
Random Sampling from B+ trees *

Frank Olken and Doron Rotem
Computer Science Research Dept.

Information and Computing Sciences Div.
Lawrence Berkeley Laboratory

1 Cyclotron Road, Berkeley, CA 94720

Abstract

We consider the design and analysis of algorithms to
retrieve simple random samples from databases. Specifi-
cally, we examine simple random sampling from B+ tree
files. Existing methods of sampling from B+ trees, re-
quire the use of auxiliary rank information in the nodes
of the tree. Such modified B+ tree files are called
“ranked B+ trees”. We compare sampling from ranked
Bt tree files, with new acceptance/rejection (A/R) sam-
pling methods which sample directly from standard B+
trees. Our new A/R sampling algorithm can easily be
retrofit to existing DBMSs, and does not require the
overhead of maintaining rank information. We consider
both iterative and batch sampling methods.

1 Introduction

Virtually all database systems used to record finan-
cial transactions (accounting systems, inventory control
systems, bank records, etc.) are subject to annual audit,
usually involving random sampling of the records for cor-
roboration. Yet commercial database management sy5

tems do not support queries to retrieve a random sample
of some portion of the database. One reason is that pre-
vious proposals to support retrieval of random samples

*This is a condensed version of tech report LBL-25517. This
work was supported by the Director, Office of Energy Re-
search, Office of Basic Energy Sciences, Applied Mathematical
Sciences Division of the U.S. Department of Energy under Con-
tract DEAC03-76SF00098. Authors electronic mail addresses:
olken@csam.lbl.gov, olken@lbl.bitnet, rotemOcsam.lbl.gov

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Bose
Endowment. To copy other&e, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the Fifteenth International
Conference on Very Large Data Bases

from databases have required the modification of stan-
dard access methods, and the maintenance of additional
information in the indices. In particular, earlier authors
have described sampling from modified B+ trees, called
ranked Bt trees, which incorporate information which
permits the computation of the rank of a record.

In this paper we discuss methods of sampling from
regular Bt trees, employing acceptance/rejection (A/R)
methods. These new algorithms do not require any mod-
ification of the standard Bt tree structures, nor do they
require maintenance of any additional fields in the B+
trees. Hence these new sampling methods can be more
easily retrofit to existing DBMSs. While not quite as
efficient as earlier proposals, it should be suitable for
applications which only need sampling infrequently, e.g.
for auditing. For Bt tree files we discuss both iterative
and batch sampling methods.

1.1 Why sample?

Random sampling is used on those occasions when
processing the entire dataset is not necessary and is con-
sidered too expensive in terms of response time or re-
source usage. The savings generated by sampling may
arise either from reductions in the cost in retrieving
the data from the DBMS or from subsequent “post-
processing” of the sample.

Retrieval costs are significant when dealing with large

administrative or scientific databases. Post-processing
of the sample may involve expensive statistical compu-
tations, or further physical examination of the real world
entities described by the sample. Examples of the latter
include physical inspection and/or testing of components
for quality control [Mon85,LWW84], physical audits of
financial records [Ark84,LTA79], and medical examina-
tions of sampled patients for epidemiological studies. As
noted above, most financial databases are subject to an-
nual audits, which typically entail random sampling of
records from the database for corroboration.

Sampling is useful for applications which are attempt-

Amsterdam, 1969

- 269 -

ing to estimate some aggregate property of a set of
records, such as the total number of records which sat-
isfy some predicate. Thus random sampling is tyb y
used to support statistical analysis of a dataset, L ’ ?r
to estimate parameters of interest [HOT881 or for ny-
pothesis testing. See [Coc77] for a classic treatment of
the statistical methodology. Applications include scien-
tific investigations such as high energy particle physics
experiments, quality control, and policy analyses. For
example, one might sample a join of welfare recipient
records with tax returns or social security records in or-
der to estimate welfare fraud rates.

1.2 Simple Random Sampling

There are a variety of types of sampling which may be
performed. In this paper we shall be concerned with fized
size samples, where the sample size has been specified by
the user.

Another way of characterizing the sample is whether
it is drawn with or without replacement. Let us assume
that we are sampling from a distinct set of records. Sam-
ples drawn with replacement may contain duplicates,
and are usually easier to obtain (as we shall see). How-
ever, samples drawn without replacement, which pro-
scribe duplicates, generally provide more information for
a given sample size.

If the inclusion probabilities for individual records are
uniform we say that we have a simple random sample
(SRS).

In this paper we will deal with fixed size simple ran-
dom samples. One can readily convert between simple
random samples with and without replacement (denoted
SRSWR and SRSWOR respectively). To convert from
SRSWR to SRSWOR we merely remove duplicates (in
time linear in the sample size via a hash table) (possi-
bly we must increase the sample size to compensate for
duplicate removals). To convert from SRSWOR to SRS
we must generate synthetic duplicates, this also can be
done in time linear with the sample size. If the sam-
pling fraction (ratio of sample size to population size) is
(as is typical) small, then there will be few duplicates in
the SRSWR and the extra samples needed to compen-
sate for duplicate removal will be insignificant. We shall
ignore the costs incurred due to duplicate removal and
replacement in this paper.

1.3 Notation and Efficiency Metric

In this paper we shall measure the efficiency of the
sampling algorithm in terms of the number of disk blocks
read. We have typically assumed that the desired sam-
ple size is much smaller than the number of records in
the file, (hence the likelihood of duplicate records in the

sample is small) so that we have ignored the difference
between sampling with and without replacement. A ta-
ble of frequently used notation follows.

2 Basic Techniques

2.1 Acceptance/Rejection Sampling

A basic tactic used in this paper is accep-
tance/rejection sampling. It can be used to construct
weighted samples in which the inclusion probabilities of
a record are proportional to some arbitrary weight (cal-
culated from the record attributes). In this paper we
will use it to compensate for algorithm or data structure
induced variations in sample inclusion probabilities so as
to finally obtain a simple random sample, i.e., one with
uniform inclusion probabilities. A brief explanation of
this classic sampling technique is included here for those
in the database community who may be unfamiliar with
it.

Suppose that we wish to draw a weighted random sam-
ple of size 1 from a file of N records, denoted rj, with
inclusion probability for record rj proportional to the
weight wj. The maximum of the wj is denoted w,,,,,=.

We can do this by generating a uniformly distributed
random integer, j, between 1 and N, and then accepting
the sampled record rj with probability pj:

wj
Pj = 7 wnao

The acceptance test is performed by generating another
uniform random variate, uj, between 0 and 1 and ac-
cepting Tj if Uj < pj. If rj is rejected, we repeat the
process until some j is accepted.

The reason for dividing wj by w,,, is to assure that
we have a proper probability (i.e., pj 5 1). If we do
not know wmar we can use instead a bound Q such that
Vj, 0 > wj ,. The number of iterations required to accept
a record rj is geometrically distributed with a mean of
(E[pj])-‘. Hence using n in lieu of wmor results in a
less efficient algorithm.

Acceptance/rejection sampling is well suited to sam-
pling with ad hoc weights or when the weights are being
frequently updated (since it does not require auxiliary
indices).

2.2 A Review of Sampling from Files

Over the last 20 years there has been considerable
work done on developing basic techniques for sampling
from a single flat file (usually with fixed blocking). We
employ some of these techniques in our work on-query
sampling. In Table 3 we list the major results, with ci-
tations to the relevant algorithms.

- 270 -

ak acceptance probability of record k
a = E(ok) = expected acceptance probabil-

ity of record

P = (favg/fmao) = average acceptance
prob. at of a node

b out? average blocking factor for variably
blocked file

b macr maximum blocking factor for variably
blocked file

Cmethod(S) cost of retrieving sample of size 8, via
specified method

fi fan-out from internal node i of B+ tree,
or

f O”!l

f mar

h
h’

i=o
n
Pk
Path

17

S

S’

t hisnode

W, 4

wk

number of records in leaf node i of I?+
tree
average fan-out from internal node of Bt
tree, or
average number of records in leaf node of
B+ tree
maximum fan-out from internal node of
B+ tree, or
maximum number of records in leaf node
of Bt tree
height of B+ tree(count root as height 1)
height of ranked Bt tree
(usually same as h)
denotes root node of Bt tree
number of records in file
probability of inclusion of record k
path (node identifiers) from root to leaf
containing record k
expected length of path in early abort al-
gorithm
number of records desired in sample
inflated sample size (to compensate for ac-
ceptance/rejection)
pointer to a B+ tree node (internal or
leaf)
Cardenas’s function for expected number
of blocks
referenced when retrieving k records from
m block file
probability of sampling of record k on a
simple random walk from root to leaf of
Bt tree

1

ARHASH A/R algorithm for hashed files
NI Naive Iterative algorithm for Bt tree

files
EAI Early Abort Iterative algorithm for B+

tree files
RI Iterative algorithm for ranked Bt tree

files
NB Naive Batch algorithm for Bt tree files
EAB Early Abort Batch algorithm for Bt

tree files
RB Batch algorithm for ranked Bt tree files

Table 2: Algorithm abbreviations

L

Type of sampling Citation

SRSWR
SRSWR, variable
blocking.
SRSWOR
Weighted RS
Sequential RS,
known pop. size

Sequential RS, un-
known pop. size

-D-T
this paper

[EN821
[WE801

[FMR621

O(s(1 + log(n/s))

Table 3: Basic Sampling Techniques from a single file.
Assume each sample taken from a distinct disk page, i.e.,
s << (n/b,,,) For Vitter’s algorithms assume random
disk I/O.

Table 1: Notation used in the paper.

- 271-

3 Iterative Sampling from a
B+tree

3.1 A/R Sampling from a B+ tree

In this section we discuss how to employ accep-
tance/rejection sampling to sample from a B+ tree with-
out requiring the storage of any additional information
in the B+ tree nodes. Although our new method has
a higher retrieval cost than earlier methods based on
ranked B+ trees, it does not require any modification
of existing access methods, nor any additional update
costs. Hence this method will be preferred over earlier
methods for applications where updates dominate sam-
pling retrievals.

For expository reasons we commence with a discussion
of the naive method (a random walk from root to leaf,
followed by an acceptance/rejection test). Subsequently,
we show that a modification of this method, known as
early abort, dominates the naive method. In Section 4 we
consider batch versions of each algorithm, which in turn
dominate the original iterative algorithms discussed in
this section.

We shall sssume that the buffer pool is sufficiently
large to cache one entire path (from root to leaf) of the
B+ tree. For simplicity of analysis, we neglect the minor
effect of caching beyond the root page (for these iterative
algorithms). This will not alter the relative performance
of the various iterative algorithms.

3.1.1 The Problem

As with other file structures the problem is to pro-
duce uniform inclusion probabilities for the target data
records. Simply choosing a random edge from each in-
ternal node will not suffice, because nodes reached from
internal nodes with low fanout will be more likely to be
sampled than those reached from nodes with high fanout.

3.1.2 Naive method

Basically, the naive method consists of performing ac-
ceptance/rejection sampling on complete random paths
through the tree (from root to leaf). The accep-
tance/rejection sampling is used to correct the inclusion
probability of each sampled path, so that every record
(stored in the leaves of the B+ tree) has the same in-
clusion probability. We dicuss this method primarily for
expository reasons, since (as we shall show) it is dom-
inated by the early abort method (described in Sect.
3.1.3).

In this method we select a random path from the root
to a record in a leaf (i.e., at each internal node we choose
a branch at random (equi-probably), at the leaf we select

a record at random (equi-probably)). Upon reaching the
leaf we perform an acceptance/rejection test to decide
whether to keep this path. The acceptance probability
is calculated as we traverse the path from root to leaf as
the product of the ratios of actual fan-out to maximum
fan-out at each node (except the root). We are in effect
sampling from a full multi-way tree, discarding paths
which do not actually exist.

We denote by B a B+ tree of order m with height
h (there exist h nodes on any path from root to leaf,
including the root and leaf). Let fi denote the fan-out of
node i. This is the number of branches from an internal
node, and the number of records in a leaf node. We
designate the root node to be node zero.

Lemma 1 The naive algorithm generates a simple ran-
dom sample. The inclusion probability pk for record fk
contained in leaf j for a single (root-to-leaf) path traver-
sal is:

pk = fO-lfmor-h+l (2)

where fmoz = 2m+l is the maximum fanout of an inter-
nal node (and for simplicity also the maximum number
of records on a leaf node).

Proof: Let wk = p(sampling record k on a random
walk). Then

wk = n f;’ (3)
iEpathk

where p&k refers to the path from root to leaf node
containing the record E. Let the acceptance probability
for record k be ok, defined:

ak = n (fi/fmat)

iEp4thk ,i#O
(4)

Note that the product here excludes the root node, be
cause it is common to all paths, hence it does not intro-
duce any non-uniformity into the inclusion probabilities.
Recall that all paths in the tree have the same height, h.
Hence:

Pk = (Ykwk = f;’ l-J Wfmoz) (5)
iQmthk,i#O

cl

Pk = fO-lfmaz-h+l (6)

Theorem 1 The expected cost of the naive method for
a simple random sample with replacement of sire s from
a B+ tree is approzimately:

E[cNI(s)] % (fl-‘)h-‘+ - 1) + 1 (7)

- 272 -

Proof: Caching is generally only effective for the root
page, hence the (h - 1) factor, rather than h. The last
term simply accounts for initially reading the root page.
Hence:

wNI(s)l M s’(h - 1) + 1 (8)

where s’ is the gross sample size necessary to produce a
net sample of size s after acceptance/rejection sampling.
By assuming that all the fan-outs are equal to faVs we
have:

E[s] M s’p- (9)

Inverting this equation we shall assume (ignoring
stochastic variation) that the required gross sample size,
s’ is:

s’ = (p-ys (10)

Substituting yields the theorem. q

3.1.3 Early abort method

The early abort method of sampling from a B+ tree,
derives from the naive method. Both are based on ac-
ceptance/rejection sampling of random paths in the tree.
The difference is that the naive method traverses com-
plete paths from root to leaf before deciding on accep-
tance or rejection while the early abort method performs
an acceptance/rejection test at each node (except the
root).

If the node is rejected, then we can abort searching
this path, permitting early abortions of a path. We can
in effect reject a leaf node while part way down the path
to it, without requiring that we retrieve the entire path.
Hence, this method clearly dominates the naive method
in expectation.

One way of thinking about the algorithm is to imagine
that we are sampling random paths from the full multi-
way tree. As soon as we go down a branch which is not
present in the actual (partially full) tree, we abort that
path.

At each node (except the root) along a path from root
to leaf we perform an acceptance/rejection test with ac-
ceptance probability for node i denoted as pi:

Pi = filfmoz (11)

Recall
P = fa”g~fmoz (12)

The root node is accepted unconditionally, i.e., /3c = 1.

Lemma 2 For a single (root-to-leaf) path traversal, the
early abort algorithm generates a simple random sample
with inclusion probability pk for record rk, where:

Pk = fO-lfmor-h+l (13)

Proof: Observe that the probability, bk, of accepting
a record Jz (in a leaf node) is simply the product of the
,& along the path:

bk= n pi=ffk

icpathc,i#O
(14)

i.e., the same as for the naive algorithm. Hence our
result follows from the proof of the naive algorithm. q

In effect, the early abort algorithm searches the same
paths as the naive algorithm, but it aborts the search at
the first rejection. Thus for some paths, it accesses fewer
pages. Hence its expected cost will be strictly less than
that of the naive algorithm, unless all of the pages are
full.

Theorem 2 The expected cost of the early abort iter-
ative method for a simple random sample with replace-
ment of size s from a B+ tree is approximately:

h-1 - 1)
E[CEAI(S)] m (,8-‘)h-1s(Pp _ 1 + 1 (15)

Proof: Here we have again assumed that all the fan-
outs are equal to favs. As before, the gross sample size
must be increased by a factor of (/3-‘)n-’ to account for
the losses due to A/R sampling.

Recall that for the naive algorithm the length of each
path examined is h (with a one-path cache it will be ap-
prox. h - 1). What is the expected length of a path
searched in the early abort algorithm? Let 17 denote
the average path length (assuming the root is cached).
Then we ignore the root (because it is cached). Accep-
tance/rejection sampling at each node could cause an
early abort - but this happens after the node has been
read in - so we subtract one more from the exponent on
the expected acceptance probability /? = (favs/fmaz) of
a node. This gives:

kh-I
lr= c pi-1

i=l

(16)

Summing we have:

a= w-; 1) (17)

The total cost is given by:

E[cEAI(S)] = s’r + 1 (18)

where the last term consists of reading the root and
where again we have

s’ = s(p-‘p-l (19)

- 273 -

5 cost mtio ,
3

2

1

al 4
2 3 4 5 6 7

hsiiht of the tms

Figure 1: Iterative Algorithm Performance Graph

is the adjusted gross sample size to compensate for the
attrition due to acceptance/rejection sampling. Substi-
tuting yields the theorem. q

Observe that from our definition of ?r that it must be
less than h - 1, hence we have:

Theorem 3 The expected
live method is strictly less
naive iterative method.

cost of the early abort itera-
that the expected cost of the

Proof: Both methods must explore the same ex-
pected number of paths, as noted above the expected
path length for early abort is less than that for the naive
algorithm. q

We summarize the performance of-the iterative algo
rithms in Figure 1.

3.2 Sampling from a ranked B+ tree

In this section we discuss how to extract a fixed size
simple random sample from a ranked B+ tree file. A
ranked B+ tree file is one whose nodes have have been
augmented with information which permits one to find
the j’th record in the file. We include this method as
a benchmark against which to compare our new algo-
rithms.

more than one greater, than the corresponding Bt tree.
As discussed earlier, duplicate removal can be per-

formed in O(s) memory. By checking online for duplicate
random numbers, before fetching each record, we can ob-
tain a SBS without replacement in the same number of
disk accesses.

4 Batch Sampling from B+-trees

Suppose that we wish to sample from a file containing In this section we consider batch methods of sampling
n records. We generate a uniformly distributed random from B+ trees. Such methods are intended to reduce
number, j, between 1 and n, and then sample the j’th or eliminate the re-reading of disk blocks incurred by
record. To do this we must be able to identify the j’th iterative sampling algorithms assuming that the buffer
record. If our access method to the file is a B+ tree, pool can hold one entire path through the B+ tree.
then we must be able to find the j’th ranked record in They process the entire sample as one batch, proceeding
the file. Hence we must store information in the tree from one end of the file to the other. Batch sampling
which allows one to calculate the rank of each record. from ranked B+ trees completely eliminates m-reading

This idea is discussed in [Knui’3]. Similar ideas are
used in [BK75] and [WE80]. Essentially we store in each
node of the tree a count (partial sum) of the number
of leaves in that subtree. In a binary tree [Knu73] the
rank of each leaf can be calculated by suitable sums and
differences of the count fields of all the nodes on the path
from root to leaf. In a B+ tree we promote the count
fields one level in the tree so that each node stores not
only the total count of leaves in its subtree, but also the
counts for each child (alongside its key). Hence, while
a rank access to the tree must still examine on average
half the entries in each B+ tree page, the number of disk
pages which must be fetched is only equal to the height
of the tree.

This matter is discussed in [SL88], and (for tries) in
[Gho86].

For this algorithm, which we call the ranked iterative
algorithm (denoted RI), we simply generate a random
number, j, between 1 and n (the total number of records
in the file) and then access the B+ tree via the rank fields
to retrieve the j’th record. If there is no caching of disk
pages, then each random probe retrieves a complete path
from root to leaf, consisting of h’ pages where h’ is the
height of the ranked B+ tree.

Theorem 4 The expected number of disk pages accessed
for a simple random sample with replacement of size s
from a ranked B+ tree via the ranked iterative algorithm
RI is:

E(CRI(S)) w s(h’ - 1) + 1 (20)

where h’ is the height of the ranked B+ tree, i.e., h’ =
hl(l+lwJW))~ assuming that storing the rank field
reduces the fan-out of internal nodes by l/3.

Proof: Proof omitted. See full paper. q
In practice, the ranked B+ tree will have a height no

- 274 -

disk blocks. Batch sampling of regular B+ trees via ac-
ceptance/rejection methods returns a sample of random
(i.e., binomial) size. Hence, it may occassionally be nec-
essary to repeat the process to obtain a sufficiently large
sample.

4.1 Standard B+ trees

4.1.1 Naive Batch

The naive batch sampling algorithm for standard B+
trees simply applies the naive iterative algorithm in par-
allel. Instead of sampling paths through the tree one at
a time, we process a batch of paths at once. The advan-
tage is that we reduce the number of times pages must
be rereferenced.

Suppose that we halre an estimate s’ of the required
gross sample size needed to produce a net sample of size
s. We start at the root with a gross sample size of s’ and
proceed with a depth first search of the tree.

At each internal node of the tree we allocate the in-
coming portion of the sample to the various subtrees by
generating a multinomial random vector. A multinomial
random vector from a population of size s in k cells is
a vector V = (211,212 , vk) of length k, which records
the number of balls vi which fall in cell i, when s balls
are thrown in the the cells at random (equiprobably).
(More generally the probability of balls falling into each
cell could vary, but we do not need this.) The uniform
multinomial vector can be generated in two ways: by
generating a random branch for each of s balls and in-
crementing the corresponding cell count, or alternatively
by generating a Poisson random variable for each cell,
and then adjusting the resulting variable with the first
method, so that their sum is correct.

Only those branches with nonzero sample sizes allo-
cated to them are pursued.

Upon reaching a leaf node we perform accep-
tance/rejection sampling on the portion of the gross sam-
ple allocated to this leaf. This we do by generating a
binomial random variable, 2) N B(sk , ok) with param-
eters, Sk = gross sample size allocated to this leaf, and
(Yk =acceptance probability for this path k (as in naive
iterative algorithm).

Having determined the net sample size for a particular
leaf, we extract a simple random sample with replace-
ment of this size from the records on the leaf (this is
trivial).

We then continue with the depth first search of the tree
until complete. The resulting sample may be the wrong
size (because of acceptance/rejection). If the resulting
sample is too large, we discard the excess (chosen at
random). If the resulting sample is too small, we repeat
the process (adding to our sample) until we have enough.

Lemma 3 Cardenas’s Lemma The expected number
of disk blocks referenced, d, when sampling k records
(with replacement) from a file of m equal size blocks is
given by:

d = m(1 - (1 - (l/m)k)) (21)
We will denote this function of m and k as Y(k,m).

Proof: See fya0773. 0
For the naive batch method, the effort to retrieve a

gross sample of size s’, is the same as the effort to per-
form batch searching on a B+ tree, with the same batch
size.

Theorem 5 The ezpected cost in I/O to retrieve a sam-
ple of size s via the naive batch sampling method is ap-
proximately:

j=h-l

E(CNE(~)) = 1+ c Y(s’,foP-‘) (22)
j=l

where f = favg and and a’ = s(p-‘)“-’ (inflated gross
sample sire) as before.

Proof: As before, we use a gross sample size of
s’ to compensate for the losses due to acceptance rejec-
tion. This theorem is a derived by applying Carder&s
Lemma (Lemma 3) for each level of the tree. We have
assumed that all nodes have fan-out f = favg, except
the root which has fan-out fe.

Let us number the levels 0, 1, 2, h-l from root to
leaf, and let j denote the level number.

For level 0, we have s’ records, 1 block (the root). For
level 1, we still have s’ records, and fo blocks. For level
2, we have s’ records, and fof blocks. Thus for level
j, j > 1, we have s’ records and fs fj-’ blocks, hence
by Cardenas’s Lemma the number of blocks accessed at
level j will be Y(s’, fofj-‘). Summing yields the theo-
rem. 0

4.1.2 Early Abort Batch Method

The early abort batch method is simply the batch
analog of the early abort iterative method. It is iden-
tical to the naive batch method, except that the accep-
tance/rejection sampling is performed (by computing bi-
nomial samples) at each node (except the root) as we
search from root to leaf. As was the case with the iter-
ative methods, the early abort batch method dominates
the naive batch method.

Thus we commence our depth first search at the root
with a gross sample size of s’. At the root, and each sub-
sequent internal node, we allocate the incoming sample
to the various branches by means of a multinomial ran-
dom vector. Only those branches with nonzero sample
sizes allocated to them are pursued.

- 275 -

At each level beyond the root, we perform accep
tance/rejection sampling of the incoming sample by gen-
erating a binomial random variable, zi - B(si, /3) with
parameters si, (the incoming sample size), and accep-
tance probability pi (as in the iterative early abort al-
gorithm). The resulting net sample size for the node is
then allocated the branches via a multinomial random
vector. Only those branches with nonzero sample sizes
allocated to them are pursued.

Upon reaching a leaf we perform one last accep-
tance/rejection test (by generating a binomial random
variable, zi - B(si, p)) to account for the variable load-
ing of leaf pages. We then extract a simple random sam-
ple with replacement of size zi of the records on the
page.

Incorrect net sample sizes are dealt as described above
for the naive batch sampling algorithm.

For the early abort batch method, the analysis is more
complicated. The search paths which are aborted early
do not generate as many page accesses. If we number
the levels from 0 to h, denoting by level i the node at
distance i from the root, then at level i, i > 0, we will
access ki records from fsfaugi-r pages, where ki is ap-
proximately a binomial random variable with expecta-
tion 8’ . /9-l, where we have ignored the variation in fi,
replacing it with faus.

Theorem 6 The expected I/O cost to retrieve a simple
random sample of size s’ via the early abort batch sam-
pling method is approximately:

j=h-1

E(CEAB(S)) w 1 + c Y(s’@-‘, fe0p-l) (23)
j=l

where f = favr and s’ = ~(/3-‘)~-’ (inj?ated gross sam-
ple size) as before, and Y(k,m) is Cardenas’s function
defined above.

Proof: As before, we use a gross sample size of s’ to
compensate for the losses due to acceptance/rejection.
This theorem is derived by applying Cardenas’s Lemma
(Lemma 3) for each level of the tree. We have assumed
that all nodes have fan-out f = foug, except the root
which has fan-out fo.

Let us again number the levels 0, 1, 2, h-l from
root to leaf, and let i denote the level number.

For level 0, we have s’ records, 1 block (the root).
For level 1, we still have s’ records, and fo blocks. For
level 2, we have s’p records (because we have done ac-
ceptance/rejection at level l), and fof blocks. Thus for
level j, j > 1, we have s/pi-’ records and fofj-1 blocks,
hence by Carder&s Lemma the number of blocks ac-
cessed at level j will be Y(s’@-l, fofj-‘). Summing
yields the theorem. q

4.2 Ranked B+ trees

Finally, we consider batch sampling of ranked B+
trees. We simply generate a simple random sample of
the ranks, sort it, and then perform a batch search of
the ranked B+ treefile. Alternatively we could use Vit-
ter’s algorithm [Vit84] to generate the sequential skips
required to determine the ranks of the sampled records.
(Note that Vitter’s algorithm generates a simple random
sample without replacement, rather than with replace-
ment. This is easily corrected.) In any case we are only
concerned here with I/O, and we assume the sample of
ranks can easily fit in memory.

We shall assume that we have a cache large enough to
hold a complete path through the tree from root to leaf,
so that reexamining pages along this path required to re-
trieve the sample is costless (in terms of disk I/O). Then
retrieval of the sample is equivalent to batch searching of
a B+ tree, a classic problem treated by [Pa1851 (among
others). Essentially, the number of pages to be retrieved
is simply the number of distinct pages in the union of all
paths to sampled pages.

Theorem 7 The expected I/O cost to retrieve a simple
random sample of size s from a B+ tree via the ranked
batch sampling method is approximately:

j=h-1

E(Gw(s)) = 1+ c Y(s, for-‘) (24)
jtl

where f = favg, fo is the fan-out of the root, and Y(k, m)
is Cardenas’s function defined above.

Proof: The proof is identical to that of Theorem
5, except that we do not need to inflate the sample size
since we are not doing acceptance/rejection sampling. ~1

4.3 Comparisons

It is clear the batch &Igorithms will dominate the
respective iterative algorithms, because they avoid re-
reading disk blocks which are used in more than one
sample path.

Furthermore:

Theorem 8 The early abort batch outperforms naive
batch.

E[CEAB(S)IS E[Crw(s)l (25)

Proof: This result follows from the cost functions and
the fact that Carndenas’s functions Y(k, m) is monotone
increasing in JZ (the sample size). q

The relationship between the performance of the
ranked batch algorithm and the early abort batch al-
gorithm is more subtle. Because the ranked batch algo
rithm may increase the height of the B+ tree it is possible

- 276 -

that RB will perform worse than EAB. However, more
typically RB will not increase the height of the B+ tree
and will out-perform EAB. How big is the difference be-
tween E[CRB(S)] and E[C EAB (s)]? It is clearly less than
a factor of (/3 -’) h-1, the factor by which we inflate the
gross sample size of EAB to compensate for the attrition
due to acceptance/rejection sampling. For random B+
trees /3 is known to be 0.7. Hence for a random B+ tree
of height 5, the methods differ by a factor of no more
than 4.

5 Conclusions

Our most important results concern algorithms to re-
trieve simple random samples of Bt trees, without any
additional data structures or indices. These methods
are baaed on acceptance/rejection sampling, and pro-
vide a simple, inexpensive way to add sampling to a re-
lational database systems. They are appropriate for sy5

tems which only infrequently need to support sampling,
e.g., for auditing. The batch early abort algorithm offers
the best performance of algorithms of this class, and is
to be generally preferred to the iterative algorithms.

Acknowledgements

The authors would like to thank Tekin and Meral Oz-
soyoglu for their continuing encouragement. Jack Mor-
genstein first introduced us to the problem. We also wish
to thank the referees for their comments.

References

[Ark841

[BK75]

[Coc77]

[EN821

[FMR62]

Herbert Arkin. Handbook of Sampling for Au-
diting and Accounting. McGraw-Hill, 1984.

B.T. Bennett and V.J. Kruskal. Lru stack
processing. IBM Journal of Research and De-
velopment, 19(4):353-357, July 1975.

William G. Cochran. Sampling Techniques.

Wiley, 1977.

Jarmo Ernvall and Olli Nevalainen. An al-
gorithm for unbiased random sampling. The
Computer Journal, 25(l), 1982.

C.T. Fan, M.E. Muller, and I. Rezucha. De-
veloment of sampling plans by using sequen-
tial (item by item) selection techniques and
digital computers. Journal of the Ameri-
can Statistical .Association, 57:387-402, June
1962.

[Gho86]

[HOT881

[Knu73]

[LTA’IS]

[LWW84]

[Mon85]

[Pal851

[SLSS]

[Vit84]

[Vit85]

[WE801

Iyao771

S. Ghosh. Siam: statistics information access
method. In Proceedings of the Third Intema-
tional Workshop on Statistical and Scientific
Database Management, pages 286-293, EU-
ROSTAT, Luxembourg, 1986.

Wen-Chi Hou, Gultekin Ozsoyoglu, and
Baldeo K. Taneja. Statistical estimators for
relational algebra expressions. In Proceedings
of the Seventh ACM Conference on Principles
of Database Systems, pages 288-293, March
1988.

Donald Ervin Knuth. The Art of Computer
Programming: Vol. 3, Sorting and Searching.
Addison-Wesley, 1973.

Donald A. Leslie, Albert D. Teitlebaum, and
Rodney J. Anderson. Dollar Unit Sampling.
Copp Clark Pitmanan, 1979.

H.-J. Lenz, G.B. Wetherill, and P.-Th.
Wilrich, editors. Frontiers in Statistical Qual-
ity Control 2. Physica-Verlag, Wurzburg,
Germany, 1984.

Douglas C. Montogmery. Introduction-to Sta-
tistical Quality Control. Wiley, 1985.

P. Palvia. Expressions for batched search-
ing of sequential and hierarchical files. ACM
Transactions on Database Systems, 10(1):97-
106, March 1985.

J. Srivastava and V.L. Lum. A tree based
access method (tbsam) for fast processing of
aggregate queries. In Proceedings of the 4th
International Conference on Data Engineer-
ing, pages 504-510, IEEE Computer Scoeity,
1988.

Jeffrey Scott Vitter. Faster methods of ran-
dom sampling. Communications of the ACM,
27(7):703-718, July 1984.

Jeffrey Scott Vitter. Random sampling with
a reservoir. ACM Transactions on Mathemat-
ical Software, 11(1):37-57, March 1985.

C.K. Wong and M.C. Easton. An efficient
method for weighted sampling without re-
placement. SIAM Journal on Computing,
9(1):111-113, February 1980.

S. Bing Yao. Approximating the number of
accesses in database organizations. Commu-
nications of the ACM, 20(4):260-261, April
1977.

- 277 -

- 278 -

