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Abstract

Many learning algorithms, such as stochastic gradient descent, are affected by the
order in which training examples are used. It is generally believed that sampling the
training examples without-replacement, also known as random reshuffling, causes
learning algorithms to converge faster. We give a counterexample to the Operator
Inequality of Noncommutative Arithmetic and Geometric Means, a longstanding
conjecture that relates to the performance of random reshuffling in learning algo-
rithms [19]. We use this to give an example of a learning task and algorithm for
which with-replacement random sampling outperforms random reshuffling.

1 Introduction

Many machine learning algorithms work by iteratively updating a model based on one of a number of
possible steps. For example, in stochastic gradient descent (SGD), each model update is performed
based on a single example selected from a training dataset. The order in which the samples are
selected—in which the update steps are performed—can have an impact on the convergence rate of
the algorithm. There is a general sense in the community that the random reshuffling method, which
selects the order by without-replacement sampling of the steps in an epoch (where an epoch means a
single pass through the data, and different epochs may use different random orders), is better (for
convergence) than ordinary with-replacement sampling for these algorithms [7, 8, 19].

There are two intuitive reasons why we might expect random reshuffling to outperform sampling
with replacement. The first applies when our model updates are in some sense noisy: each one could
perturb us away from the desired optimum, and they are only guaranteed to approach the optimum
on average. In this case, random reshuffling ensures that the noise in some sense “cancels out” over
an epoch in which all samples are used. Most previous work on random reshuffling has studied this
noisy case, and this intuition has been borne out in a series of results that show random-reshuffling
results in a convergence rate of O(1/t?) rather than O(1/t) for convex SGD [8, 10, 16, 18, 20].

The second intuitive reason is that, because sampling without replacement avoids using the same
update step repeatedly, it should tend to be “more contractive” than sampling with replacement. This
intuition applies even for “noiseless” algorithms that converge at a linear rate of O(1)*. In contrast to
the noisy case, the belief that random reshuffling should be better in general for these algorithms that
converge at a linear rate is backed up theoretically only with conjectures. The main conjecture in
this space is the Operator Inequality of Noncommutative Arithmetic and Geometric Means, stated as
Conjecture 1 of Recht and Ré [19]. That conjecture, which is motivated by algorithms such as the
randomized Kaczmarz method [23] that converge at a linear rate, asserts the following.

Conjecture 1 (Operator Inequality of Noncommutative Arithmetic and Geometric Means). Let
Ai, ... A, € R¥? be a collection of (symmetric) positive semidefinite matrices. Then it is
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conjectured that the following inequalities always hold:
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where P(n) denotes the set of permutations of the set {1,...,n} and || - || denotes the {5 induced
operator norm (the magnitude of the largest-magnitude eigenvalue for symmetric matrices).

A variant of the conjecture, which moves the sums to the outside of the norms, was given by [7].

Conjecture 2. Let Ay,. .., A, € R¥? be q collection of (symmetric) positive semidefinite matrices.
Then it is conjectured that the following inequality always holds:
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Conjecture 1 is a quite natural generalization of the ordinary arithmetic-mean-geometric-mean
(AMGM) inequality of real numbers, which states that for non-negative numbers x;,

[T @ < (5 20 xz)n :

In Conjecture 1, positive semidefinite matrices (matrices with non-negative eigenvalues) take the
place of the non-negative scalars of the AMGM inequality, and indeed Conjecture 1 reduces to the
AMGM inequality when d = 1. Conjecture 1 was proven by the original authors in the case of n = 2,
and has been proven subsequently for n = 3 [12, 29]. It also seems to be true for random ensembles
of matrices [2, 19], and random testing seems to suggest that Conjecture 1 is always true. However,
recent work has shown non-constructively that Conjecture 1 is false [3, 14]." These non-constructive
disproofs are interesting, but deliver limited insight about random reshuffling, both because they
involve complicated proof techniques and because they do not translate to concrete counterexamples
of matrices Ay, Ao, ..., A, that can be used to study learning algorithms empirically.

In this paper, we propose simple counterexamples for these conjectures—to our knowledge this is the
first explicit counterexample known for any of these conjectures, and the first disproof of Conjecture 2.
We explore the consequences and limitations of this counterexample throughout the paper, and end
by showing concrete problems for which SGD with random reshuffling converges asymptotically
slower than SGD using with-replacement sampling. Our paper is structured as follows.

e In Section 2, we construct a family of counterexamples for Conjectures 1 and 2, showing
constructively that all three conjectured inequalities are false.

e In Section 3, we adapt the counterexample to give concrete ML algorithms for which with-
replacement sampling outperforms without-replacement sampling, contrary to folklore.

 In Section 4, we prove that for non-trivial matrix ensembles (1) always holds with strict inequality
for sufficiently small step sizes. Thus, for algorithms with a slowly decreasing step, without-
replacement sampling always outperforms with-replacement sampling. On the other hand, we
show that when optimal step sizes are chosen separately for with- and without-replacement
sampling (but may not decrease to zero), with-replacement sampling can still perform better.

* In Section 5, we give an example convex learning task for which SGD using with-replacement
sampling converges asymptotically faster than random-reshuffling.

1.1 Notation

In this paper, ||-|| of a vector always denotes the Euclidean 5 norm, and ||-|| of an operator denotes
the /5 induced norm. We have 1 denote the all-1s vector. We let ® denote the Kronecker product and
@ denote the matrix direct sum, such that x @ y is the block diagonal matrix [§ § |. We let Sz denote

"Lai and Lim [14] can be considered parallel work to this paper.



the set of symmetric d X d matrices over R, and let P, denote the set of symmetric positive definite
d x d matrices. We let < denote inequality with respect to the positive definite ordering (i.e. A < B
when B — A € P;). When K C R? is a convex cone (a set closed under sums and non-negative
scalar multiplication), and z,y € R?, we say o <x y if and only if y — 2 € K, and for A, B € R4*9,
We let M (KC) denote the set {A € Sy | Vo € K, Az € K} of matrices that preserve the convex cone
IC, and we note that M (KC) is also a convex cone. For brevity, we let rr, : Sy X Sg X -+ X Sqg — S4
denote the “random reshuffling” function

k
rrk(Al, Ag, e ,An) = % ZUE’P(TL) H7;=1 Aa(i)a
and define srry similarly as the “symmetric random reshuffling” function

T
k k

s (A, Az, .o Ap) = % Eaep(n) (Hi:l Ao(i)) (Hi:1 Aa(i)) :

Note that this lets us write (1) more compactly as ||rr,, (A1, ...)|| < |[rri(Ag,..)|".

1.2 Related Work

Conjecture 1 was a generalization of a line of older work on matrix arithmetic-mean geometric-mean
inequalities for two matrices [4, 5]. It was proved by Recht and Ré [19] in the case of n = 2 and
by Zhang [29] for n = 3. Duchi [7] proposed a variant, Conjecture 2, in which the sum appears
outside the norm and proved it for n = 2, and it was extended to the n = 3 case by Israel et al.
[12]. Albar et al. [2] proves a version of the inequality of Conjecture 1 that is weaker by a constant.
Albar et al. [3] provides a non-constructive disproof of (2), and very recently Lai and Lim [14] gave
a non-constructive disproof of (1) via a transformation to the noncommutative Positivstellensatz.
Alaifari et al. [1] studies a related class of matrix rearrangement inequalities.

Several prior works have studied SGD on “noisy” learning problems, for which at the optimum w*
it is not the case that V f;(w*) = 0 for every component loss function f;. Giirbiizbalaban et al. [8]
exhibited an SGD variant for which random reshuffling converges at a ©(1/t?) rate, which improves
on the Q(1/t) rate of standard with-replacement-sampled SGD; similar results were also proved
for the “noisy” case in other settings [10, 20, 22] Ying et al. [25] and Ying et al. [26] show that
random reshuffling converges for variance-reduced algorithms, and Ying et al. [27] analyzes random
reshuffling in the constant-step-size case. Meng et al. [15] studies a distributed variant of SGD with
random shuffling, albeit one different from the one we study here (Algorithm 1). Beyond SGD,
Oswald and Zhou [17] analyzes random reshuffling for methods such as Gauss-Seidel and Kaczmarz,
and He et al. [11] studies scan order for Gibbs sampling.

2 Constructing a Counterexample

We start by outlining the main idea that underlies our counterexample. Fix some dimension d € N,
and let n = d. For any permutation o € P(n), let P, denote the permutation matrix over R™, such
that (P,x); = x,(;) for any vector x € R". The main idea is to construct a sequence of matrices

Ay, Ag, ..., A, such that P, A, PT = A ;) for any o. For any permutation matrix P,

k
1
rrp(Ar, Ay Ay) = g (PAPY P APY, . P.A,PT) = ~ Z H (P Ay PT)
" ceP(n)i=1

=k (% ZUG'P(n) Hf:l Aﬂ(i)) Pl =P (m(A1, Az, Ay)) PT,

where the first equality holds because rrj, is a symmetric function, and the fourth holds because
PS‘TPc = I. This shows that rri (A1, ...) is preserved by any permutation of its coordinates, and the

only such matrices are of the form X = o117 + 31, where 1 denotes the all-1s vector. With careful
choice of the A;, we can find formulas for « and 3, and show that they violate Conjecture 1.

2.1 A Counterexample for the First Inequality

Define a family of vectors yy, for k € {1,...,n} such that for i # k we have

vn—1 -1

and

(Y = " (yr)i = m




Consider the matrices Ay, = I + 1y,:§ + Yk 17, For example, when n = 5, the matrices look like

1.8 0.3 0.3 0.3 0.3 0.8 0.3 —0.2 —0.2 —0.2
0.3 0.8 —0.2 —0.2 —0.2 0.3 1.8 0.3 0.3 0.7

A; = |03-02 08 —02-02|, Ay = |-0203 08 —0.2-02 ]|,
0.3 —0.2 —0.2 0.8 —0.2 —0.20.3 —0.2 0.8 —0.2
0.3 —0.2 —0.2 —0.2 0.8 —0.2 0.3 —0.2 —0.2 0.8

It is clear by construction that for any o € P(n), then PX A, P, = A, ). It is also easily seen that
the sum of the yy, is zero, from which we can see immediately that

n

T
1 IR 1<
i=1 i=1

i=1
So, [[rr1(A1,...,Ap)|| = 1. Itis less immediate but still straightforward to show the following.
Statement 1. If we define \ (for any k € N) as

1 \"2 1
A= (1 + n—1> - COS (k‘ - arcsin (ﬁ)) ,

then the random-reshuffled product of these matrices can be written as

117 A—1 117
rrk(Al,---,An)—A~+<+1) (I—n)

n n—1
and so X will be an eigenvalue of rr, (A1, ..., Ay) with corresponding eigenvector 1.

We include a full derivation of this result—which is relatively easy to derive by hand—in the appendix.
It is easy to find n for which |\| is greater than 1. The smallest such n is n = 5, where

T T
rrn(Al,...,An)—Qg'(I—ll)—19~11, and )\:ﬁ.
64 5 16 5 16
This fact can be easily verified numerically, by computing rr,, directly for n = 5. Note that we can
alsohave A > 1, e.g. for n = 40, A = 1.655. This shows directly that (1) is false. Note that while this
setup may seem to suggest that a counterexample requires n = d (while usually in linear regression
n > d), it is straightforward to construct examples for which n and d are arbitrary (but no less than

5) by either adding additional I matrices to the ensemble or adding additional dimensions containing
only a 1 on the diagonal: this will change the norms of neither the arithmetic nor the geometric mean.

2.2 A Counterexample for the Second Inequality

Using our construction from the previous section, define a collection of positive semidefinite symmet-
ric matrices B; such that B? = A;. For these matrices, stry(By, ..., B,) = % 21;1 B2 =1,s0by

induction -
1 n n
o x e ()

(81,..,8n)€{1,...,n}" \i=1

Thus, its norm will be 1. Just as before, these matrices have the property that P, B; PT = B ;) for

any o, so P,srr,(By,...)PT = srr,,(By,...) and the symmetrized random-reshuffled product can
also be written as 117 + 1. Tt is possible to perform the same sort of analysis as done in Section 2.1
to find an expression for the eigenvalues of srr,,(By, .. .) explicitly as an analytic expression in n;
however, since it is much more complicated and does not deliver additional insight, for lack of
space we will just state the result for the particular case of n = 10. This case is convenient because
10 — 1 = 32, and so A; is rational and thus B; is over Q(1/2), and so we can do exact arithmetic
easily. In this case, the eigenvalue of srr,, (B, ..., B,,) with corresponding eigenvector 1 is exactly

_ 16623165607286458 n 2195717144015980 V3 ~ 1.183
~ 16677181699666569  16677181699666569

which shows directly that (2) is false, because if it were true this number could be at most 1.




2.3 A Counterexample for the Third Inequality

We can construct a counterexample to Conjecture 2 based on the “tight frame” example of Recht and
Ré [19]. The “tight frame” example for n = 2 consists of symmetric projection matrices A; € R2*2
for k € {1,...,n} defined as A, = ukug, where uy, = [cos (%k) sin (%)}T These matrices
have the interesting property that their fixed order product A; - As - - - A,, has an asymptotically larger
norm than the nth power of their mean, and they are used by Recht and Ré [19] to motivate why
symmetrizing the order (by sampling without replacement rather than just going with some arbitrary

fixed order) is important.

Starting with this, we construct the family of matrices By, defined by By, = @(ep(n) A (k) where

€P here denotes an indexed matrix direct sum (which constructs a block diagonal matrix). The direct
sum has the important properties that || X & Y| = max(|| X||,||Y||) and that (if the dimensions
match) (X7 @ X3) - (Y1 ®@Ys) = (X1Y1) @ (X2Y3). As a consequence, for any permutation o,

ITTi=1 Boo || = HHL (Becrin Ain) H = H€B<ep<n) (ITi=1 Asoen) H

= MaXcep(n) HH?:l As‘(d(l’)) H = MaX¢eP(n) HH?:l Ac(i) || = ”H:l:l Al
where the last equality is a known property of the tight frame example, and the other equalities follow
from properties of the direct sum. This means that all the terms on the left side of (3) for this example
will be the same, and in particular

1 Loerm) Tz Bot || = Ty Adll-
By a similar argument, the right side of that equation will be
1 1
n7 Z - ﬁ Z <IEI}Pa(>1(L)
fA1,...,n}" f{1,...,n}"

These formulas make it straightforward to compute these values, even though the matrices in question
are of dimension 2 - n!. For the particular case of n = 6,

1 n
a2 118w

" oeP(n) lli=1

n n

By A
1 1

1= i=

9 1
= —-V3~0487 and —
V3 ad o 3

2
3 fA{1,...,n}m

26761 29965

= 4 ~ (0.424.
124416 + 248832\/§ 0

n
1B

i=1

This is a counterexample to Conjecture 2.

3 A Machine Learning Example

Stochastic gradient descent is perhaps the central example in ML of an algorithm where sample order
can affect convergence. Consider the parallel SGD algorithm described in Algorithm 1. Here, for
every epoch, each of M parallel workers runs n iterations of SGD, using either with-replacement
or without-replacement sampling. Then, the resulting weights are averaged among the workers to
produce the starting value for the next epoch. This once-per-epoch averaging in some sense “simulates”
the expected value in Conjecture 1, which makes Algorithm 1 a natural SGD-like algorithm to explore
with the conjecture.? This is equivalent to the method of local SGD with periodic averaging [9, 28]
with the averaging period equal to the epoch length. Based on folklore, random reshuffling should
outperform standard sampling for this sort of algorithm. We will show that this is not always the
case by constructing an example for which standard sampling converges at a linear rate, but random
reshuffling fails to converge at all.

Consider the following matrix-completion-like task. We have an unknown rank-1 matrix X > 0, and
we are given noisy “measurements’” from it of the form uiTX v; ~ a; where we know (u;, v;, a;). We
want to recover X by solving the regularized least-squares minimization problem

n

1 1

minimize: — E (u] Xv; — ai)2 + 37" tr (X) subject to X € Py, rank(X) < 1.
n

i=1

Note that the parallelism itself is not necessary here; what is necessary for our purposes is the averaging.
The averaging is necessary (even for large n) because it models the expected value in the original inequality (1):
without it the convergence rate may be effected by higher-order moments (not just the expected value). We study
parallel SGD because it is a “real” method from the literature that uses averaging [9, 28].



Algorithm 1 Parallel SGD

1: given: n loss functions f;, step size scheme a1, ava, . . ., initial state wo € R?
2: given: number of epochs K, parallel machines M, replacement policy RP
3: for k =1to K do

4 for all m € {1,..., M} do in parallel on machine m

5: Uk,m,0 < Wk—1

6: if RP = with-replacement a.k.a standard sampling then

7: sample oy ., uniformly from the set of functions from {1,...,n}to {1,...,n}
8 else if RP = without-replacement a.k.a random reshuffling then

9: sample oy, ,,, uniformly from P(n)

10: fort = 1tondo

11: Uk,m,t 4= Wk,myt—1 — A,V fo, () (Uk,m,e—1)

12 average wi <+ = Son_ | Up,mn

13: return wg

To solve this more efficiently, we apply Algorithm 1 to a quadratic factorization [6] X = yy’, a
common technique which results in the equivalent unconstrained problem

2 1 .
(uiTnyvi —a;) + 37 llylI? subject to: y € RY,
1

1
n

K2

1 n n

minimize: f(y) = — > fi(y) =
i=1 =
We are now going to pick a particular dataset of (u;, v;, a;) such that the global optimum of f is at

y = 0, and where nearby y = 0, Algorithm 1 behaves like our counterexample of Section 2. To do
this, notice that nearby y = 0,

I—aVfi(y) = ((1 —avl) — 2« (uiTnyv,- - ai) (viuiT + uzvlT)) y
= ((1 = o) + 2aaq; (viul +ul)) y+O@W?).

So, if we choose av, 7, a;, v;, and w; such that (1 —ayl)+2aa; (viu! + u;v] ) = (1—ay)A; where
this A; is from our counterexample of Section 2, then when the algorithm 1s sufficiently close to
y = 0, applying an iteration of SGD will behave like multiplying by a single matrix A;, and averaging
across multiple parallel workers will concentrate around the expected value over the sampled scan
order. Concretely, we pick n = 40, a constant step size a = 0.1, v = 0.05, M = 1000, K = 100,
u; = 1, v; = y; (the y; of Section 2), and a; = 1;57; we initialize wo randomly such that |Jwg|| = 1.
It is easy to see that the global optimum of this task is at w* = 0, and it has no other stationary
points. Note that this is not necessarily a very realistic setting (the number of parallel workers is large
and the dataset is relatively small): the artificial setting is chosen to make the comparison stand out
clearly. Running Algorithm 1 on this example produces the results shown in Figure 1. This shows
empirically that, counter-intuitively, standard with-replacement random sampling can outperform

random reshuffling for this algorithm.

4 Taking Step Size into Account

Many algorithms, including SGD, use a step size or learning rate that often decreases over time.
Much of the previous work on random reshuffling has been done in such cases [8, 10, 20]. In this
section, we develop a variant of Conjecture 1 that incorporates a step size, and prove that statement
must hold true for sufficiently small step sizes. Our step-size-incorporating variant of Conjecture 1
is based on the following intuition. For a smooth objective, for w close to the optimum w* where
Vfi (w*) = 0,

w —aV fi(w) = (I = aV? fi(w))(w — w*) + w;

for a quadratic function f;, this approximation is exact. So we can model SGD with step size «
by allowing the matrices A; in Conjecture 1 to vary as a function of a step size «. We prove the
following theorem about this modified inequality.

Theorem 1 (Matrix AMGM Inequality, Sufficiently Small Step Size). Let Ay, ..., A, be a collection
of continuously twice-differentiable functions from R to Sy, that all satisfy A;(0) = I and that are
non-trivial in the sense that they have no eigenvalue/eigenvector pairs shared among all the matrices
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A1(0), A5(0), ..., AL (0). Then for any 2 < k < n, there exists an cumay > 0 and a constant C > 0
such that such that for all 0 < o < apax,

l[rri (A1 (@), As (@), . .., An(@))]] < Irr1(A1(a), As(a),. .., Ap(a))||" — a>C.

The proof of Theorem 1 is a straightforward combination of the following two lemmas. The main
idea is that we can expand the rrj, expression approximately as a polynomial in «, and then consider
only the dominant quadratic o term, which we can bound directly. We defer the proof of the theorem
and both lemmas to the appendix.

Lemma 1 (Binomial Theorem for Random Reshuffling). For any symmetric matrices X, . ..
and any constants o and f3,

I’I’k(OéI + ﬁXl, al + ﬂXQ, .-

7Xn;

Lol 4+ 8X,) =S8 0 (B)ak iR (X, X, . X).

Lemma 2. For any symmetric matrices X1, ..., X, € R% and for any u € R such that ||u|| = 1,
uT (X, X)) < s (X, X P

and equality can hold only if there exists a A € R such that for all i € {1,...,n}, uis an eigenvector
of X; with eigenvalue ), that is X;u = \u.

We can use Theorem 1 to show that random reshuffling must outperform standard with-replacement
sampling for slowly decaying step size schemes for noiseless convex quadratic problems, which can
be thought of as a simplified model for optimization problems satisfying the strong growth condition
of Schmidt and Roux [21]. Specifically, we study the following simplified class of problems.

Definition 1. We say that a set of loss functions f1, ...
if the following conditions hold.

, [n 1s a noiseless convex quadratic problem

+ (Noiselessness.) There exists a unique w* € R? such that for all 4, V f; (w*) = 0.
* (Convex quadratics.) Each loss function f; is a convex quadratic f;(w) = w? Hyw/2 + b;fru).
* (Lipschitz gradients.) For some L, each loss function f; satisfies V2 f;(w) < LI.

Additionally, we say that the problem is non-trivial if the Hessian matrices H; = V2 f;(w*) share no
eigenvalue/eigenvector pairs, i.e. there is no (A, u) with u # 0 such that for all i, H;u = \u.

Note that the last condition here is designed to rule out trivial cases such as all the loss functions f;
being the same. Such trivial cases only happen on a set of measure 0 within the space of all possible
loss functions fi, ..., f, and initializations, so it is reasonable for us to exclude them. The class
of problems described by Definition 1 includes the setting of the Randomized Kaczmarz method
originally studied in Recht and Ré [19], as well as well-known tasks such as linear regression and
ridge regression.

Theorem 1 now directly implies the following useful corollary, which says that without-replacement
sampling outperforms with-replacement sampling whenever a diminishing but not square-summable
step size scheme is used—including for the important case of M = 1 in Algorithm 1, which
corresponds to the most common case of ordinary single-worker SGD.3

*Note also that it should be straightforward to extend Corollary 1 to the case of “nice” convex losses, on the
basis of the idea that any such functions must behave like quadratics locally in the neighborhood of w™. But
since this is not deliver any new insight, we do not present such a result here.



Corollary 1. Consider Algorithm 1 on a non-trivial noiseless convex quadratic (using any M ).
Suppose that the step size scheme satisfies 0 < o; L < 1 and is diminishing but not square-summable,
ie limy_ oo o, = 0 and 220:1 ai = oo. Then for almost all initial values wy # w*,

*
. "E[wk7withaut—replacement] —w |
lim = 0.
k—o0 ||E[wk,with-replacement} —w ||

Although it seems that Theorem 1 and Corollary 1 suggests that random reshuffling is indeed better
when we allow the use of small step sizes, it has a significant limitation that would make that
conclusion invalid: Corollary 1 only compares with-replacement and without-replacement sampling
using the same learning rate scheme for both. Instead, when comparing two algorithms in the most
fair way, we should select the best learning rate scheme for each algorithm individually. Surprisingly,
when we allow this, we can give an example of a convex learning task for which with-replacement
sampling, with a particular constant step size, converges faster than without-replacement sampling no
matter what fixed step size scheme it uses.

The convex functions in question can be constructed directly from our counterexample of Section 2.
Let f;(w) = 3w’ Hyw, where H; = (I — 3A;) ® £ ® 3, where & denotes the matrix direct sum
(such that X @ Y is a block diagonal matrix with diagonal blocks X and Y'). This function must
be convex because H; is positive semidefinite (which follows from the fact that the eigenvalues of
A; are 0, 1, and 2). The main idea of this construction is to “force” the step size to be a = 1, since
otherwise either the 1/2 or 3/2 coordinate will end up converging at a suboptimal rate. Although
a theoretical analysis of this would be straightforward, as such analysis delivers no new insight,
we only validate that this example works empirically on a concrete example. We pick n = 8,
M = 100, and K = 20, and we initialize wg from a Gaussian with less power on the last two
coordinates, which makes the effect more visible. In Figure 2 we plot the distance to optimum
after K epochs for all step sizes a € {0,0.001,0.002,...,1.7}. Observe that while for smaller step
sizes, random-reshuffling outperforms standard sampling—which validates Theorem 1—the best
convergence overall is achieved by standard with-replacement sampling. Interestingly, the averaging
of Algorithm 1 is necessary for this effect to happen for this task: in Figure 2 we also display results
for standard SGD on the same problem (equivalent to setting M = 1) for which without-replacement
sampling seems to consistently outperform with-replacement sampling.

5 Random Reshuffling Can be Worse Asymptotically Even for SGD

While we have shown Conjecture 1 is false, this does not necessarily imply random reshuffling can be
worse with stochastic gradient descent, because the averaging present in Conjecture 1 is not present
in plain SGD. Our counterexamples so far do not show random reshuffling performing worse with no
averaging (Figure 2), so it remains consistent with our observations so far that random reshuffling
could always outperform with-replacement sampling for SGD. But is this necessarily true?

In this section we will show that it is not: even for SGD without any averaging (Algorithm 1 with
m = 1), we can construct a learning task for which with-replacement sampling converges strictly
faster than random reshuffling—albeit one not based on a counterexample to any of the conjectures
we have studied. Here, when we say it converges “strictly faster,” we mean that for any coupling of
the two algorithms, with-replacement sampling almost surely eventually achieves lower loss than
random reshuffling and its loss remains lower for all time. The main idea behind this construction,
which is based on the idea that any rank-deficient square matrix can be written as the product of three
symmetric positive semidefinite matrices [24], is as follows. Consider the matrices

A =1 [—21 > —11} , Ay =1 [_(2)1(£ %1} , Az =1 [%_(1)1 7(2)1} ,and R = %whereu: {32} .
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It is easy to check that all these matrices are symmetric and positive semidefinite (and < I), and that
(A1 A3A3)? = 0. Now, consider the behavior of SGD with step size & = 1/2 on the problem where

filw) =wl (I-AD)w, fa(w) =wl(I-A)w, f3(w)=wl(I-A3)w, fi(w)=w?(I-R)w.

Observe that all these functions are convex, and that choosing to do a step with f; has the effect
of multiplying w by A, etc. This means that, for with-replacement sampling, if we sample our
examples in the order (1,2, 3,1,2,3,1,2,3), the result after running those SGD steps will be to have



w = 0, regardless of what value of w we started with (because (A1 A2A3) = 0). Since we are
guaranteed to sample that run of examples eventually, it follows that almost surely, after some finite
amount of time with-replacement SGD achieves w; = 0 = w*, which minimizes the loss.

On the other hand, this sequence of samples can not occur for sampling without replacement. Instead,
every epoch of SGD will contain an R, which “disrupts” the sequence. The sequence of matrices
that are multiplied by w will consist of sequences of A; matrices of length no more than 6 broken up
by R matrices. Because of the structure of R, for any matrix X, 6RXR = R - v Xu: this means
that the sequences of matrices RA, - - - A, R will reduce to the product of scalars uT A, -+ Ayu. Ttis
straightforward to verify numerically that this scalar is nonzero for any sequence of A, matrices that
can occur for sampling without replacement. So, for almost all initializations wy, SGD with random
reshuffling on this task will never reach 0, while SGD using with-replacement sampling is guaranteed
to reach 0 in finite time. We conclude that with-replacement sampling converges asymptotically faster
than random reshuffling for this task and step size.

In fact, we can say something even more general: among all step sizes « that satisfy oL < 1, where
L is the smallest constant such that each f; is has L-Lipschitz gradients, SGD with o = 1/2 using
with-replacement sampling converges asymptotically faster than all other settings. That is, here
with-replacement sampling is still converging asymptotically faster, even if we choose the optimal
learning rates for both sampling strategies separately. We can see that this holds immediately from
the fact that for 0 < a < 1, taking a step with respect to f; has the effect of multiplying w by a
full-rank matrix; such a step can never reach 0.

We explore this task empirically in Figure 3, where we ran a thousand epochs of SGD using both
with- and without-replacement sampling on the example task we constructed in this section. Observe
that for every run (we ran 20 independent runs), with-replacement sampling starts off a little worse,
but quickly moves to zero loss, while without-replacement sampling continues to have nonzero loss
for all time. Note that we needed to use exact arithmetic and look at points very close to the optimum
for this effect to be observable: the figure ranges down to losses of 1074990 Although not practical,
this experiment does conclusively illustrate empirically that it is possible for with-replacement SGD
to converge asymptotically faster than random-reshuffling, even when no averaging is used and when
step sizes are chosen optimally for both algorithms.* In future work, it may be interesting to study
whether and to what extent this sort of effect can occur in real learning tasks.

6 Conclusion

In this paper, we compared random reshuffling to with-replacement sampling for stochastic learning
algorithms on noiseless problems. We found a counterexample to two longstanding conjectures from
the literature (Conjectures 1 and 2) that would have implied random reshuffling is always no worse
for many learning algorithms. Using this counterexample, we constructed concrete learning tasks for
which with-replacement sampling outperforms without-replacement sampling in a way that can be
observed empirically, even when step size is allowed to vary. This shows that, contrary to folklore,
random-reshuffling can actually cause learning algorithms to converge asymptotically slower than
with-replacement sampling on a particular problem. New insights will be required to develop theory
that gets around our counterexamples to explain why random-reshuffling appears to consistently
perform better on individual tasks in practice—even for noiseless problems. We hope that this work
will bring us closer to a deeper understanding of the effect of scan order in machine learning.

Broader Impact

We expect that the counterexamples presented in this work will have an impact on the ML theory
community as we further try to understand the effect of scan order in large-scale optimization. We
hope that these counterexamples will help guide future researchers towards proving more variants of
Conjectures 1 and 2 that are true. Beyond this impact on the ML community, this work is primarily
theoretical and does not present any foreseeable societal consequence.

*Observe that this example could also be applied to a “noisy” dataset case with SVRG [13], showing that
the phenomenon of random reshuffling sometimes being worse is limited neither to SGD nor to noisy datasets.
Since the transformation is straightforward it is left as an exercise for the reader.
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