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algorithm for material-informatics: application 
to photovoltaic solar cells
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Abstract 

An important aspect of chemoinformatics and material-informatics is the usage of machine learning algorithms 
to build Quantitative Structure Activity Relationship (QSAR) models. The RANdom SAmple Consensus (RANSAC) 
algorithm is a predictive modeling tool widely used in the image processing field for cleaning datasets from noise. 
RANSAC could be used as a “one stop shop” algorithm for developing and validating QSAR models, performing outlier 
removal, descriptors selection, model development and predictions for test set samples using applicability domain. 
For “future” predictions (i.e., for samples not included in the original test set) RANSAC provides a statistical estimate for 
the probability of obtaining reliable predictions, i.e., predictions within a pre-defined number of standard deviations 
from the true values. In this work we describe the first application of RNASAC in material informatics, focusing on the 
analysis of solar cells. We demonstrate that for three datasets representing different metal oxide (MO) based solar cell 
libraries RANSAC-derived models select descriptors previously shown to correlate with key photovoltaic properties 
and lead to good predictive statistics for these properties. These models were subsequently used to predict the prop-
erties of virtual solar cells libraries highlighting interesting dependencies of PV properties on MO compositions.

Keywords: RANSAC, Material-informatics, QSAR, Photovoltaics, Solar Cells

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
Material informatics is a rapidly developing field engaged 

with the application of informatics principles to materials 

science in order to assist in the discovery and develop-

ment of new materials [1–5]. Developments in material 

informatics take advantage of the vast empirical and 

computational information on structures and properties 

of materials available in multiple databases such as Mat-

Web (http://www.matweb.com/) which includes proper-

ties for over 115,000 materials and MatDat (https://www.

matdat.com/) which includes over 1000 datasets of mate-

rials, to name but a few. [6–10] Turning this large volume 

of information into knowledge could be performed in 

multiple ways using multiple data mining procedures. As 

an example, AFLOW [6] (http://aflowlib.org/) is a data-

base of density functional theory (DFT) calculations per-

formed on more than 1.5  million materials with known 

crystal structures. Isayev et  al. [5]. used this database 

to introduce the term “material cartography” for repre-

senting a library of materials as a network. �e resulting 

network was subsequently mined using various machine 

learning methods in search for materials with interesting 

properties.

A pre-requisite to any data mining procedure is a data 

curation stage [11]. Data curation is important for two 

main reasons: (1) Publically available data sets may con-

tain multiple errors; (2) even a small number of errors 

may compromise the quality of QSAR models [11]. For 

example, Olah et al. [12, 13] have shown an error rate as 

high as 8% in the WOMBAT database and Young et  al. 

[14] have recorded error rates between 0.1 and 3.4% in a 

variety of databases. More recently, Isayev et al. [5] have 

demonstrated several errors in the AFLOW database 
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including duplicate compounds and incorrect extraction 

of literature data. In general, data curation involves steps 

like the removal of duplicates, compounds with wrong 

Lewis structures, compounds for which descriptors could 

not be calculated, and in case of experimentally meas-

ured data the removal of compounds which suffer from 

errors caused by the measurement process.

Due to the sheer size of material databases, data cura-

tion cannot be performed manually but rather requires a 

computational workflow. Indeed several such workflows 

have been reported in the literature [11, 15, 16]. However, 

even a stringent curation workflow cannot clean a data-

base from noise that often accompanies experimental 

data. �e presence of noise might mask the information 

that the data hold, thereby compromising data interpre-

tation, model generation and decisions making.

In general, noise could be classified as either internal or 

external. Internal noise is inherent to the measurement 

process of the data, affects all data points, and is assumed 

to be distributed normally. In contrast, external noise 

results from sources exterior to the system due to an 

error in the measurement itself or from extreme behavior 

that does not match the overall behavior of the majority 

of samples. While all samples experience internal noise, 

some may also experience (greater) external noise and 

could therefore be regarded as outlier samples. �us, an 

outlier is an observation on the dataset, which appears to 

be inconsistent with the rest of the data [17].

Important aspects of data mining in material informat-

ics are database searching, similarity searches, and the 

usage of machine learning algorithms for pattern rec-

ognition and derivation of predictive models [18, 19]. 

Multiple terms have been used to describe such models 

including Quantitative Structure Activity/Property Rela-

tionship (QSAR/QSPR) models [20, 21], Quantitative 

Materials Structure–Property Relationships (QMSPR) 

models [5], and Quantitative Nanostructure Activity 

Relationship (QNAR) models [22]. All models attempt 

to correlate specific activities (or properties) for a set 

of materials with (calculated or measured) molecular 

descriptors by means of a mathematical model. Such 

models should both provide scientific insight into the 

problem in hand as well as allow for the prediction of the 

results of future experiments. An important characteris-

tic of QSAR models is therefore their predictive power. 

However the presence of outliers (i.e., noise) may bias 

the dataset to the point of compromising the ability of 

machine learning algorithms to build predictive mod-

els. Consequently, a common practice of QSAR mod-

eling is the prior removal of outlying samples prior to 

model generation [23]. Accordingly, several methods for 

the removal of outliers were reported in the literature 

[24–29].

Two more aspects of machine learning algorithms 

which critically affect performances are the selection of 

specific descriptors that best correlate with the activity 

under study from the initial pool of descriptors and the 

definition (and application) of the model’s applicability 

domain, namely, the region in material space in which 

the model is expected to give accurate predictions. Mul-

tiple descriptors selection (i.e. feature selection) methods 

have been developed including filter methods, wrapper 

methods and embedded methods [30]. Similarly several 

algorithms for the definition of applicability domains 

have been reported [31].

Most QSAR studies treat the removal of outliers, the 

selection of descriptors and the definition of applicabil-

ity domain as separate stages within a QSAR workflow, 

often using different tools for each task [11, 20, 32, 33]. 

�us, there is an interest in presenting a “one stop shop” 

algorithm for the performance of all tasks. �e advan-

tages of such an algorithm are the potential prevention of 

errors resulting from interfaces between different com-

ponents as well as easier accessibility, in particular by 

non-experts. In contrast a “one stop shop” algorithm is by 

its nature non-modular, offering minimal flexibility in the 

modeling process.

With this in mind we present in this work the adapta-

tion, implementation, and the first application of the 

RANdom SAmple Consensus (RANSAC) method [34] 

to the field of material-informatics by deriving predic-

tive models for key photovoltaic properties of solar cells. 

RANSAC is a modeling tool widely used in the Image 

Processing field [34–36] primarily for image noise filtra-

tion. �e algorithm produces and validates a linear QSAR 

model based on the Minimum Least Square (LMS) 

method by (1) filtering noisy samples (i.e., outliers), (2) 

selecting the best features (i.e., descriptors), (3) deriving a 

QSAR model from training set samples and (4) predicting 

the activity of test set samples while invoking the concept 

of applicability domain, all in a single process without 

the need of complementary processes. For prediction of 

samples not in the original test set (i.e., samples for which 

no activity data are available), RANSAC provides a sta-

tistical estimate for the probability of obtaining reliable 

predictions, i.e., predictions within a pre-defined number 

of standard deviations from the true values. �ese char-

acteristics make RANSAC an appealing addition to the 

arsenal of tools available for the derivation of predictive 

QSAR models.

As a first application, we chose to test the performances 

of RANSAC in the important field of solar cells which 

emerge as one of the main resources for clean energy. 

Briefly, a typical solar cell (photovoltaic device) operates 

by: (1) Generation of charge carriers (electrons and holes) 

following the absorption of photons; (2) Separation of 
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the photo-generated charge carriers via charge selective 

contact(s); (3) Collection of the photo-generated charge 

carriers at an external circuit resulting in electricity.

In particular we focus our attention on solar cells 

entirely composed of metal oxides (MOs). Such cells pos-

sess many favorable properties including natural abun-

dance of the constituting materials, ease of fabrication 

and long time stability. However, such cells do not dem-

onstrate sufficient efficiency in converting sunlight to 

electricity thereby requiring the development of new cells 

potentially composed of new MOs or MO combinations 

[37]. Such developments could be facilitated by the devel-

opment of QSAR models to predict key solar cells prop-

erties such as current, voltage, and quantum efficiency. 

Yet despite their importance only few QSAR studies were 

reported on solar cells [38–40] and even fewer on MO-

based solar cells [41].

MO-based solar cells are often produced using com-

binatorial techniques resulting in solar cell libraries [37, 

42]. Following fabrication, the libraries are subjected 

to medium throughput measurements to character-

ize their composition/structure as well as their photo-

voltaic (PV) properties. Due to the technical challenges 

involved in both fabrication and characterization, the 

resulting libraries often contain noisy data [42] making 

them ideal candidates for the RANSAC algorithm. �e 

main objective of the present study is therefore to estab-

lish the usefulness of the RANSAC algorithm in cleaning 

and analyzing datasets of solar cells libraries and pre-

dicting their PV properties. For this purpose, we used 

three recently published datasets experimentally-derived 

from two different solar cells libraries. �e first library 

is a TiO2|Cu2O library reported by Pavan et al. [43]. �e 

library consists of two datasets, one with Ag back con-

tacts and the other with Ag|Cu back contacts. �e second 

library is a TiO2|Co3O4|MoO3 library reported by Majhi 

et  al. [15]. �e two libraries comprised of TiO2|Cu2O 

based solar cells were previously modeled using k near-

est neighbors (kNN) and genetic algorithm allowing for 

a facile comparison between the performances of the dif-

ferent algorithms. �e third library (TiO2|Co3O4|MoO3) 

was previously analyzed using visualization methods 

[36]. We demonstrate that the RANSAC algorithm filters 

the sample space from noisy data (i.e., outliers), auto-

matically selects descriptors previous shown to correlate 

with key PV properties and generates models with good 

predictive statistics for these properties.

Methods
RANSAC overview

RANdom SAmple Consensus (RANSAC) [34] is a 

method for deriving a model based on linear regres-

sion, performed on input data that may include noisy 

samples (both internal and external noise). �e basic 

assumption of the algorithm is that the measured activ-

ity (Ymeasured(x̄)) depends on a set of noise-free variables 

(e.g., descriptors; x̄) and on noise added to them; Eq. (1).

where Ynoise−free(x̄) is the expected activity in a noise-free 

environment and N  is a random internal noise. RANSAC 

assumes that the internal noise obeys the homoscedas-

tic assumption, namely, that it has a constant distribu-

tion across all activity values. Using this assumption, 

boundaries could be set to form a “strip” that classi-

fies the samples as either affected by internal noise only 

(model-compatible samples residing within the “strip”) 

or such that are affected both by internal and by external 

noise (model-incompatible samples residing outside the 

“strip”). Importantly, these boundaries should be a priori 

provided to the algorithm, based on the system’s charac-

teristics and are expressed as the distance, in number of 

standard deviations (n), from the model (see below and 

Fig. 1).

Mathematically, the following definition applies 

[Eq. (2)]:

where Ycalculated(x̄) is the calculated activity (see below), σ 

is the standard deviation of the sample and n is the width 

(1)Ymeasured(x̄) = Ynoise−free(x̄) + N

(2)

if
Ymeasured(x̄)−Ycalculated (x̄)

σ
> n Model−Incompatible Sample

else Model−Compatible Sample

Fig. 1 A possible RANSAC output where the desired model is of 
the first power (i.e., straight line). The algorithm assumes that due to 
internal noise, samples will not be exactly on the model but within 
a normal distribution around it. Conceptually, this variance forms a 
“strip” where all samples that lay within its boundaries are influenced 
by internal noise only. Samples within a “strip” are defined as model-
compatible. Samples outside the “strip” are defined as model-incom-
patible
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of the “strip” (in units of σ). Operationally, RANSAC 

incorporates the following stages (Fig. 2): (1) Model con-

struction: randomly select a subsample from the dataset 

and fit to it a linear curve using linear regressions Least 

Mean Squares (LMS). (2) Model scoring: classify all sam-

ples as either model-compatible or model incompatible 

(based on the a priori provided “strip” width). (3) Itera-

tive phase: repeat steps (1) and (2) to build multiple mod-

els each based on other randomly selected subsamples. 

For each model count the number of model-compatible 

and model-incompatible samples (4) Model selection: 

select the model with the largest number of model-com-

patible samples, calculate LMS, discard model-incompat-

ible samples (i.e., outliers) and calculate LMS again. �is 

model will be used for subsequent predictions.

Model construction

For RANSAC to build a model, it must first draw a sub-

sample from all the samples used for model training (i.e., 

training set) and use it to construct a regression line. For 

a single observation the model takes the form of Eq. (3):

Where y is the dependent variable, x̄ is the vector of the 

independent variables (i.e., descriptors), i denotes sample 

i, p is the power of the best fit curve, d is the dimension-

ality of the model (i.e., number of descriptors) and W̄  is 

a vector holding the weights calculated using the linear 

(3)

yi = w0xi0 + w1xi1 + w2x
2
i1 + · · · + wpx

p
i1 + wp+1xi2

+ wp+2x
2
i2 + · · · + wp∗dx

p

id

regression. Note that W̄  may have zero values for one or 

more input descriptors meaning, that these descriptors 

were not selected by the model. For multiple samples, the 

matrix form is used [Eq. (4)]:

where

�e size of the subsample drawn by RANSAC should 

match the power (p) of the desired equation [Eq. (3)]. For 

example, for an equation with p = 3, a subsample of size 

4 should be drawn.

Model scoring

�e basic assumption underlying the RANSAC algorithm 

is that the set of samples (expressed as data points) could 

be approximated by a model of a certain dimensionality 

(d), where each dimension is represented by a descriptor 

raised up to a maximum power (p) allowed for the model. 

If this assumption holds true, then one would expect 

to have most dataset points residing within a “strip” of 

a given width around the best fit curve calculated for a 

subsample (i.e., model compatible samples). �e “strip” 

could be used for several purposes: (1) Scoring models 

by counting the number of dataset points residing within 

their boundaries (the larger the number, the better the 

model). Models are scored based on the entire training 

set and not only on the drawn sub-sample used for their 

construction. (2) Identifying outliers by observing train-

ing set samples residing outside the “strip’s” bounda-

ries. (3) Defining the “strip” as the model’s applicability 

domain for test set predictions. RANSAC scores a model 

based on the number of model-compatible samples from 

within the training set.

Iterative phase and select highest scoring model

RANSAC is an iterative algorithm that requires many 

repetitions of the model construction and scoring phases 

(i.e., iterations) in order to obtain the best model. Fur-

thermore, the number of the required iterations depends 

on the size of the dataset with larger datasets requiring 

more iterations. At each iteration, the algorithm counts 

(4)Ȳcalculated = XW̄
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Fig. 2 Description of the RANSAC algorithm as used for model 
construction
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the number of model-compatible samples and outputs 

the weights vector (W̄ ) that corresponds to the highest 

ranked model (i.e., model with the highest score). For this 

model the LMS error is calculated both before and after 

the removal of outliers (i.e., model-incompatible sam-

ples). It is important to note that the size of the “strip” 

(which ultimately determines the number of model com-

patible samples) may vary between libraries and should 

be specifically chosen for each library.

Predictions

�e best model emerging from the iterative phase is used 

for predictions. For test set samples, their known activi-

ties allow to classify them as either within or outside the 

model’s applicability domain (i.e., either within or out-

side the “strip”). �e percentage of within-“strip” samples 

provides an estimate for the percentage of “correct” (i.e., 

within the predefined number of standard deviations (n) 

from the true value) predictions for “future” samples, 

that is samples with unknown activities. RANSAC does 

not feature an inherent applicability domain for indi-

vidual samples although a descriptors based applicability 

domain approach could of course be used [31].

For all RANSAC’s applications described in this work 

the following parameters were used: �e number of itera-

tions was set to  105 to derive a polynomial equation of 

the 5th power. �e size of the “strip” (i.e. the models’ 

boundaries) was set to be ±1 standard deviation around 

Ȳmeasured derived from the training set. �e algorithm was 

coded in MATLAB version R2014a.

Datasets

Metal-oxide solar cells library

�e basic assembly of MO solar cell library includes (see 

Fig. 3): (1) a transparent conducting oxide (TCO) coated 

on a glass, typically in the form of fluorine doped tin 

oxide (FTO); (2) a window layer, which is a wide band-

gap n-type semiconductor (typically  TiO2); (3) a light 

absorbing layer (absorber); (4) Metal back contact; (5) 

Metal frame (front contact) soldered directly onto the 

FTO.

TiO2|Cu2O library (Fig. 3a)

An experimental library of solar cells was obtained from 

Pavan et  al. [43]. �is library was generated on precut 

glass coated with fluorine doped tin oxide (FTO) sub-

strates onto which a  TiO2 window layer with a linear 

gradient was deposited, followed by an absorber layer 

of  Cu2O. Inserting two different grids of 13 × 13 = 169 

back-contacts, namely, silver only (Ag) and silver and 

copper (Ag|Cu) deposited one after the other, lead to two 

sub-libraries (datasets) each consisting of 169 cells. In 

this work we omitted the non-photovoltaic cells leaving 

a total of 162 and 166 cells for the Ag and Ag|Cu back 

contact data base respectively.

TiO2|Co3O4|MoO3 library (Fig. 3b)

�is library was constructed in a manner roughly similar 

to the TiO2|Cu2O libraries, with the same window layer 

 (TiO2) but different target metal oxide for the absorber 

layer  (Co3O4) and also included a third recombination 

Fig. 3 A schematic representation of the PV solar cells libraries. a TiO2|Cu2O library (with Ag and Ag|Cu back contacts), b TiO2|Co3O4|MoO3 library
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layer  (MoO3). On top of the  MoO3 layer a 13 × 13 grid 

of Au back contacts was placed, thus forming a library 

of 169 cells. �e library was characterized by the vary-

ing thicknesses of the  TiO2,  Co3O4,  MoO3 layers. For this 

library 19 cells were removed due to lack of photovoltaic 

activities (thus 150 cells remained).

Library characterization

Each solar cell was characterized by its material descrip-

tors (independent variables) and experimentally meas-

ured photovoltaic activities (dependent variables). 

Material descriptors included the thickness of the win-

dow layer (dTiO2
), the thickness of the absorber layers 

(dCu2o and dCo3O4
), the thickness of the recombination 

layer (dMoO3
), the thickness ratio between the absorber 

layer and the sum of the absorber and window layers 

(ratio), the thickness ratio between the absorber layer 

and the sum of the absorber and the recombination lay-

ers (ratio_AR), and the band gap of absorber layer (BGP). 

�e band gap is the energy difference (in electron volts) 

between the top of the valence band and the bottom of 

the conduction band. Overall, for the TiO2|Cu2O libraries 

four descriptors were consider namely: dTiO2
, dCu2o, ratio, 

and BGP, and for the TiO2|Co3O4|MoO3 library five 

descriptors were consider namely: dTiO2
, dCo3O4

, dMoO3
, 

ratio, and ratio_AR. Tables 1 and 2 present the range val-

ues for each of the descriptors.

In this work we focused on three experimentally meas-

ured PV activities (dependent variables, end points): (1) 

the short circuit photocurrent density (JSC) which is the 

current density through the solar cell when the voltage 

across the cell is zero. (2) �e open circuit voltage (Voc) 

which is the maximum voltage available from a solar cell. 

�is voltage occurs at an open circuit. (3) �e internal 

quantum efficiency (IQE) which reflects the charge sepa-

ration and collection efficiencies of a device and is calcu-

lated by Eq.  (6) where Jmax is the maximum theoretical 

calculated photocurrent. �e distributions of the three 

PV activities are represented by boxplots in Fig.  4 and 

their ranges are given in Table 3.

Model �tting and statistical parameters

�e datasets were divided into training and validation (test) 

sets using a recently published representativeness algorithm 

[44]. Subsets selected by this algorithm were previously 

employed as external validation sets in QSAR modeling 

[24, 25, 41, 44]. Each dataset was divided into a training set 

composed of 80% of the original dataset (130, 134 and 120 

cells for the TiO2|Cu2O with Ag back contacts, TiO2|Cu2O 

with Ag|Cu back contacts and TiO2|Co3O4|MoO3 datasets, 

respectively) and a test set containing the remaining cells 

(32 samples for the TiO2|Cu2O with Ag and Ag|Cu back 

contact and 30 samples for the TiO2|Co3O4|MoO3 dataset). 

�e TiO2|Cu2O libraries with Ag and Ag|Cu Back Con-

tacts were previously modeled by Yosipof et al. [41]. For the 

purpose of comparison, the training and test sets described 

above, were made identical to those described by Yosipof 

et al. [41].

To evaluate the RANSAC model performances on the 

training set we used Q2

train as expressed by Eq.  (7). �e 

RANSAC algorithm excludes samples from the training 

set-based error calculation if residing outside the model’s 

boundaries (e.g., “strip”). �us the model’s error is derived 

without these samples. �is is analogous to outlier 

removal. Below we therefore report two Q2

train estimates, 

the first based on all samples and the second based on 

samples surviving RANSAC’s inherent outlier removal.

�e performances of the RANSAC algorithm on 

the test set (Q2
ext) were calculated in a similar manner 

[Eq.  (8)]. Similarly to outlier removal, the “strip” calcu-

lated by the RANSAC algorithm was used to evaluate 

the applicability domain (AD) of the resulting model. 

Accordingly, two estimates of Q2
ext were calculated one 

pertaining to the entire test set and one, for that portion 

of the test set which resided within the model’s applica-

bility domain.

(6)IQE =

Jsc

Jmax

(7)Q2
train = 1 −

∑
(

Ymeasured,train − Ypredicted,train
)2

∑
(

Ymeasured,train − Ȳmeasured,train

)2

(8)Q2
ext = 1 −

∑
(

Ymeasured,test − Ypredicted,test
)2

∑
(

Ymeasured,test − Ȳmeasured,test

)2

Table 1 Descriptor ranges for  the TiO2|Cu2O library (with 
Ag and Ag|Cu back contacts)

TiO2|Cu2O (both libraries)

dTiO2
 (nm) 70.0–311.5

dCu2o (nm) 249.0–596.0

Ratio 0.51–0.89

BGP (eV) 0.21–2.50

Table 2 Descriptor ranges for the TiO2|Co3O4|MoO3 library

TiO2|Co3O4|MoO3

dTiO2
 (nm) 259.0–355.0

dCo3O4
 (nm) 30.7–245.0

dMoO3
 (nm) 38.9–61.8

Ratio 0.08–0.43

Ratio_AR 0.38–0.86
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where Ymeasured is the experimental result, Ypredicted is the 

predicted value and Ȳmeasured is the mean of the experi-

mental results over training set samples.

In addition, we used the  R2 (squared correlation coef-

ficient) between the predicted (Ypredicted) and the experi-

mental (Ymeasured) data for both training and test set.

Finally, to assess model significance and to rule-out 

chance correlation, Y-randomization procedure was 

applied to all models.

Result and discussion
Performances of RANSAC‑derived models

�e RANSC algorithm was applied to the three data-

sets described above. For each dataset, three models 

were derived to describe their photovoltaic (PV) proper-

ties (JSC, VOC and IQE). Table  4 presents the number of 

training set and test set samples found to reside within 

the model’s “strip” (i.e., model-compatible samples). 

Model-incompatible samples in the training and test 

sets are referred to as outliers and outside of the model’s 

AD, respectively. As can clearly be seen, the vast major-

ity (≥85%) of the samples are included within the “strip” 

for both the training and test sets. �is suggests that (1) 

predictive models could likely be derived for this dataset 

and (2) the model described by the “strip” forming curve 

approximates most of the training set and test set sam-

ples to within one standard deviation (the pre-defined 

“strip” width; see Methods section) from their experi-

mental values. One could therefore propose that the 

majority of future samples will be similarly predicted. 

However, in two cases the number of model compatible 

cells was below the 85% threshold (the VOC models for 

the TiO2|Co3O4|MoO3 library with 84 and 80% of model 

compatible cells for the training and test sets, respec-

tively), indicating higher variance for this property in this 

dataset in comparison with the other properties/data-

sets. In accord with this observation, the performances of 

the VOC model from the TiO2|Co3O4|MoO3 library were 

exceptionally poor (Table  5). �is model was therefore 

excluded from the analysis reported below.

Overall, the RANSAC algorithm led to models with 

good statistical parameters (Table  5) for training set 

samples for JSC (Q2

train between 0.74 and 0.77), Voc (Q2

train 

between 0.57 and 0.62 excluding the TiO2|Co3O4|MoO3 

library; see above) and IQE (Q2

train between 0.71 and 0.85). 

Upon the removal of outliers, the statistical parameters 

for all models improved with the largest improvement 

Fig. 4 Boxplots of the three PV activities (JSC, Voc, and IQE). a–c The three PV activities distribution for the TiO2|Cu2O library (with Ag and Ag|Cu back 
contacts). d–f The three PV activities distribution for the TiO2|Co3O4|MoO3 library. The boxplots show the median values (solid horizontal line), 50th 
percentile values (box outline), the lower and upper quartile (whiskers, vertical lines), and outlier values (open circles)

Table 3 Activity ranges for the three libraries

TiO2|Cu2O 
(Ag)

TiO2|Cu2O 
(Ag|Cu)

TiO2|Co3O4|MoO3

JSC 
(

µA/cm
2
)

13.9–387.8 17.21–405.86 10.35–25.7

VOC (V) 0.06–0.35 0.01–0.35 0.03–0.62

IQE (%) 0.11–2.56 0.13–2.68 0.05–0.31
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being obtained for VOC (Q2

train between 0.78–0.82, 0.65–

0.73 (excluding the TiO2|Co3O4|MoO3) and 0.78–0.85 for 

JSC, VOC and IQE, respectively).

�e performances of the RANSAC models on the test 

set samples followed a trend similar to that observed for 

the training set. �us, for all test sets, Q2
ext was found to 

be between 0.69–0.82, 0.62–0.80, and 0.69–0.79 for JSC, 

VOC (excluding the TiO2|Co3O4|MoO3library) and IQE, 

respectively. Similar results were obtained for  R2 values 

between the predicted and the actual activities (Table 5). 

As expected for datasets devoid of significant activity 

cliffs, when considering only samples within the mod-

els’ applicability domains, these numbers improved to 

0.82–0.87 and 0.79–0.83 for JSC, and IQE, respectively. 

For VOC of the TiO2|Cu2O (Ag) library, no test set sam-

ples were filtered by the applicability domain leading to 

no change in model performances (Q2
ext = 0.80). However 

for this property a significant increase in the TiO2|Cu2O 

(Ag|Cu) library upon the removal of only two samples 

was observed (Q2
ext = 0.62 and 0.73 without and with the 

model’s AD, respectively).

Figures  5 and 6 present predicted versus experimen-

tally measured values for all three PV properties con-

sidered in this work across the three datasets following 

outlier removal for training set samples and considering 

only samples within the models applicability domains for 

the test set.

Finally, Y-randomization procedure was applied to 

all models and no statistically significant models were 

derived.

Two of the above described datasets [TiO2|Cu2O (Ag) 

and TiO2|Cu2O (Ag|Cu)] were previously modeled by 

Yosipof et al. [41] using kNN and a Genetic Programming 

(GP) approach, thereby allowing for a direct comparison 

between the performances of the resulting models (the 

results of kNN and GP models from Yosipof et al. [41] are 

presented in Table 7). GP produced models with Q2
ext val-

ues between 0.74–0.76, 0.50–0.78 and 0.72 for JSC, VOC and 

IQE respectively. �e corresponding numbers obtained 

by RANSAC are Q2
ext  =  0.69–0.76, 0.62–0.80, and 0.69–

0.78 for JSC, VOC and IQE, respectively, with no AD and 

Q2
ext = 0.84–0.87, 0.73–0.80 and 0.82–0.83 for JSC, VOC and 

IQE, respectively, with AD. �ese results suggest that the 

performances of the RANSAC models are similar to those 

of the GP with no consideration of the AD and provide sig-

nificant improvement upon the application of AD. Of note, 

there is no inherent definition of AD in the GP method. 

For kNN, Q2
ext was reported to be 0.89–0.92, 0.56–0.89, 

Table 4 Number of model-compatible samples for the three datasets based on the RANSAC models

JSC VOC IQE

TiO2|Cu2O (Ag)

 # Model—compatible training samples 125/130 (96%) 120/130 (92%) 125/130 (96%)

 # Model—compatible test samples 28/32 (88%) 32/32 (100%) 28/32 (88%)

TiO2|Cu2O (Ag|Cu)

 # Model—compatible training samples 131/134 (98%) 127/134 (95%) 129/134 (96%)

 # Model—compatible test samples 30/32 (94%) 30/32 (94%) 31/32 (97%)

TiO2|Co3O4|MoO3

 # Model—compatible training samples 118/120 (98%) 101/120 (84%) 120/120 (100%)

 # Model—compatible test samples 30/30 (100%) 24/30 (80%) 30/30 (100%)

Table 5 RANSC model performance for the three datasets

library Activity Q2

train
(R2) Q2

train
 (R2) (no outliers) Q2

ext(R
2) Q2

ext (AD) (R2)

TiO2|Cu2O (Ag) JSC 0.75 (0.77) 0.82 (0.84) 0.69 (0.75) 0.87 (0.89)

VOC 0.62 (0.63) 0.65 (0.66) 0.80 (0.80) 0.80 (0.80)

IQE 0.71 (0.72) 0.79 (0.82) 0.69 (0.76) 0.83 (0.87)

TiO2|Cu2O (Ag|Cu) JSC 0.74 (0.78) 0.78 (0.82) 0.76 (0.81) 0.84 (0.88)

VOC 0.57 (0.62) 0.73 (0.78) 0.62 (0.68) 0.73 (0.78)

IQE 0.72 (0.74) 0.78 (0.81) 0.78 (0.82) 0.82 (0.86)

TiO2|Co3O4|MoO3 JSC 0.77 (0.78) 0.78 (0.79) 0.82 (0.83) 0.82 (0.83)

VOC −0.06 (0.03) 0.25 (0.36) 0.00 (0.10) 0.33 (0.31)

IQE 0.85 (0.86) 0.85 (0.86) 0.79 (0.81) 0.79 (0.81)
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and 0.87–0.91 for JSC, VOC and IQE, respectively, with no 

AD and Q2
ext 0.88–0.92, 0.55–0.89 and 0.87–0.89 for JSC, 

VOC and IQE, respectively, with AD. �us, kNN provides 

models with higher prediction statistics than RANSAC in 

particular when the AD is not considered. However, the 

performances of RANSAC approach those of kNN upon 

the introduction of the AD. Moreover, the test set cover-

age provided by RANSAC is generally higher than that 

provided by kNN (Table 6). Finally, in contrast with kNN, 

RANSAC provides a model in the form of a QSAR equa-

tion which enhances model interpretability.

RANSAC as a feature selection tool

Table  8 presents the model equations produced by 

RANSAC for the different PV properties of the three 

datasets.

For both TiO2|Cu2O datasets it is evident that while 

four descriptors were evaluated by RANSAC, only two 

were picked by the algorithm as predictors of photovol-

taic activities. Importantly, these two descriptors give rise 

to six terms in the resulting QSAR equations due to their 

power form. �us, RANSAC “expands” the small num-

ber of final descriptors by using them in multiple forms. 

A potential drawback of the resulting models is therefore 

reduced interpretability of terms including “high power” 

descriptors. �e TiO2|Co3O4|MoO3 dataset was charac-

terized by five descriptors and only three were selected 

by RANSAC leading to models with six terms (Table 8). 

�e features selected by the RANSAC algorithm could 

be compared with those selected by the kNN and GP 

models reported by Yosipof et al. [41]. As can be deduced 

from Table 9, all methods selected the same descriptors 

for the TiO2|Cu2O (Ag) library while kNN replaced dTiO2
 

by the ratio descriptor for the TiO2|Cu2O (Ag|Cu) library. 

While GP sometimes selected a smaller number of “base 

descriptors”, it compensated for this smaller number by 

incorporating these descriptors in more complex mathe-

matical equations. In contrast, the RANSAC algorithm is 

limited to simple polynomial equation (to the 5th power 

in this study).

RANSAC derived virtual cells

RANSAC derived models could be used to predict PV 

properties of virtual solar cell libraries. �ese predictions 

could serve two purposes: (1) identify trends related to 

the dependence of PV properties on descriptors values, 

Fig. 5 Predicted versus experimental PV properties for train set samples following the removal of outliers. a–c JSC, VOC and IQE for the  TiO2|Cu2O 
library with Ag back contacts, d–f JSC, VOC and IQE for the  TiO2|Cu2O library with Ag|Cu back contacts, g–iJSC, VOC and IQE for the  TiO2|Co3O4|MoO3 
library
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which are not easily discernible from the resulting equa-

tions. (2) Provide a theoretical basis for and guide future 

experiments.

TiO2|Cu2O (Ag) and TiO2|Cu2O (Ag|Cu) virtual libraries

�e original TiO2|Cu2O (Ag) and TiO2|Cu2O (Ag|Cu) 

libraries were of identical compositions with dTiO2
 

between 70 and 311.5  nm and dCu2O between 249 and 

596  nm. �e virtual cell should cover these ranges and 

expand upon them to allow RANSAC-based extrapola-

tions. With this in mind, thickness values for the different 

layers were selected to be between 200 and 700 nm and 

between 40 and 400  nm for the  Cu2O and  TiO2 layers, 

respectively, where each range was divided into 100 bins 

(a total of 10,000 cells per virtual library). �ese specific 

ranges were selected following several iterations designed 

to find the model’s limits, beyond which the results would 

not be physically meaningful (i.e., have negative PV val-

ues). Next, the PV properties (JSC, VOC, IQE) of each cell 

were predicted using the RANSAC models presented in 

Table  8. �e results of these predictions are presented 

in Fig. 7 and demonstrate a few trends: (1) all PV activi-

ties primarily depend on the thickness of the  Cu2O layer 

rather than on the thickness of the  TiO2 layer. �is trend 

was noted by Pavan et  al. [43]. but only for JSC. (2) JSC 

presents a marked increase for  Cu2O thicknesses above 

500  nm (where JSC equals 200 µA

cm2) as seen in Fig.  7a, d. 

Similar trends (yet with less sharp transitions) are also 

seen for IQE and VOC (Fig.  7b, e and c, f, respectively). 

Interestingly,  Cu2O thicknesses above 500  nm where 

Table 6 A comparison of  model coverage, based on  test 
set samples, between RANSAC and kNN models

* The data for kNN were taken from Table 5 in Ref. [41]

Library Activity RANSAC coverage 
(%)

kNN coverage* (%)

TiO2|Cu2O (Ag) JSC 88 91

VOC 100 84

IQE 88 91

TiO2|Cu2O (Ag|Cu) JSC 94 79

VOC 94 79

IQE 97 73

Fig. 6 Predicted versus experimental PV properties for test set samples residing with the models applicability domains. a–c JSC, VOC and IQE for 
the  TiO2|Cu2O library with Ag back contacts, d–f JSC, VOC and IQE for the  TiO2|Cu2O library with Ag|Cu back contacts, g–i JSC, VOC and IQE for the 
 TiO2|Co3O4|MoO3 library
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hardly explored by the original library. (3) �e nature of 

the back contact (Ag vs. Ag|Cu) has the largest effect on 

the dependence of JSC on the thickness of the  Cu2O layer 

(compare Fig.  7a, d) which is followed by VOC (compare 

Fig.  7b, e). In contrast, the dependence of IQE on the 

thickness of the  Cu2O layer is the least affected by the 

back contact (compare Fig.  7c, f ). (4) Certain combina-

tions of dTiO2
 and dCu2O are predicted to have both high 

JSC and VOC values. �ese trends are largely in accord with 

previous conclusions on these systems deduced from 

experiments and other data mining approaches [41].

TiO2|Co3O4|MoO3 virtual library

In a similar manner, another virtual library was con-

structed for the TiO2|Co3O4|MoO3 MOs composition. In 

the original library, the thicknesses of the different layers 

ranged from 259 to 355, nm, from 30.7 to 245  nm and 

from 38.9 to 61.8 for  TiO2,  Co3O4 and  MoO3, respec-

tively. In the virtual library, these ranges were increased 

Table 7 kNN and GP models performance retrieved from Yosipof et al. [41]

Library Activity Q2

train
Q2
ext(R

2) Q2
ext (R

2) (AD) Q2
ext(R

2)

kNN GP kNN kNN GP

TiO2|Cu2O (Ag) JSC 0.92 0.74 0.92 (0.92) 0.92 (0.92) 0.76 (0.76)

VOC 0.78 0.65 0.89 (0.89) 0.89 (0.89) 0.78 (0.77)

IQE 0.91 0.70 0.87 (0.87) 0.87 (0.87) 0.72 (0.73)

TiO2|Cu2O (Ag|Cu) JSC 0.92 0.76 0.89 (0.89) 0.88 (0.89) 0.74 (0.76)

VOC 0.74 0.61 0.56 (0.55) 0.55 (0.54) 0.50 (0.50)

IQE 0.9 0.72 0.91 (0.91) 0.89 (0.89) 0.72 (0.73)

Table 8 RANSAC derived models for di�erent PV properties

PV Property Model

TiO2|Cu2O (Ag) JSC

(

µA/cm
2
)

= −7.9 × 10
−5

d
3
TiO2

+ 6.32 × 10
−7

d
4
TiO2

− 1.3 × 10
−9

d
5
TiO2

+ 7.27 × 10
−6

d
3
Cu2o

− 1.8 × 10
−8

d
4
Cu2o

+ 1.47 × 10
−11

d
5
Cu2o

VOC (V) = 4.44 × 10
−8

d
3

TiO2
− 2 × 10

−10
d
4

TiO2
+ 2.12 × 10

−13
d
5

TiO2
+ 1.76 × 10

−8
d
3

Cu2o
− 5.7 × 10

−11
d
4

Cu2o
+ 4.87 × 10

−14
d
5

Cu2o

IQE (%) = −9.6 × 10
−8

d
3
TiO2

+ 1.43 × 10
−9

d
4
TiO2

− 3.7 × 10
−12

d
5
TiO2

+ 3.39 × 10
−8

d
3
Cu2o

− 9.2 × 10
−11

d
4
Cu2o

+ 8.52 × 10
−14

d
5
Cu2o

TiO2|Cu2O (Ag|Cu) JSC

(

µA/cm
2
)

= 1.69 × 10
−5

d
3
TiO2

− 8.5 × 10
−8

d
4
TiO2

+ 1.13 × 10
−10

d
5
TiO2

+ 3.15 × 10
−6

d
3
Cu2o

− 1.9 × 10
−9

d
4
Cu2o

− 1.7 × 10
−12

d
5
Cu2o

VOC (V) = 9.31 × 10
−9

d
3

TiO2
+ 4.01 × 10

−11
d
4

TiO2
− 2 × 10

−13
d
5

TiO2
+ 2.04 × 10

−8
d
3

Cu2o
− 6.9 × 10

−11
d
4

Cu2o
+ 6.18 × 10

−14
d
5

Cu2o

IQE (%) = −9.47 × 10
−7

d
3
TiO2

+ 7.2 × 10
−9

d
4
TiO2

− 1.4 × 10
−11

d
5
TiO2

+ 1.2 × 10
−7

d
3
Cu2o

− 3.6 × 10
−10

d
4
Cu2o

+ 3.08 × 10
−13

d
5
Cu2o

TiO2|Co3O4|MoO3 JSC

(

µA/cm
2
)

= −1.5 × 10
−8

d
4
Co3O4

+ 6.09 × 10
−11

d
5
Co3O4

+ 3.74 × 10
−6

d
4
MoO3

− 4.5 × 10
−8

d
5
MoO3

+ 5.17 × 10
−9

d
4
TiO2

− 1.3 × 10
−11

d
5
TiO2

VOC (V) = 2.08 × 10
−10

d
4

Co3O4
− 6.8 × 10

−13
d
5

Co3O4
+ 4.42 × 10

−7
d
4

MoO3
− 6.7 × 10

−9
d
5

MoO3

− 4 × 10
−11

d
4

TiO2
+ 7.35 × 10

−14
d
5

TiO2

IQE (%) = −3.9 × 10
−7

d
3
Co3O4

+ 3.26 × 10
−9

d
4
Co3O4

− 7.2 × 10
−12

d
5
Co3O4

− 3.9 × 10
−11

d
5
MoO3

+ 1.52 × 10
−10

d
4
TiO2

− 3.9 × 10
−13

d
5
TiO2

Table 9 Featured selected for  the TiO2|Cu2O libraries 
by the various methods

Library Activity RANSAC GP kNN

TiO2|Cu2O (Ag) JSC dCu2o , dTiO2
dCu2o dCu2o , dTiO2

VOC dCu2o , dTiO2
dCu2o , dTiO2

dCu2o , dTiO2

IQE dCu2o , dTiO2
dCu2o dCu2o , dTiO2

TiO2|Cu2O (Ag|Cu) JSC dCu2o , dTiO2
dCu2o dCu2o, Ratio

VOC dCu2o , dTiO2
dCu2o , dTiO2

dCu2o, Ratio

IQE dCu2o , dTiO2
dCu2o dCu2o, Ratio
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to 30–500 and 40–100 nm for the  Co3O4 layer and  MoO3 

layer, respectively (50 bins for each range) while the  TiO2 

layer was kept at a constant value of 340 nm. �is led to a 

virtual library consisting of 2500 cells.

For this particular library, Koushik et  al. [15] showed 

that IQE is mainly affected by the thickness of both the 

Co3O4 and MoO3 layers. �is conclusion was further 

supported by a computational analysis [36]. Figure  8 

shows that RANSAC’s prediction is in line with this 

proposition (i.e., to achieve relatively high IQE values, 

the thickness of the Co3O4 layer must be low, smaller 

than 150 nm and this property is also influenced by the 

thickness of the MoO3 layer). In addition, RANSAC’s 

models point to an inherent problem in producing solar 

cells with both high JSC and IQE values for this MOs 

combination since the former seems to yield maximum 

value at Co3O4 layer thickness at the 500  nm region 

while the latter, yields its global maxima at the 30  nm 

region. Finally, Fig. 8 suggests possible combinations for 

additional experiments that may lead to high IQE values, 

for example small thicknesses of both Co3O4 and MoO3 

layers.

Fig. 7 Virtual cells based on the TiO2|Cu2O with Ag back contacts [a JSC (μA/cm2); b VOC (V); c IQE (%)] and TiO2|Cu2O With Ag|Cu Back Contacts  
[d JSC (μA/cm2); e VOC (V); f IQE (%)] solar cells libraries. The white regions are outside of the models’ applicability domain
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Conclusions
To the best of our knowledge, this is the first application 

of the RANSAC algorithm in materials-informatics and 

certainly for the analysis of solar cells libraries. Overall, 

RANSAC demonstrated a promising ability to develop 

predictive models for key PV properties across multiple 

libraries. �e statistical parameters of the resulting mod-

els favorably compare with results obtained from genetic 

programing and kNN-derived models. Furthermore, the 

trends observed either from the models in their equation 

form or from the virtual cells are in agreement with pre-

vious findings [43, 45].

�e performances of RANSAC together with the abil-

ity to use it as a “one stop shop” for model derivation 

and validation makes the algorithm an appealing addi-

tional to the arsenal of modeling tools in chemo- and 

material-informatics. �is opens new opportunities 

for understanding the factors controlling the proper-

ties of materials and for the design of new materials 

with improved properties. Clearly, the applications 

of RANSAC (as well as of all other data mining tools) 

should be conducted in close collaboration with experi-

mentalists to provide physics/chemistry based expla-

nation to the observed trends and to capitalize on the 

results. We expect that the RANSAC algorithm will find 

multiple usages in chemoinformatics and materials-

informatics researches.
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