × 1 vector of
observations for trial j, ordered as rows within columns
within times. The data combined across trials are denoted
by y= ½yT1yT2 · · · yTt �T ; this is an N × 1 vector. Once all terms
in Eqn 1 have been specified, a linear mixed model may be
written for the data y (combined across times and trials) as:

www.publish.csiro.au/cp
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Fig. 1. Raw ear size filling data over thermal time for 128 experimental genotypes assessed across the six environments. M, N, and Y refer
to Merredin, Narrabri and Yanco sites, respectively; Ir and Rf are irrigated and rainfed watering regimes.
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individual trial by time combinations with associated design
matrix Zg (N × h+m); uo is a vector of other random effects,
with associated design matrix Zo; and e is the N × 1 vector
of residuals.

The random effects from the linear mixed model are
assumed to follow a normal distribution with zero mean
vector and variance–covariance matrix:

 " #! " #ug Gg 0 0
var uo = 0 Go 0

e 0 0 R

Modelling the underlying mean trend for each
environment

The underlying mean trend for each environment (μj(t))
may be non-linear and may be modelled using polynomials.
Alternatively, natural cubic smoothing splines (NCSS)
(Verbyla et al. 1999) can be used to provide a more flexible

specification. The NCSS (Green and Silverman 1994) can
itself be formulated as a mixed model (Verbyla et al. 1999),
with fixed terms (intercept and slope of a simple linear
regression) for each environment. The curvature or non--
linearity for each environment is included as an additional
random effect with a variance parameter that relates to the
underlying smoothing parameter of the NCSS. With the
spline models, if there is replication it is possible to include
a lack of fit or non-smooth random term, which is assumed
to be independent and identically distributed. This term has
been included for each environment in the analyses
presented in this paper. All of the components described
are trial-specific and contribute to Xτ and Zouo in Eqn 2.

Modelling non-genetic fixed and random effects
The only fixed effects in Eqn 2 are the fixed linear

regressions for each trial; these are the fjs(t) of Eqn 1. Each
trial was based on a row–column design, and hence for
each trial by time combination, the block, row and column
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effects were included as non-genetic independent random 
effects, that is, in uo,js(t) in  Eqn 1 and in Zouo in Eqn 2. In  
addition, a plot random effect at each trial connects the 
repeated measures over degree-days, also in uo,js(t) and Zouo. 

Modelling residual effects
In METs, the full residual covariance matrix R is typically 

given by a block diagonal matrix: 

R = diagðRjÞ 

where Rj is the residual variance matrix for the jth trial 
and diag forms a block diagonal matrix with blocks given 
by R1,R2, : : : ,Rt. Therefore, each trial has its own residual 
covariance structure and residuals are assumed independent 
between trials. 

The residual covariance matrix for the jth trial Rj models 
the spatial correlation and temporal correlation between 
repeated measurements in the trial. In this paper, these 
residual covariance matrices have been modelled using a 
three-way separable spatio-temporal process (Smith et al. 
2007; De Faveri et al. 2015). Therefore, the structure is 
assumed to be: 

Rj = Rjh ⊗ Σcj ⊗ Σrj 

where Rjh is a covariance matrix that incorporates temporal 
correlation (between times) and possibly heterogeneous 
variance across times for trial j; and ∑cj and ∑rj are the 
column and row local spatial correlation matrices for trial j, 
here taken as autoregressive models of order 1 (ar1) with 
spatial correlation parameters ϕrj and ϕcj in the row and 
column directions, respectively (Gilmour et al. 1997). In the 
analyses, the temporal covariance components (Rjh) have 
been modelled using unstructured and ante-dependence 
models (Gabriel 1962; Kenward and Roger 1997). In these 
analyses, the separable residual models assume the same 
spatial correlation parameters ϕrj and ϕcj) for each time 
within each trial. 

Modelling genetic effects
At the genetic level in MEMT trials, the aim is to model the 

interaction between trial, time within trial, and genotype. 
This is genotype by environment interaction (G × E), where 
environment not only includes location but also time 
effects. In general form, the variance matrix for these 
genetic effects across times and trials may be represented 
by Gg = Gth ⊗ Im where Gth is a h+ × h+ genetic variance 
matrix indexed by all of the trial by time combinations, and 
Im is the assumed structure for the varieties (note that 
pedigree and/or genomic information could be included 
here, if available, to relate varieties via relationship 
matrices; see for example Oakey et al. 2006). 

In the balanced (or near-balanced) case of the same 
number of times at the same times at each site, Smith et al. 
(2007) show that Gth may be modelled using a separable 
form, namely: 

Gth = Gt ⊗ Gh (3) 

where Gt represents the trial genetic covariance structure 
(variances and covariances within and between trials), 
and Gh represents the time genetic covariance structure 
(variances and covariances for the times). The matrix Gt 

connects the environments and could be fully unstructured, 
or if t is large, a more parsimonious factor analytic 
structure (Smith et al. 2001, 2015) could be used, that is: 

Gt = Λt ΛT
t + Ψt (4) 

where Λt is a t × l matrix of loadings (l is the number of 
factors), and Ψt is a t × t diagonal matrix of the so-called 
specific variances. As the number of factors l increases, the 
approximation to a fully unstructured form generally 
improves. Note that the separable form (either unstructured 
or factor analytic) will require a constraint on the 
parameters for identifiability. 

Note that, although the separable form Eqn 3 is desirable 
for ease of interpretation and computing advantages, the 
separable structure implies that the genetic correlation 
between pairs of times is the same for all trials. This may 
not be the case in practice. 

The discussion above has focused on models for the 
variance structure of genetic effects. If the aim is to model the 
genotype responses over time using a continuous function, 
the random regression model (Laird and Ware 1982) 
provides a suitable approach for MEMT data. 

Random regression approach
Although the underlying mean trend at each environment 

may be non-linear, the genotype deviations from this trend 
may often be linear over time (Evans and Roberts 1979), 
but they may vary over both varieties and environments. 
The intercept and slope of these lines may be taken as 
random rather than fixed, analogous to the basic quantita-
tive genetics model in which genotype effects are taken as a 
random factor. If the genetic effects ug have components 
ug,ijk for genotype i, trial j and time k, where the actual 
time is tjk, a linear random regression model allowing for 
genotype by environment interactions is: 

ug,ijk = uij0 + uij1tjk + ue,ijk (5) 

where uij0 and uij1 are the random intercept and slopes for 
genotype i at trial j; and ue,ijk is a residual deviation from 
the linear random regression, that is, a lack-of-fit term. The 
intercepts uij0 provide a prediction of performance at 
tjk = 0, so typically the time variable is centred so that the 
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origin is at the midpoint, or average of the times. The slopes 
uij1 provide the rate of change of the effect of the genotype, 
and hence the speed at which the performance changes 
over time. 

aTug,ijk = jkuij + ue,ijk

Putting the equations for varieties i together for site j and 
times tjk, we have: 

ug,j = Ajuj + ue,j 

where the kth row of Aj is aTjk; and ug,j, uj and ue,j are vectors
of total, linear random coefficients, and residual genotype 
effects for site j. For all sites, if A = diag(Aj), a block 
diagonal matrix with blocks Aj, the model for all genotype 
by time effects is: 

ug = Au + ue (6) 

In Eqn 6, both u and ue are independent random effects 
with zero mean. The linear random coefficients u have a 
variance matrix given by Gt2, where the t indicates 
dependence on the trials, and the two indicates linear 
(intercept and slope) for the time dimension; and the error 
or residual term ue has a variance matrix given by diagðσ2 

e,jImj 
Þ.

The variance model for the genotype linear random 
regression effects u could be a separable or full structure. A 
separable structure for Gt2, the linear random coefficients 
across trials, would be of the form Gt ⊗ Gg,c, where: 

is a (common across trials) 2 by 2 matrix of variances and 
covariances for intercepts and slopes. The matrix Gt can be 
unstructured or of factor analytic form given by Eqn 4. 

As mentioned in the previous section, a separable structure 
may be too restrictive. A full structure for Gt2 is a 2t × 2t fully 
parameterised or unstructured variance matrix, which allows 
for differing variances and correlations of linear random 
coefficients both within and across trials. Again, if 2t is 
large, the fully unstructured covariance matrix may be 
difficult to fit, and then a more parsimonious factor analytic 
structure (Smith et al. 2001) may be used. In this case, like 
(Eqn 3): 

Gt2 = ΛΛT + Ψ (7) 

where Λ is a 2t × l matrix of loadings, and Ψ is a 2t × 2t 
diagonal matrix. 

Model comparison and testing
All analyses were performed in ASReml-R (Butler et al. 

2018), using residual maximum likelihood (REML) estimation 

(Patterson and Thompson 1971) and best linear unbiased 
prediction (BLUP) of random effects (Robinson 1991). 
To test the significance of random effects in the linear mixed 
model, the residual maximum likelihood ratio test (REMLRT) 
can be used, but the distribution may be non-standard if the 
test involves variance parameters (see De Faveri et al. 2015). 
For non-nested models an information criterion, for example 
the Akaike information criterion (AIC), can be used, based 
on the full log-likelihood and REML estimates even if the 
fixed effects differ across models (Verbyla 2019). 

Results

Analysis of each trial separately

First, an analysis of the data at each environment was 
conducted, in order to investigate spatial and temporal 
models for each trial. This analysis was based on a linear 
mixed model (as in Eqn 2 but for a single trial) (De Faveri 
et al. 2015). In each analysis, the mean underlying trend 
was modelled using a cubic smoothing spline, and linear 
random regressions were used to model  the genotype devia-
tions from the mean trend. Further genotype curvature was 
tested by fitting additional genotype cubic smoothing spline 
terms, but these were not statistically significant in all 
environments (although close to significant at N17Rf and 
Y17Rf; 0.05 < P < 0.10). 

In each analysis, the random design terms for block, row 
and column for each measurement time were included in 
the model. In addition to accounting for the trial design, 
the spatial analysis approach of Gilmour et al. (1997) and 
Stefanova et al. (2009) was followed, including terms for 
extraneous and global trend and modelling local spatial corre-
lation using a separable autoregressive process of order 1 in 
the row and column directions. Temporal correlation was 
incorporated into the model through three-way, separable 
spatio-temporal residual models together with a plot or 
unit/subject effect (Diggle 1988; De Faveri et al. 2015). 
Various spatio-temporal residual models were compared, 
using AIC, for each environment (Table 2). 

The residual models tested for the single-site analyses 
included a single residual variance model (R1) with no 
account for spatial or temporal correlation and assuming a 
common variance across all times (Table 2). Although this 
model is not advocated, it is sometimes used, but as can be 
seen here (based on AIC comparisons), it is very restrictive 
and simplistic and can be greatly improved. The second 
residual model (R2) allowed for different residual variances 
for each time and separate ar1 spatial parameters in row 
and column directions at each time. There was no account for 
temporal correlation. The model was a significant (P < 0.05) 
improvement from R1 (Table 2). The third model (R3) was a 
separable residual model with different residual variances 
for each time (as in model R2) but included common 
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Table 2. AIC comparison of residual models (given in both statistical and ASReml notation) fitted to analysis for each site× irrigation environment
separately.

Residual model M17Ir N17Ir Y17Ir M17Rf N17Rf Y17Rf

R1 R= σ2e Ic ⊗ Ir ∼ units 930 342 1051 1017 447 1213

R2

R3

R= diagðσ2hΣch ⊗ ΣrhÞ ∼ dsumð∼ar1ðColÞ: ar1ðRowÞjddayfÞ 
R= diagðσ2hIhÞ ⊗ Σc ⊗ ΣrÞ ∼ diagðddayfÞ: ar1ðColÞ: ar1ðRowÞ 

491

470

164

145

497

477

476

461

187

177

448

430

R4 ΣanteR= ∼ anteðddayfÞ: ar1ðColÞ: ar1ðRowÞh ⊗ Σc ⊗ Σr 23 2 27 0 13 46

R5 ΣUSR= ∼ USðddayfÞ: ar1ðColÞ: ar1ðRowÞh ⊗ Σc ⊗ Σr 0 0 0 – 0 0

In all models a random plot term has been included as well as random block, column, row terms for each measurement time. AIC values are based on the full likelihood
and are expressed as the difference from the best model within each environment. See Methods for explanation of each environment.

spatial parameters across the times. Once again, this model 
did not incorporate temporal correlation between repeated 
measurements. This model was a significant (P < 0.05) 
improvement from model R2 at each environment (Table 2), 
indicating that in this case, a separable model assuming 
common spatial correlation parameters across the times 
could be suitable. The next model (R4) modelled the 
temporal correlation with an ante-dependence structure of 
order 1, using a three-way separable model. This model was 
a significant (P < 0.05) improvement on previous models, 
indicating the importance of modelling the temporal 
correlation. The final model (R5) also fitted a three-way 
separable spatio-temporal residual model, but this time 
used an unstructured covariance model for the temporal 
component. In this model, the plot term was omitted. This 
model was the best at five of the six environments (with 
M17Rf not converging) (Table 2). Hence, a mixture of ante-
dependence and unstructured residual models (R4 for 
M17Rf and R5 for M17Ir, N17Ir, Y17Ir, N17Rf, Y17Rf) was 

chosen for the across-environment MET analysis, described 
in the following section. 

Analysis of MET data (across trials)

The data were then combined across environments and a 
full MET random regression model (METRR) was fitted using 
Eqn 2. There was significant (P < 0.05) underlying curvature 
for the mean trend in each environment. In turn, this 
curvature was modelled using a separate cubic smoothing 
spline for each environment. The genotype deviations about 
the underlying environment mean responses were modelled 
using linear random regressions with correlated random 
intercepts and slopes, using a fully unstructured variance– 
covariance matrix of size 12 × 12. Thus, variances for 
all random intercepts and slopes for the six environments 
were estimated, as were the covariances (or correlations) 
for all pairs of the full set of 12 effects, and therefore 
12 × 11/2 = 66 covariances or correlations. 

Table 3. Matrix showing genetic variances for intercepts (bold) and slopes (bold italics) along diagonal, and correlations between intercepts and
slopes off-diagonal.

Intercepts Slopes

M17Ir M17Rf N17Ir N17Rf Y17Ir Y17Rf M17Ir M17Rf N17Ir N17Rf Y17Ir Y17Rf

M17Ir 2.223 0.963 0.931 0.859 0.836 0.856 0.928 0.999 0.887 0.747 0.674 0.883

M17Rf 0.963 2.187 0.863 0.781 0.803 0.810 0.857 0.974 0.800 0.625 0.656 0.827

N17Ir 0.931 0.863 2.504 0.980 0.843 0.962 0.828 0.885 0.990 0.848 0.673 0.999

N17Rf 0.859 0.781 0.980 2.031 0.796 0.847 0.799 0.780 0.975 0.944 0.648 0.880

Y17Ir 0.836 0.803 0.843 0.796 0.994 0.999 0.704 0.757 0.746 0.702 0.919 0.999

Y17Rf 0.856 0.810 0.962 0.847 0.999 0.677 0.776 0.817 0.847 0.656 0.856 0.942

M17Ir 0.928 0.857 0.828 0.799 0.704 0.776 0.973 0.999 0.853 0.803 0.605 0.905

M17Rf 0.999 0.974 0.885 0.780 0.757 0.817 0.999 0.824 0.860 0.688 0.652 0.905

N17Ir 0.887 0.800 0.990 0.975 0.746 0.847 0.853 0.860 1.138 0.975 0.639 0.946

N17Rf 0.747 0.625 0.848 0.944 0.702 0.656 0.803 0.688 0.975 1.200 0.679 0.748

Y17Ir 0.674 0.656 0.673 0.648 0.919 0.856 0.605 0.652 0.639 0.679 0.401 0.904

Y17Rf 0.883 0.827 0.999 0.880 0.999 0.942 0.905 0.905 0.946 0.748 0.904 0.212

Correlations between intercepts and slopes within the same environment are underlined.
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The genetic variance components for the intercepts 
and slopes at each environment are presented in Table 3 
(along the diagonal), and the genetic correlations between 
intercepts and slopes across and within environments are 
given off-diagonal. 

As seen in Table 3, there was genetic variance for intercepts 
and slopes within each trial. There was genotype by 
environment variation, because the estimated genetic 
variances for intercepts differed across environments, as did 
the estimated variances for the slopes or linear trends; thus, 
the ‘average’ overall performance (intercepts) and the rate 
of change over time (slopes) exhibited G × E variation. 
Environments M17Ir, M17Rf, N17Ir and N17Rf had larger 
genetic variance for intercepts than Y17Ir and Y17Rf. These 
intercepts were predicted at the midpoint of degree-days 
across the trials (503 degree-days) and show that there 
was variation between genotypes in the actual level of ear 
weight at this point. The genetic variance for slopes was 
also greater for environments M17Ir, M17Rf, N17Ir and 

N17Rf than Y17Ir and Y17Rf. Large slope genetic variance 
indicates that varieties differed in their linear slope 
component of the non-linear response. 

The genetic correlation between experiments for intercepts 
was high (0.78–0.99). Thus, the ranking of genotypes, in 
terms of their ‘average’ performance was similar across all 
environments. Similarly, the genetic correlation between 
experiments for slopes was high (0.61–0.99), and hence, 
the ranking of genotypes in terms of rate of change over 
time was similar across environments. The intercepts and 
slopes at each environment were highly correlated (0.92– 
0.99), and hence, genotypes that had high ear weight at the 
midpoint of degree-day measurements (503 degree-days) 
also had high slopes. Thus, genotypes with high ‘average’ 
performance also had high rate of change over time. 
Therefore, in terms of trends over time, there was little 
evidence for crossover of genotypes within a trial, and this 
is clear in Fig. 2 where the fitted curves for all genetic 
effects over time are presented. 

Fig. 2. Plots showing predicted ear weight over degree-days for all genotypes in each environment from METRR model based on cubic
smoothing splines and linear genotype deviations.
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In terms of the full set of genetic correlation between 
intercepts and slopes, the values were generally high (0.63– 
0.99), so that rankings of ‘average’ performance and rate of 
change were reasonably consistent, although not as high as 
within a trial. 

A selection of genotypes and their predicted response 
profiles across thermal time for each environment is 
presented in Fig. 3. These genotypes were chosen from the 
full set of 128 entries because they exhibited high or 
low ear weight, or genotype by environment interaction. 
This can be seen more clearly in Fig. 4 where the linear 
deviations for each of these genotypes are plotted for each 
environment. For example, entries INQALAB91, SB169 and 
3113 had consistently higher slope over all experiments, 
resulting in consistently higher ear weight and faster time 
to reach maximum weight. Some genotypes (e.g. SB171) 
had a very large slope in some experiments but smaller 
slope in others, showing G × E interaction. Some genotypes 

had consistent negative deviation slopes, indicating that 
they take longer to reach maximum and have smaller ear 
weight than average (e.g. DH_117, DH0085 and DH0117). 
Some genotypes had large negative slopes in some 
experiments but not at all (e.g. 3151 and 3133). 

Plots of predicted intercepts (predicted at the midpoint 503 
degree-days) against slopes for a subset of genotypes in the six 
experiments are shown in Fig. 5. In selection of better 
genotypes, those having both a large intercept and large slope 
may be preferred. For example, SB169 and INQALAB91 
produce both large intercept and slope, whereas line 2995 
is opposite, producing both a negative intercept and negative 
slope in all experiments (Fig. 5). Line 2995 could not be 
recommended based on performance and rate of filling. On 
the other hand, based on those criteria, line SB171 could be 
a recommended line in genotype selection. Thus, the pairs 
of intercepts and slopes provide a selection index in terms 
of grain-filling. 

Fig. 3. Plot showing predicted ear weight over degree-days for a selection of genotypes in each environment from METRR model with
underlying cubic smoothing splines.
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Fig. 4. Plot showing genotype linear deviations for a selection of genotypes in each environment from METRR model.

While genotype comparisons and interactions with 
environment may be investigated through the intercepts 
and slopes of genotype deviations from the underlying 
mean profiles, other measures can also be obtained for 
comparison. Of direct interest to the breeder is the maximum 
ear (grain) weight and time to reach maximum weight. By 
taking derivatives of the cubic smoothing splines for each 
genotype and equating to zero (Green and Silverman 1994; 
J De Faveri, AP Verbyla, G Rebetzke, in prep.), the time to 
maximum ear weight can be estimated and, hence, provide 
the maximum ear weight at this time. These measures are 
shown in Fig. 6. 

Discussion

The analysis presented in this paper provides a single-
stage approach for modelling repeated-measures traits in a 
multi-environment crop genotype or variety trial setting, 

correlating genetic effects over trials and times, while 
accounting for sources of non-genetic spatial and temporal 
correlation and trends. The approach allows insight into 
G × E by investigating the genetic variance matrix (Table 1). 
The approach also shows flexibility in providing robust 
solutions for situations where not all environments have the 
same number or range of measurement times. 

In this analysis, linear random regressions were imple-
mented for the genotype deviations from underlying 
environment mean profiles. The random intercepts and 
slopes were correlated across the six environments by using 
an unstructured 12 × 12 variance–covariance matrix. With 
further trials and, hence, more parameters to be correlated, 
the unstructured matrix may be difficult to fit; therefore, 
more parsimonious covariance models such as the factor 
analytic model could be used (Smith et al. 2001). ASReml-R 
(Butler et al. 2018) code for fitting both the unstructured 
and factor analytic models are given in Supplementary 
material File S1. 
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Fig. 5. Plots of intercepts and slopes for each genotype in each environment (for linear deviations).

In this case, the variety deviations were able to be modelled 
using linear random regressions; however, other situations 
may require a non-linear model. For example, quadratic 
(or higher order polynomial) random regression terms could 
be used, in which case a full unstructured covariance matrix 
for the random coefficients would be required. Alternatively, 
a cubic smoothing spline could be used. In that case, a full set 
of covariances between the linear (intercepts and slopes) and 
the spline random effects would be required to provide a 
model that is invariant to translation and change of basis. 
In the cubic smoothing spline situation this can prove difficult 
in practice. Instead, it may be better to use B-splines, with 
coefficients correlated across trials. This is the subject of 
current research. 

The approach presented here accounts for spatial 
and temporal correlation within a trial, using a three-way 
separable, spatio-temporal residual model, together with an 
overall plot or unit/subject effect. Although this separable 
model accounts for the important sources of variation, it is 
somewhat restrictive and assumes common spatial correla-
tion parameters across the measurement times. In the 
example presented here, the separable model was shown to 

be a suitable option, but in other situations this assumption 
may not hold. More flexible residual models allowing for 
varying spatial correlation may provide an improvement, 
for example 2DIMVAR1 residual models (De Faveri et al. 
2017) or three-dimensional tensor spline residual models 
(Verbyla et al. 2021). This is also the subject of further work. 

The analysis enables prediction of genotype responses for 
grainfill and facilitates investigation into G × E interaction 
in the grainfill process among genotypes under different 
environments. The results show some entries with consis-
tently higher ear weight and faster time to reach maximum 
ear weight across environments, and other entries with 
more variation in their response across environments. The 
splines implemented in this analysis provide a flexible 
approach to modelling the grainfill process with allowance 
for the non-asymptotic nature of the genotype responses. 
Resulting derivatives of the predicted splines allow for 
estimation of further traits of interest such as maximum 
weight, time to maximum, and a continuous rate of grainfill 
function (not presented here). This is in contrast to some 
classical two-stage methods of fitting curves such as 
the logistic or Gompertz to such data and subsequently 
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Fig. 6. Plots of time to maximum ear weight vs maximum ear weight for each genotype in each environment (obtained from derivatives of
splines).

analysing derived parameters. A comparison of these 
different approaches is the subject of a paper in preparation 
(J. De Faveri, A. P. Verbyla and G. Rebetzke). 

The models presented in this paper result in accurate 
genetic predictions over measurement times and trials by 
optimally accounting for non-genetic effects, allowing for 
predictions at times other than those observed, and giving a 
greater understanding of G × E interaction, hence improving 
genotype selection across environments for repeated-
measures traits. 

Supplementary material

Supplementary material is available online. 
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