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Abstract

Accounting for genotype–environment interactions may improve genetic prediction and parameter estimation. The 
objective was to use random regression analyses to estimate variances and thereby heritability for intramuscular fat (IMF) 
across longitude and latitude coordinates within the continental United States. Records from the American Hereford 
Association (n = 169,440) were used. Analyses were first conducted using the continental United States in its entirety, and 
then as subdivided into two or four regions. Data were analyzed with an animal model, and linear and quadratic random 
regressions of additive genetic merit on longitude or latitude as covariate (separately). Subdivided data were analyzed 
with linear random regressions unique to regions. Regions were North and South separated at 40°N latitude, or West and 
East separated at 99°W longitude using longitude or latitude as covariate, respectively. Further subdivision to four regions 
included additional boundaries of 44.46° and 36.46°N latitude and 104.55° and 92.22°W longitude. The estimated heritability 
of IMF from the traditional model was 0.19 ± 0.004. Without regional subdivision of data, quadratic random regression 
had the best fit for the data based on likelihood ratio tests using longitude or latitude as covariate (P < 0.01). Estimates of 
heritability from quadratic random regression on latitude ranged from 0.12 in the South to a high of 0.27 at the extreme 
Northern latitude. Estimates of heritability from quadratic random regression on longitude ranged from 0.17 in the middle 
of the parameter space (corresponding to the central United States) to 0.37; higher estimates were noted at the extremes, 
that is, the far West and East longitudes. Random regression analyses of data divided into regions were conducted with 
a linear coefficient, as increasing to a quadratic polynomial was never accomplished. Results from random regression on 
latitude in the East region were similar to results from analyses without regions (h2 ranged from 0.09 to 0.32); however, 
estimates of heritability in the West region had a lower range from South to North (0.14 to 0.27). Estimates of heritability 
from random regression on longitude with data divided into two regions were similar to those from analyses that did not 
include region. Estimates in the South region were somewhat lower and had a lower range (0.15 to 0.31) than those from 
the North region (0.19 to 0.47). When data were further subdivided, estimation of only a subset of covariances among 
random regression coefficients was possible, that is, within-region covariances of intercept and linear terms (latitude); 
those and covariances between all linear random regression coefficients were estimated when longitude was the covariate. 
Results from random regression analyses of data with four regions modeled produced very high estimates of heritability 
in low latitudes in the furthest West and high latitudes in the furthest East region, with approximate difference of 0.3 and 
0.2 between estimates in the two West regions and the two East regions, respectively. Results from random regression on 
longitude indicated higher estimates of heritability in North region, especially at the furthest East longitudes of the most 
Northern region. There appeared to be substantial additive genetic variance differences, as well as estimates of heritability, 
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that correspond to different geographical environments as modeled by random regressions on within-region latitude or 
longitude coordinates.

Key words:  genetic prediction, Hereford, intramuscular fat, random regression

  

Introduction

Genetic merit is likely contextual, and it may be beneficial 

to predict location-specific genetic merit for economically 

important traits. Burns et  al. (1979) found genotype–

environment interactions (G × E) in Hereford cattle for multiple 

traits including birth weight, preweaning gain, estimated 205 

d weight, and body condition score. Fennewald et  al. (2017) 

identified G × E for weight at birth and weaning in different 

regions within the United States for Red Angus. Genetic variation 

within breed subpopulations reared in different environments 

impacts heritability (Blackburn et  al., 2017) and can lead to 

over- or underestimate breeding values if predictions are done 

without accounting for environment. Notter et al. (1992), Hayes 

et al. (2016), and MacNeil et al. (2017) have supported the use of 

G × E in beef cattle genetic evaluation, but G × E has not been 

employed in U.S. National Cattle Evaluation. Not accounting 

for G × E could lower the rate of genetic change for traits. The 

American Hereford Association has records to account for G × 

E in genetic merit predictions. Among relevant traits fit for this 

analysis strategy, intramuscular fat (IMF) impacts beef quality, 

and its improvement in postnatal life via nutrition is governed 

by the genetic potential of the breed (Pethick et  al., 2004; 

Hocquette et al., 2010).

Random regression procedures make it possible to model G × 

E and attain a greater level of precision for parameter estimates 

and genetic merit predictions (Cardoso et al., 2012), as well as 

to estimate parameters across environment gradients instead 

of just for a given set of environments (Santana et  al., 2015). 

Accounting for geographical location would help producers 

select sires more fit to the environment in their operations. 

The objective of this study was to estimate genetic parameters 

for IMF in American Hereford using random regressions across 

latitude or longitude coordinates within continental United 

States.

Materials and Methods

Records

Records were provided by the American Hereford Association. 

Using open source databases (http://federalgovernmentzipcodes.

us/), longitude and latitude coordinates were obtained for each 

IMF record using the U.S. Postal Service zip code of the ranch 

listed as the breeder. Contemporary groups were defined by the 

American Hereford Association, combining information related 

to herd, sex, management group, and birth date of the animals. 

Records without an associated zip code or with no contemporary 

group assignment were removed. Records greater than the mean 

+4 SD or less than the mean –4 SD were considered outliers 

and removed. After editing, the final data included 169,440 IMF 

records. The pedigree included 227,902 ancestors.

Statistical Analyses

Analysis assessed the benefits of using linear or quadratic 

random regressions of IMF on latitude or longitude coordinates 

versus traditional animal models in genetic parameters 

estimation, accounting for United States as a unique 

geographic location. Linear random regressions were evaluated 

subdividing the United States into two and four regions, in 

order to identify the impact of an increase in geographical 

subdivision of the country over genetic parameters estimation. 

Regional subdivision was performed as an attempt to assess 

the joint influence of latitude and longitude on parameter 

estimation, as interactions of random regressions were not 

accomplished. Random regressions (either linear or quadratic) 

were modeled using Legendre polynomials. Distributions of 

records across the United States subdivided in four regions for 

latitude and longitude analyses are presented in Figures 1 and 2,  

respectively.

The animal model followed this form:

y = Xβ + Zu+Wc+ e

where y is a vector of IMF records, β is a vector of estimated fixed 

effects for a linear regression on longitude or latitude coordinate, 

u is a vector of random additive genetic effects, c is a vector of 

random contemporary group effects, e is a vector of residuals, 

and X, Z, and W are incidence matrices relating observations in 

y to values in β, u, and c.

Expectation for the components in the random vector was 

equal to vectors of 0, with variance–covariance structure:

Var





u

c

e





=





G 0 0

0 C 0

0 0 R





in which G = Aσ2
a
, where A is the numerator relationship matrix 

constructed with the pedigree information, and σ2
a
 is the additive 

genetic variance; C = Iσ2
c
, where I is an identity matrix and σ2

c
 is 

the contemporary group variance; R = Iσ
2
e
, and σ2

e
 is the residual 

variance.

The linear and quadratic random regression models followed 

the general form:

y = Xβ + Qu+Wc+ e

in which y, β, c, and e vectors are as described for the animal 

model, and u is a vector of random regression coefficients for 

additive genetic effects. X and W are incidence matrices as 

described for the animal model, and Q is the design matrix 

containing the longitude or latitude coordinates as covariates, 

and relates the IMF records in y to the additive genetic random 

regression coefficients in u. The number of columns in the 

Q matrix is equal to the order of the random regression (two 

or three for the linear and quadratic random regressions, 

respectively). Expectation of the random vectors is a vector of 

0. The variance–covariance structure is:
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where A is the numerator relationship matrix, G is the covariance 

matrix of additive genetic regression coefficients with an order 

equal to the polynomial modeled; C and R are matrices as 

described for the animal model. The G matrix used in the random 

regression models included the estimation of the variances and 

covariances of the intercept and the regression coefficients.

Figure 1. Distribution of intramuscular fat (IMF) records across continental United States and according to regional subdivision of the United States into North 1 

(yellow, n = 42,403), North 2 (purple, n = 51,785), South 1 (red, n = 42,927), and South 2 (blue, n = 32,325) regions.

Figure 2. Distribution of IMF records across continental United States and according to regional subdivision of the United States into West 1 (red, n = 47,151), West 2 

(blue, n = 37,949), East 1 (yellow, n = 46,427), and East 2 (purple, n = 37,913) regions.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/ja
s
/a

rtic
le

/9
8
/1

/s
k
z
3
5
9
/5

6
4
3
5
2
8
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



4 | Journal of Animal Science, 2020, Vol. 98, No. 1

Models for analyses of regionally subdivided data 

included a linear random regression of IMF on longitude or 

latitude coordinates unique by region (i.e., one linear random 

regression nested within each region in the model). Analyses 

of data subdivided into two regions included unique random 

regressions within North and South (longitude) or West and 

East (latitude) regions. Analyses of data divided into four regions 

included random regressions within North 1, North 2, South 

1, and South 2 (longitude; Figure 1) and West 1, West 2, East 1, 

and East 2 (latitude; Figure 2) regions. Regional boundaries were 

designated at specific longitudes or latitudes which were chosen 

to evaluate an overall even land territory across regions, and to 

keep similar numbers of records in each region. The North and 

South regions were delineated at 40°N latitude, with 94,188 and 

75,252 records, respectively. The boundary between West and 

East regions was set at 99°W longitude, with 84,340 and 85,100 

records, respectively. There were 11.1% and 10.7% of the total 

sires (9,815) that had progeny with records in both subregions 

for longitude and latitude, respectively. Boundaries for analyses 

of random regression on longitude within four regions were set 

at 44.46°N (between North 1 and North 2), 40°N (between North 

2 and South 1), and 36.46°N (between South 1 and South 2). 

Corresponding numbers of records were 42,403, 51,785, 42,927, 

and 32,325 for the North 1, North 2, South 1, and South 2 regions, 

respectively. The regional boundaries for random regression on 

latitude were set at 104.55°W (between West 1 and West 2), 99°W 

(between West 2 and East 1), and 92.22°W longitude (between 

East 1 and East 2), with 47,151, 37,949, 46,427, and 37,913 records 

represented in the West 1, West 2, East 1, and East 2 regions, 

respectively. Of the 9,815 sires with progeny that had records, 

14.9% and 14.1% had progeny in more than one region (of the 

four regions in analyses with random regression on longitude or 

latitude, respectively).

The analyses of unique random regressions per region were 

the same as the first set of random regression models with the 

same expectations for first and second moments. They differed 

in that Q is the incidence matrix containing the longitude 

or latitude coordinates covariate nested within regions and 

relates the IMF records in y to the additive genetic random 

regression coefficients in u for each region in the model. The 

number of columns in the Q matrix was associated with the 

order of the random regression amplified by the number of 

modeled regions (four for the two-region subdivision, and 

eight for four-region subdivision). The strategy for G matrix 

estimation was to first estimate variances of coefficients 

with all other covariances fixed at 0, and then incrementally 

add covariance components for estimation while holding 

previously estimated parameters constant; various analyses 

were attempted varying the set of parameters held constant. 

Analyses were repeated as necessary with estimation of 

previously fixed components. Non-estimable covariance 

components were fixed to zero and all other parameters were 

simultaneously estimated in final models. For analyses with 

two regions modeled, the G matrix included the estimation of 

variances for the intercept and the linear regression coefficient 

from both regions, as well as all covariance components 

between intercepts and linear regression coefficients from 

those two regions. In analyses with four regions, the G matrix 

included the variances for intercepts and linear regression 

coefficients from each region, as well as the covariance between 

the intercept and the linear regression coefficient within each 

region. Estimation of other covariance components in the G 

matrix were prioritized in this order: (i) covariances between 

each pair of linear regression coefficients across regions, (ii) 

covariances between each pair of intercept coefficients across 

regions, and (iii) all other covariances.

Likelihood ratio tests were conducted for analyses of the 

data without regional subdivisions. The two-region models were 

not subsets of the four-region models, and larger models did not 

have additional terms that could be evaluated with likelihood 

ratio tests. Analyses were conducted using ASReml (Gilmour 

et  al., 2009), and the Texas A&M University High Performance 

Research Computing Service.

From random regression analyses, gradients of heritability 

for IMF across longitude or latitude coordinates were estimated 

using variance component estimates (Schaeffer, 2016).

Results from linear random regression analyses without 

regional subdivision were selected to assess the potential effects 

of G × E on genetic merit predictions for IMF, as this modeling 

strategy is the most feasible approach to be included in early 

stages for genetic improvement strategies in Hereford cattle. 

Breeding values were estimated across latitude and longitude 

coordinates. Ranks of predicted breeding values were compared 

at different longitudes and latitudes by estimation of Spearman 

correlation coefficients.

Results

Fixed Effects

The fixed regression on latitude coordinates was an important 

model component (P < 0.001). The corresponding fixed regression 

on longitude coordinates was significant only in the quadratic 

random regression model analysis. Nevertheless, the fixed 

linear regression was kept in the animal and linear random 

regression models that utilized longitude as covariate to permit 

likelihood-ratio tests.

The fixed effect of region and the linear random regression 

of IMF on latitude nested within region were significant 

(P < 0.001) when data were subdivided into either two or four 

regions. When longitude was used as covariate in the model, the 

previous effects were only significant (P < 0.001) when data were 

subdivided into four regions.

These effects were kept in random regression analyses 

regardless of significance in order to facilitate model comparison.

Across-Region Random Regression

Results from the likelihood ratio test between each pair of the 

three continental U.S.  models (animal model, linear random 

regression model, and quadratic random regression model), 

using either latitude or longitude coordinates as covariate, 

indicated that the quadratic random regression model had the 

better fit for these data (P < 0.001).

Heritability estimated using the animal model with either 

latitude or longitude coordinates as covariate was low (0.19  ± 

0.004). Variances estimated for linear and quadratic random 

regression coefficients (latitude as a covariate) are shown in 

Tables 1 and 2, respectively. Heritability estimated with linear 

and quadratic random regression parameters resulted in similar 

ranges (0.08 to 0.27, linear; 0.12 to 0.27, quadratic). Plotted 

estimates of heritability from linear random regression on 

latitude appeared to increase from South to North (Figure 3). 

Estimates produced from the quadratic random regression were 

lower than those from the linear random regression in Southern 

latitudes, but higher in middle latitudes.

The variances estimated for the random regression 

coefficients using longitude as a covariate are shown in Tables 1 

and 2. These yielded estimates of heritability ranging from 0.17 
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to 0.30 (linear random regression only), and from 0.17 to 0.37 

using the quadratic random regression (Figure 4). The curve of 

plotted estimates of heritability from the analysis that included 

only a linear random regression was fairly symmetric and 

positively parabolic, generally smooth, and indicated greater 

estimates of heritability at the two extremes of longitudinal 

coordinates (farthest West, and farthest East), with a minimum 

heritability in the middle of the regression. The curve of 

heritability estimates from analyses with a quadratic random 

regression was asymmetric, with a single inflection less 

centered and positioned closer to the West than for the linear 

random regression (Figure 4).

Unique Random Regressions by Region

The continental United States was subdivided into two major 

regions (North and South or West and East for latitude or 

longitude coordinates as covariate, respectively), with an overall 

similar number of records and geographical area covered. This 

approach made it possible to estimate variances for random 

intercepts and random regression linear coefficients and 

covariance components in analyses with latitude coordinates as 

was covariate (Table 3) and longitude coordinates as covariate 

(Table 4). Increasing the order of the random regression to a 

quadratic polynomial (intercept, linear, and quadratic) was 

never accomplished when data were divided into regions 

when the additional covariances were included in the model. 

This may be a consequence of differing data support available 

in the same latitudes (or longitudes) of different regions. That 

is, the parameter spaces of the covariate were different for the 

different regions, and this is especially the case in the four-

region analyses. For instance, consider as an example the records 

in Florida (Figures 1 and 2); there are few (or none) records in 

Table 1. Estimates of variance from linear random regression analyses1

Contemporary group Intercept Linear Residual

Latitude covariate

Contemporary group 0.38 ± 0.004    

Intercept  0.25 ± 0.006 0.58 ± 0.056  

Linear  0.04 ± 0.002 0.02 ± 0.003  

Residual    0.23 ± 0.002

Longitude covariate

Contemporary group 0.37 ± 0.004    

Intercept  0.25 ± 0.006 0.02 ± 0.018  

Linear  0.00 ± 0.003 0.09 ± 0.005  

Residual    0.24 ± 0.002

1Variances are in bold type. Covariances are below that diagonal and correlation coefficients are above. Covariances of contemporary group 
and residual with other terms were assumed to be 0.

Table 2. Estimates of variance from quadratic random regression analyses1

CG Intercept Linear Quadratic Residual

Latitude covariate

Contemporary group 0.38 ± 0.004     

Intercept  0.20 ± 0.008 0.57 ± 0.045 -0.47 ± 0.097  

Linear  0.05 ± 0.002 0.04 ± 0.006 -0.10 ± 0.11  

Quadratic  –0.02 ± 0.003 0.00 ± 0.003 0.01 ± 0.004  

Residual     0.23 ± 0.002

Longitude covariate

Contemporary group 0.37 ± 0.004     

Intercept  0.26 ± 0.010 0.05 ± 0.024 0.19 ± 0.053  

Linear  0.01 ± 0.003 0.05 ± 0.009 -0.46 ± 0.089  

Quadratic  0.02 ± 0.005 –0.02 ± 0.003 0.03 ± 0.004  

Residual     0.23 ± 0.002

1Variances are in bold type. Covariances are below that diagonal and correlation coefficients are above. Covariances of contemporary group 
and residual with other terms were assumed to be 0.

Figure 3. Estimates of heritability for IMF from the animal model, linear, and 

quadratic random regression of IMF on latitude (dashed lines indicate ± 1 SE).
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the other regions that had corresponding latitudes. Even in 

latitudes where there are records in each of the regions, some 

regions have much less support of records (see the Southwest 

region including New Mexico, Arizona, Nevada, and Southern 

California). Variances of intercepts were similar in magnitude 

in random regressions of IMF on latitude or longitude; however, 

the variances of the linear random regression coefficients on 

longitude (Table 4) were from two to five times larger than those 

from regression on latitude (Table 3). Correspondence among 

random regression coefficients (latitude) was positive and large, 

as correlations of those components ranged from 0.34 to 0.91 

(Table 3); much lower correspondence of random regression 

coefficients (longitude) is shown in Table 4. As an exception, 

the correlation of intercept coefficients for the North and South 

regions was large (r = 0.78 ± 0.04).

Random regression of IMF on latitude resulted in estimation 

of only variances of regression coefficients and within-region 

covariances of coefficients (Table 5). Intercept variances were 

similar in the central regions (West 2 and East 1) and between 

one half and two-thirds of the magnitude of those on the 

extremes (West 1 and East 2). The West 1 region (furthest West) 

differed substantially from the other regions as the variance 

estimates of the linear regression coefficient was two to three 

times larger than all other regional variances of that coefficient. 

The West 1 region had a negative genetic correlation between 

the intercept and linear regression coefficients; all other regions 

were large and positive.

A larger number of parameters was estimated in analyses 

of random regression on longitude in four regions (Table 6). 

Variances estimated for the intercept and linear regression 

terms were largest in the Northernmost region (North 1)  and 

progressively smaller in each region to the South, which was 

similar to the pattern of variances from analyses of data in 

two regions (Table 4). Within-region correlations between the 

intercept and linear terms were large and positive in both North 

regions, but of low magnitude in both South regions, and that in 

the Southernmost region (South 2) was negative (Table 4). Across-

region correlations between the linear regression coefficient 

terms were large and positive for North 1 with North 2 and South 

1 with South 2. That for North 2 with South 1 (these are adjacent 

regions) was less than half the magnitude. Correlations of linear 

regression coefficients of North 1 with South 1 and North 2 with 

South 2 did not differ from 0.  The correlation between linear 

regression coefficients from the extreme regions (North 1 with 

South 2) was large and negative.

Random regression analyses of subdivided data indicated 

reasonably similar estimates of heritability for IMF at Northern 

latitudes (Figures 5 and 6). However, at Southern latitudes, 

modeling distinct random regressions in the Western 

U.S.  resulted in much higher estimates of heritability in the 

Westernmost region (West 1; Figure 5). Heritability estimates 

determined within the East and West regions ranged from 0.09 

to 0.32, and 0.14 to 0.27, respectively. Heritability estimates in 

the West 1 and West 2 regions ranged from 0.21 to 0.46 and 

0.09 to 0.26, respectively. Heritability estimates in the East 1 

and East 2 regions ranged from 0.13 to 0.29 and 0.05 to 0.48, 

respectively. The curves of estimates of heritability obtained for 

the West, West 1, and West 2 regions differed in shape as well 

as in minimum and maximum values; particularly the curve 

obtained within the West 1 region, which had a shape more 

similar to a parabola in comparison to curves from the West and 

West 2 regions, which appear linear. The minimum heritability 

value within the West 1 region was nearer to the center of the 

latitude coordinates evaluated (41°N), unlike the minimum 

value determined within the West, and West 2 regions, which 

was closer to the farther South coordinate (32.9 and 26.9°N, 

respectively). These results could also be in at least part a 

consequence of differing quantities of data at the same values 

of the covariate in different regions.

Random regression analyses of data subdivided into two 

regions resulted in patterns of heritability of somewhat greater 

estimates in the Northern region (Figures 7 and 8), especially at 

the Easternmost longitudes. Those estimates ranged from 0.19 

to 0.47 and 0.15 to 0.31, for the Northern and Southern regions. 

Analyses of data subdivided into four regions resulted in again 

larger estimates of heritability for IMF in Eastern longitudes, 

Figure 4. Estimates of heritability for IMF from the animal model, linear, and 

quadratic random regression of IMF on longitude (dashed lines indicate ± 1 SE).

Table 3. Linear random regression (co)variance components 
estimates for IMF on latitude in two regions1, 2

β
0
 East β

1
 East β

0
 West β

1
 West

β
0
 East 0.27 ± 0.007 0.77 ± 0.076 0.91 ± 0.031 0.37 ± 0.081

β
1
 East 0.06 ± 0.004 0.03 ± 0.005 0.62 ± 0.115 0.41 ± 0.215

β
0
 West 0.22 ± 0.009 0.05 ± 0.008 0.22 ± 0.008 0.34 ± 0.065

β
1
 West 0.04 ± 0.009 0.01 ± 0.007 0.03 ± 0.004 0.04 ± 0.007

1Variances are on diagonal and in bold type. Covariances are below 
that diagonal and correlation coefficients are above.
2Data were divided into West and East regions at 99°W longitude.

Table 4. Linear random regression (co)variance components 
estimates for IMF on longitude in two regions1, 2

β
0
 North β

1
 North β

0
 South β

1
 South

β
0
 North 0.32 ± 0.008 0.32 ± 0.020 0.78 ± 0.038 0.18 ± 0.085

β
1
 North 0.07 ± 0.007 0.17 ± 0.011 0.06 ± 0.070 0.11 ± 0.148

β
0
 South 0.20 ± 0.011 0.01 ± 0.013 0.21 ± 0.006 –0.03 ± 0.027

β
1
 South 0.03 ± 0.016 0.02 ± 0.020 –0.01 ± 0.004 0.11 ± 0.008

1Variances are on diagonal and in bold type. Covariances are below 
that diagonal and correlation coefficients are above.
2Data were divided into North and South regions at 40°N latitude.
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Table 5. Linear random regression (co)variance components estimates for IMF on latitude in four regions1, 2, 3

β
0
 East 1 β

1
 East 1 β

0
 East 2 β

1
 East 2 β

0
 West 1 β

1
 West 1 β

0
 West 2 β

1
 West 2

β
0
 East 1 0.24 ± 0.008 0.49 ± 0.078       

β
1
 East 1 0.04 ± 0.004 0.03 ± 0.008       

β
0
 East 2   0.37 ± 0.010 0.92 ± 0.072     

β
1
 East 2   0.15 ± 0.008 0.07 ± 0.014     

β
0
 West 1     0.35 ± 0.015 –0.31 ± 0.044   

β
1
 West 1     –0.07 ± 0.015 0.14 ± 0.020   

β
0
 West 2       0.19 ± 0.009 0.64 ± 0.126

β
1
 West 2       0.04 ± 0.004 0.03 ± 0.008

1Absence of a value indicates that estimation of this parameter was not accomplished and was fixed to 0.
2Variances are on diagonal and in bold type. Covariances are below that diagonal and correlation coefficients are above.
3Lower numbers indicate regions further West. Boundaries separating the four regions were 104.55°W (between West 1 and West 2), 99°W 
(between West 2 and East 1), and 92.22°W (between East 1 and East 2).

Table 6. Linear random regression (co)variance components estimates for IMF on longitude in four regions1, 2, 3

β
0
 North 1 β

1
 North 1 β

0
 North 2 β

1
 North 2 β

0
 South 1 β

1
 South 1 β

0
 South 2 β

1
 South 2

β
0
 North 1 0.42 ± 0.014 0.46 ± 0.033       

β
1
 North 1 0.17 ± 0.022 0.33 ± 0.033  0.54 ± 0.094  0.02 ± 0.147  –0.63 ± 0.167

β
0
 North 2   0.30 ± 0.008 0.49 ± 0.022     

β
1
 North 2  0.13 ± 0.022 0.11 ± 0.007 0.16 ± 0.013  0.21 ± 0.143  –0.11 ± 0.202

β
0
 South 1     0.25 ± 0.008 0.13 ± 0.030   

β
1
 South 1  0.01 ± 0.033  0.03 ± 0.022 0.02 ± 0.006 0.15 ± 0.010  0.49 ± 0.202

β
0
 South 2       0.16 ± 0.008 –0.11 ± 0.057

β
1
 South 2  –0.10 ± 0.029  –0.01 ± 0.023  0.05 ± 0.023 -0.01 ± 0.007 0.08 ± 0.016

1Absence of a value indicates that estimation of this parameter was not accomplished and was fixed to 0.
2Variances are on diagonal and in bold type. Covariances are below that diagonal and correlation coefficients are above.
3Lower numbers indicate regions further North. Boundaries separating the four regions were 44.46°N (between North 1 and North 2), 40°N 
(between North 2 and South 1), and 36.46°N (between South 1 and South 2).

Figure 5. Estimates of heritability from linear random regression of IMF on 

latitude within the West region (data divided into West and East regions at 

99°W), and within West 1 (furthest West subregion with boundary at 104.55°W) 

and West 2 regions (dashed lines indicate ± 1 SE).

Figure 6. Estimates of heritability from linear random regression of IMF on 

latitude within the East region (data divided into West and East regions at 99°W), 

and within East 1 (furthest West subregion with boundary at 92.22°W) and East 

2 regions (dashed lines indicate ± 1 SE).
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especially in the Northernmost region (North 1); or in other 

words, successively lower estimates in each region Southward. 

Those estimates ranged from 0.22 to 0.63 (North 1), from 0.16 to 

0.50 (North 2; Figure 7), from 0.17 to 0.40 (South 1), and from 0.12 

to 0.28 (South 2; Figure 8). The change in heritability estimates 

across longitude coordinates was similar in trajectory, where 

from West to East the heritability exhibited a decrease in value, 

achieving a minimum at longitude coordinates 104, 105, and 108° 

W for the North, North 1, and North 2 regions, respectively. With 

decreasing longitude (moving Eastward), heritability estimates 

increased until achieving a maximum value at 71°W for North, 

North 1, and North 2 regions (Figure 7). Heritability estimates 

across longitude coordinates also decreased in the South, South 

1, and South 2 regions (Figure 8); but reach a minimum value near 

the center of the evaluated longitude coordinates, and higher 

values at the extremes of the respective curves. Differences at 

the extreme covariate values were less pronounced in the South 

(Figure 8) than those in Northern regions.

Rank changes of breeding values across pairs of latitude 

and longitude coordinates under evaluation were minimal, as 

indicated by large (> 0.9) Spearman rank correlation coefficients.

Discussion

Random regression methodology may provide an effective way 

to model the geographic–environmental complex. Likelihood 

ratio tests across models with data not subdivided into 

regions, using either latitude or longitude, indicated that the 

quadratic random regression better fit the data in comparison 

to the linear random regression and animal model. However, 

the variance component estimates from the quadratic random 

regression model were low in comparison to estimates from 

the linear random regression using either latitude or longitude. 

Additionally, the extremes of the heritability curves estimated 

across latitude or longitude have larger standard errors when a 

quadratic random regression is modeled in comparison to the 

linear random regression. All this considered, maybe the use 

of a quadratic random regression is not necessarily the best 

alternative to model IMF with the current database, and more 

accurate estimations could be done using the linear random 

regression.

Heritability estimates using random regression of IMF on 

latitude coordinates (both linear and quadratic regressions) 

were greater in the Northern and lower in the farthest South 

latitudes of the United States. Random regression of IMF on 

longitude coordinates yielded heritability estimates that were 

lowest in the middle section of the country, and largest in the 

far West. Evaluation of linear random regression within four 

rather than two regions did not substantially impact the shapes 

of heritability curves from regions or subdivided regions; but 

the minimum and maximum values for IMF heritability were 

influenced. In contrast, more restricted region size influenced 

the rate of change in the estimates of heritability across 

latitudes, especially in the Western half of the country. In those 

analyses, the maximum estimate of heritability in the furthest 

East region of 0.48 was noticeably greater than the other East 

subdivided region (0.32) and the overall (not subdivided) East 

region (0.29). The maximum estimate of heritability in the 

coastal West region was larger than the inland West region and 

the overall West region (0.46, 0.27, and 0.26, respectively), and 

this was the case for the minimum estimates of heritability in 

those same regions (0.21 vs. 0.14 and 0.09, respectively). Results 

from random regression analyses on longitude and latitude 

jointly suggest that the greater heritability for IMF can be found 

in the coastal areas of the Northern United States, and the 

lowest values are found in the central South.

The range of IMF heritability estimated with the random 

regression models was similar to results out of traditional (not 

random regression) analyses (0.26 to 0.42) in Hereford cattle 

(0.26; Moser, 2006; 0.42; Su et al., 2017), suggesting that results 

are representative of the U.S. Hereford population.

This current work suggests that the environment where 

animals were evaluated may impact the additive genetic 

estimates. Sire or other genetic components as an interaction 

with environment may merit inclusion in genetic evaluation 

Figure 7. Estimates of heritability from linear random regression of IMF on 

longitude within the North region (data divided into North and South regions at 

40°N), and within North 1 (furthest North subregion with boundary at 44.46° N) 

and North 2 regions (dashed lines indicate ± 1 SE)

Figure 8. Estimates of heritability from linear random regression of IMF on 

longitude within the South region (data divided into North and South regions at 

40°N), and within South 1 (furthest North subregion with boundary at 36.46°N) 

and South 2 regions (dashed lines indicate ± 1 SE).
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(Bertrand et al., 1985, 1987). Genotype–environment interactions 

also have been studied for birth weight and weaning weight 

in Red Angus cattle using random regressions that evaluated 

sire’s progeny within regions that differed in temperature 

and humidity indices (Fennewald et al., 2017). Those authors 

concluded that genotype–environment interactions, although 

present, did not influence the rank of sire predictions of genetic 

merit for those traits. There were substantially different 

regional heritability estimates (not random regression) for Red 

Angus birth weight (0.00 and 0.46, in the area near the Gulf 

Coast and the Upper Great Plains, respectively) and weaning 

weight (0.05 and 0.41, Gulf Coast and desert subregions; 

Fennewald et al., 2017).

The use of either longitude or latitude coordinates as an 

environmental gradient is a proxy for a combination of ambient 

and nutrition conditions. Those appeared to be most severe 

when considering covariance (of coefficients) differences 

from North to South and would at first consideration suggest 

differences in forage species which are being consumed by the 

cattle or in environment temperature, especially considering 

that temperatures tend to increase with increased proximity 

to the equator (at lower latitudes farther South), and decrease 

when farther from the equator (at higher latitudes farther North). 

However, the large differences in estimates of variances from 

West to East were noteworthy, especially differences between 

the farther West region and the rest of the regions, which may 

be associated to the lower annual precipitations observed in the 

Western regions of the country, especially in the farther West 

region (NOAA, 2019). On the other hand, observed similarity in 

IMF heritability estimates in regions closer together in proximity 

could have been associated to a greater degree of environmental 

connectedness than between regions farther apart.

Whether modeled through linear or quadratic random 

regressions, estimates of heritability (without modeling region) 

were lower in latitudes farther South (Figure 3). Linear random 

regressions on latitude supported this with an exception of in 

the far West (West 1; Figure 5) in which estimates of heritability 

at lower latitudes were higher. North to South differences were 

also evident in the random regressions on longitude. Estimates 

of heritability were lower in the central (90 to 110° longitude) 

United States as indicated by either linear or quadratic random 

regression results (Figure 4). Random regression analysis within 

regions (linear random regression only) produced similar results 

(Figures 7 and 8) except that heritability estimates were much 

higher in the lowest longitudes of all regions, but especially 

the furthest North (Figure 7). Estimated correlation coefficients 

from random regression within regions supported positive 

correspondence of East–West regions in comparison to those 

from the North and South regions (0.41 vs. 0.11, respectively). 

This appropriately suggests greater difference between the 

environmental factors from Northern and Southern sections of 

the country. Adjacent regions often had positive correlations, 

and regions farther apart had negative correlations which 

became more negative with distance; that for the Northernmost 

and Southernmost was –0.63.

When evaluating the effects of G × E interaction on genetic 

merit predictions for IMF, no substantial changes in ranks 

of animals across latitude and longitude coordinates were 

observed. Fennewald et  al. (2017) evaluated G × E effects over 

birth weight and weaning weight in Red Angus cattle using 

random regression methodology, finding that ranking among 

sires was similar across environments. In dairy cattle, Kolmodin 

et  al. (2002) used random regression methodology to assess 

G × E interactions effects over production and fertility traits, 

identifying just a small change in the ranking of sires across 

environments, with exception of the extremes points of the 

environmental gradient. G × E interactions have been often 

attributed to changes in scale (McDaniel and Corley, 1967; 

Stanton et  al., 1991; Cromie et  al., 1998). Landscape genetics 

(Manel et al., 2003; Manel and Holderegger, 2013) represents a 

formidable opportunity to describe populations in a spatial 

context. Especially if combined with genomic information 

(Storfer et al., 2018), issues of local adaptation through detection 

of candidate genes under selection alter the G × E study 

paradigm, and this field may be the next appropriate focus of 

livestock selection genetics.

These results show the feasibility of using random regressions 

to account for genotype–environment interactions in genetic 

merit predictions with Hereford cattle. Furthermore, the use of 

this type of strategy would make it possible to select sires based 

on their location-specific genetic merit instead of an overall 

average across the country. This would lead to a more efficient 

genetic improvement of IMF, where the potential improvement 

per generation will depend on the genetic variability within 

specific geographic locations.

Considering the findings out of this project, the use of 

random regressions represents a potential better tool to select 

sires according to the specific environments where their 

operations are located. Nevertheless, further studies are needed 

in order to assess this methodology in additional economically 

relevant traits for this breed.

Implications

Results from the current work indicate that random regressions 

reveal differences in additive genetic variance and heritability 

for IMF in American Hereford cattle in different geographical 

locations within the continental United States. A  traditional 

animal model may not adequately account for the possible 

change in genetic variability for economically relevant traits 

in livestock production systems across environments. The 

incorporation of random regression methodology in genetic 

merit predictions has potential for the American Hereford 

Association evaluations, as it accommodates a more flexible 

and appropriate characterization of additive genetic variance 

contingent upon environmental differences. However, further 

research needs to be done in order to confirm that current 

methodology is rightfully accounting for all major sources of 

environmental effects influencing genotypes.
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