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Abstract 

We consider the design and analysis of algorithms to 
retrieve simple random samples from databases. Specifi- 
cally, we examine simple random sampling from B+ tree 
files. Existing methods of sampling from B+ trees, re- 
quire the use of auxiliary rank information in the nodes 
of the tree. Such modified B+ tree files are called 
“ranked B+ trees”. We compare sampling from ranked 
Bt tree files, with new acceptance/rejection (A/R) sam- 
pling methods which sample directly from standard B+ 
trees. Our new A/R sampling algorithm can easily be 
retrofit to existing DBMSs, and does not require the 
overhead of maintaining rank information. We consider 
both iterative and batch sampling methods. 

1 Introduction 

Virtually all database systems used to record finan- 
cial transactions (accounting systems, inventory control 
systems, bank records, etc.) are subject to annual audit, 
usually involving random sampling of the records for cor- 
roboration. Yet commercial database management sy5 

tems do not support queries to retrieve a random sample 
of some portion of the database. One reason is that pre- 
vious proposals to support retrieval of random samples 
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from databases have required the modification of stan- 
dard access methods, and the maintenance of additional 
information in the indices. In particular, earlier authors 
have described sampling from modified B+ trees, called 
ranked Bt trees, which incorporate information which 
permits the computation of the rank of a record. 

In this paper we discuss methods of sampling from 
regular Bt trees, employing acceptance/rejection (A/R) 
methods. These new algorithms do not require any mod- 
ification of the standard Bt tree structures, nor do they 
require maintenance of any additional fields in the B+ 
trees. Hence these new sampling methods can be more 
easily retrofit to existing DBMSs. While not quite as 
efficient as earlier proposals, it should be suitable for 
applications which only need sampling infrequently, e.g. 
for auditing. For Bt tree files we discuss both iterative 
and batch sampling methods. 

1.1 Why sample? 

Random sampling is used on those occasions when 
processing the entire dataset is not necessary and is con- 
sidered too expensive in terms of response time or re- 
source usage. The savings generated by sampling may 
arise either from reductions in the cost in retrieving 
the data from the DBMS or from subsequent “post- 
processing” of the sample. 

Retrieval costs are significant when dealing with large 

administrative or scientific databases. Post-processing 
of the sample may involve expensive statistical compu- 
tations, or further physical examination of the real world 
entities described by the sample. Examples of the latter 
include physical inspection and/or testing of components 
for quality control [Mon85,LWW84], physical audits of 
financial records [Ark84,LTA79], and medical examina- 
tions of sampled patients for epidemiological studies. As 
noted above, most financial databases are subject to an- 
nual audits, which typically entail random sampling of 
records from the database for corroboration. 

Sampling is useful for applications which are attempt- 
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ing to estimate some aggregate property of a set of 
records, such as the total number of records which sat- 
isfy some predicate. Thus random sampling is tyb y 
used to support statistical analysis of a dataset, L ’ ?r 
to estimate parameters of interest [HOT881 or for ny- 
pothesis testing. See [Coc77] for a classic treatment of 
the statistical methodology. Applications include scien- 
tific investigations such as high energy particle physics 
experiments, quality control, and policy analyses. For 
example, one might sample a join of welfare recipient 
records with tax returns or social security records in or- 
der to estimate welfare fraud rates. 

1.2 Simple Random Sampling 

There are a variety of types of sampling which may be 
performed. In this paper we shall be concerned with fized 
size samples, where the sample size has been specified by 
the user. 

Another way of characterizing the sample is whether 
it is drawn with or without replacement. Let us assume 
that we are sampling from a distinct set of records. Sam- 
ples drawn with replacement may contain duplicates, 
and are usually easier to obtain (as we shall see). How- 
ever, samples drawn without replacement, which pro- 
scribe duplicates, generally provide more information for 
a given sample size. 

If the inclusion probabilities for individual records are 
uniform we say that we have a simple random sample 
(SRS). 

In this paper we will deal with fixed size simple ran- 
dom samples. One can readily convert between simple 
random samples with and without replacement (denoted 
SRSWR and SRSWOR respectively). To convert from 
SRSWR to SRSWOR we merely remove duplicates (in 
time linear in the sample size via a hash table) (possi- 
bly we must increase the sample size to compensate for 
duplicate removals). To convert from SRSWOR to SRS 
we must generate synthetic duplicates, this also can be 
done in time linear with the sample size. If the sam- 
pling fraction (ratio of sample size to population size) is 
(as is typical) small, then there will be few duplicates in 
the SRSWR and the extra samples needed to compen- 
sate for duplicate removal will be insignificant. We shall 
ignore the costs incurred due to duplicate removal and 
replacement in this paper. 

1.3 Notation and Efficiency Metric 

In this paper we shall measure the efficiency of the 
sampling algorithm in terms of the number of disk blocks 
read. We have typically assumed that the desired sam- 
ple size is much smaller than the number of records in 
the file, (hence the likelihood of duplicate records in the 

sample is small) so that we have ignored the difference 
between sampling with and without replacement. A ta- 
ble of frequently used notation follows. 

2 Basic Techniques 

2.1 Acceptance/Rejection Sampling 

A basic tactic used in this paper is accep- 
tance/rejection sampling. It can be used to construct 
weighted samples in which the inclusion probabilities of 
a record are proportional to some arbitrary weight (cal- 
culated from the record attributes). In this paper we 
will use it to compensate for algorithm or data structure 
induced variations in sample inclusion probabilities so as 
to finally obtain a simple random sample, i.e., one with 
uniform inclusion probabilities. A brief explanation of 
this classic sampling technique is included here for those 
in the database community who may be unfamiliar with 
it. 

Suppose that we wish to draw a weighted random sam- 
ple of size 1 from a file of N records, denoted rj, with 
inclusion probability for record rj proportional to the 
weight wj. The maximum of the wj is denoted w,,,,,=. 

We can do this by generating a uniformly distributed 
random integer, j, between 1 and N, and then accepting 
the sampled record rj with probability pj: 

wj 
Pj = 7 wnao 

The acceptance test is performed by generating another 
uniform random variate, uj, between 0 and 1 and ac- 
cepting Tj if Uj < pj. If rj is rejected, we repeat the 
process until some j is accepted. 

The reason for dividing wj by w,,, is to assure that 
we have a proper probability (i.e., pj 5 1). If we do 
not know wmar we can use instead a bound Q such that 
Vj, 0 > wj ,. The number of iterations required to accept 
a record rj is geometrically distributed with a mean of 
(E[pj])-‘. Hence using n in lieu of wmor results in a 
less efficient algorithm. 

Acceptance/rejection sampling is well suited to sam- 
pling with ad hoc weights or when the weights are being 
frequently updated (since it does not require auxiliary 
indices). 

2.2 A Review of Sampling from Files 

Over the last 20 years there has been considerable 
work done on developing basic techniques for sampling 
from a single flat file (usually with fixed blocking). We 
employ some of these techniques in our work on-query 
sampling. In Table 3 we list the major results, with ci- 
tations to the relevant algorithms. 
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ak acceptance probability of record k 
a = E(ok) = expected acceptance probabil- 

ity of record 

P = (favg/fmao) = average acceptance 
prob. at of a node 

b out? average blocking factor for variably 
blocked file 

b macr maximum blocking factor for variably 
blocked file 

Cmethod(S) cost of retrieving sample of size 8, via 
specified method 

fi fan-out from internal node i of B+ tree, 
or 

f O”!l 

f mar 

h 
h’ 

i=o 
n 
Pk 
Path 

17 

S 

S’ 

t hisnode 

W, 4 

wk 

number of records in leaf node i of I?+ 
tree 
average fan-out from internal node of Bt 
tree, or 
average number of records in leaf node of 
B+ tree 
maximum fan-out from internal node of 
B+ tree, or 
maximum number of records in leaf node 
of Bt tree 
height of B+ tree(count root as height 1) 
height of ranked Bt tree 
(usually same as h ) 
denotes root node of Bt tree 
number of records in file 
probability of inclusion of record k 
path (node identifiers) from root to leaf 
containing record k 
expected length of path in early abort al- 
gorithm 
number of records desired in sample 
inflated sample size (to compensate for ac- 
ceptance/rejection) 
pointer to a B+ tree node (internal or 
leaf) 
Cardenas’s function for expected number 
of blocks 
referenced when retrieving k records from 
m block file 
probability of sampling of record k on a 
simple random walk from root to leaf of 
Bt tree 

1 

ARHASH A/R algorithm for hashed files 
NI Naive Iterative algorithm for Bt tree 

files 
EAI Early Abort Iterative algorithm for B+ 

tree files 
RI Iterative algorithm for ranked Bt tree 

files 
NB Naive Batch algorithm for Bt tree files 
EAB Early Abort Batch algorithm for Bt 

tree files 
RB Batch algorithm for ranked Bt tree files 

Table 2: Algorithm abbreviations 

L 

Type of sampling Citation 

SRSWR 
SRSWR, variable 
blocking. 
SRSWOR 
Weighted RS 
Sequential RS, 
known pop. size 

Sequential RS, un- 
known pop. size 

-D-T 
this paper 

[EN821 
[WE801 

[FMR621 

O(s(1 + log(n/s)) 

Table 3: Basic Sampling Techniques from a single file. 
Assume each sample taken from a distinct disk page, i.e., 
s << (n/b,,,) For Vitter’s algorithms assume random 
disk I/O. 

Table 1: Notation used in the paper. 
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3 Iterative Sampling from a 
B+tree 

3.1 A/R Sampling from a B+ tree 

In this section we discuss how to employ accep- 
tance/rejection sampling to sample from a B+ tree with- 
out requiring the storage of any additional information 
in the B+ tree nodes. Although our new method has 
a higher retrieval cost than earlier methods based on 
ranked B+ trees, it does not require any modification 
of existing access methods, nor any additional update 
costs. Hence this method will be preferred over earlier 
methods for applications where updates dominate sam- 
pling retrievals. 

For expository reasons we commence with a discussion 
of the naive method (a random walk from root to leaf, 
followed by an acceptance/rejection test). Subsequently, 
we show that a modification of this method, known as 
early abort, dominates the naive method. In Section 4 we 
consider batch versions of each algorithm, which in turn 
dominate the original iterative algorithms discussed in 
this section. 

We shall sssume that the buffer pool is sufficiently 
large to cache one entire path (from root to leaf) of the 
B+ tree. For simplicity of analysis, we neglect the minor 
effect of caching beyond the root page (for these iterative 
algorithms). This will not alter the relative performance 
of the various iterative algorithms. 

3.1.1 The Problem 

As with other file structures the problem is to pro- 
duce uniform inclusion probabilities for the target data 
records. Simply choosing a random edge from each in- 
ternal node will not suffice, because nodes reached from 
internal nodes with low fanout will be more likely to be 
sampled than those reached from nodes with high fanout. 

3.1.2 Naive method 

Basically, the naive method consists of performing ac- 
ceptance/rejection sampling on complete random paths 
through the tree (from root to leaf). The accep- 
tance/rejection sampling is used to correct the inclusion 
probability of each sampled path, so that every record 
(stored in the leaves of the B+ tree) has the same in- 
clusion probability. We dicuss this method primarily for 
expository reasons, since (as we shall show) it is dom- 
inated by the early abort method (described in Sect. 
3.1.3). 

In this method we select a random path from the root 
to a record in a leaf (i.e., at each internal node we choose 
a branch at random (equi-probably), at the leaf we select 

a record at random (equi-probably)). Upon reaching the 
leaf we perform an acceptance/rejection test to decide 
whether to keep this path. The acceptance probability 
is calculated as we traverse the path from root to leaf as 
the product of the ratios of actual fan-out to maximum 
fan-out at each node (except the root). We are in effect 
sampling from a full multi-way tree, discarding paths 
which do not actually exist. 

We denote by B a B+ tree of order m with height 
h (there exist h nodes on any path from root to leaf, 
including the root and leaf). Let fi denote the fan-out of 
node i. This is the number of branches from an internal 
node, and the number of records in a leaf node. We 
designate the root node to be node zero. 

Lemma 1 The naive algorithm generates a simple ran- 
dom sample. The inclusion probability pk for record fk 
contained in leaf j for a single (root-to-leaf) path traver- 
sal is: 

pk = fO-lfmor-h+l (2) 

where fmoz = 2m+l is the maximum fanout of an inter- 
nal node (and for simplicity also the maximum number 
of records on a leaf node). 

Proof: Let wk = p(sampling record k on a random 
walk). Then 

wk = n f;’ (3) 
iEpathk 

where p&k refers to the path from root to leaf node 
containing the record E. Let the acceptance probability 
for record k be ok, defined: 

ak = n (fi/fmat) 

iEp4thk ,i#O 
(4) 

Note that the product here excludes the root node, be 
cause it is common to all paths, hence it does not intro- 
duce any non-uniformity into the inclusion probabilities. 
Recall that all paths in the tree have the same height, h. 
Hence: 

Pk = (Ykwk = f;’ l-J Wfmoz) (5) 
iQmthk,i#O 

cl 

Pk = fO-lfmaz-h+l (6) 

Theorem 1 The expected cost of the naive method for 
a simple random sample with replacement of sire s from 
a B+ tree is approzimately: 

E[cNI(s)] % (fl-‘)h-‘+ - 1) + 1 (7) 
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Proof: Caching is generally only effective for the root 
page, hence the (h - 1) factor, rather than h. The last 
term simply accounts for initially reading the root page. 
Hence: 

wNI(s)l M s’(h - 1) + 1 (8) 

where s’ is the gross sample size necessary to produce a 
net sample of size s after acceptance/rejection sampling. 
By assuming that all the fan-outs are equal to faVs we 
have: 

E[s] M s’p- (9) 

Inverting this equation we shall assume (ignoring 
stochastic variation) that the required gross sample size, 
s’ is: 

s’ = (p-ys (10) 

Substituting yields the theorem. q 

3.1.3 Early abort method 

The early abort method of sampling from a B+ tree, 
derives from the naive method. Both are based on ac- 
ceptance/rejection sampling of random paths in the tree. 
The difference is that the naive method traverses com- 
plete paths from root to leaf before deciding on accep- 
tance or rejection while the early abort method performs 
an acceptance/rejection test at each node (except the 
root). 

If the node is rejected, then we can abort searching 
this path, permitting early abortions of a path. We can 
in effect reject a leaf node while part way down the path 
to it, without requiring that we retrieve the entire path. 
Hence, this method clearly dominates the naive method 
in expectation. 

One way of thinking about the algorithm is to imagine 
that we are sampling random paths from the full multi- 
way tree. As soon as we go down a branch which is not 
present in the actual (partially full) tree, we abort that 
path. 

At each node (except the root) along a path from root 
to leaf we perform an acceptance/rejection test with ac- 
ceptance probability for node i denoted as pi: 

Pi = filfmoz (11) 

Recall 
P = fa”g~fmoz (12) 

The root node is accepted unconditionally, i.e., /3c = 1. 

Lemma 2 For a single (root-to-leaf) path traversal, the 
early abort algorithm generates a simple random sample 
with inclusion probability pk for record rk, where: 

Pk = fO-lfmor-h+l (13) 

Proof: Observe that the probability, bk, of accepting 
a record Jz (in a leaf node) is simply the product of the 
,& along the path: 

bk= n pi=ffk 

icpathc,i#O 
(14) 

i.e., the same as for the naive algorithm. Hence our 
result follows from the proof of the naive algorithm. q 

In effect, the early abort algorithm searches the same 
paths as the naive algorithm, but it aborts the search at 
the first rejection. Thus for some paths, it accesses fewer 
pages. Hence its expected cost will be strictly less than 
that of the naive algorithm, unless all of the pages are 
full. 

Theorem 2 The expected cost of the early abort iter- 
ative method for a simple random sample with replace- 
ment of size s from a B+ tree is approximately: 

h-1 - 1) 
E[CEAI(S)] m (,8-‘)h-1s(Pp _ 1 + 1 (15) 

Proof: Here we have again assumed that all the fan- 
outs are equal to favs. As before, the gross sample size 
must be increased by a factor of (/3-‘)n-’ to account for 
the losses due to A/R sampling. 

Recall that for the naive algorithm the length of each 
path examined is h (with a one-path cache it will be ap- 
prox. h - 1). What is the expected length of a path 
searched in the early abort algorithm? Let 17 denote 
the average path length ( assuming the root is cached). 
Then we ignore the root (because it is cached). Accep- 
tance/rejection sampling at each node could cause an 
early abort - but this happens after the node has been 
read in - so we subtract one more from the exponent on 
the expected acceptance probability /? = (favs/fmaz) of 
a node. This gives: 

kh-I 
lr= c pi-1 

i=l 

(16) 

Summing we have: 

a= w-; 1) (17) 

The total cost is given by: 

E[cEAI(S)] = s’r + 1 (18) 

where the last term consists of reading the root and 
where again we have 

s’ = s(p-‘p-l (19) 
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Figure 1: Iterative Algorithm Performance Graph 

is the adjusted gross sample size to compensate for the 
attrition due to acceptance/rejection sampling. Substi- 
tuting yields the theorem. q 

Observe that from our definition of ?r that it must be 
less than h - 1, hence we have: 

Theorem 3 The expected 
live method is strictly less 
naive iterative method. 

cost of the early abort itera- 
that the expected cost of the 

Proof: Both methods must explore the same ex- 
pected number of paths, as noted above the expected 
path length for early abort is less than that for the naive 
algorithm. q 

We summarize the performance of-the iterative algo 
rithms in Figure 1. 

3.2 Sampling from a ranked B+ tree 

In this section we discuss how to extract a fixed size 
simple random sample from a ranked B+ tree file. A 
ranked B+ tree file is one whose nodes have have been 
augmented with information which permits one to find 
the j’th record in the file. We include this method as 
a benchmark against which to compare our new algo- 
rithms. 

more than one greater, than the corresponding Bt tree. 
As discussed earlier, duplicate removal can be per- 

formed in O(s) memory. By checking online for duplicate 
random numbers, before fetching each record, we can ob- 
tain a SBS without replacement in the same number of 
disk accesses. 

4 Batch Sampling from B+-trees 

Suppose that we wish to sample from a file containing In this section we consider batch methods of sampling 
n records. We generate a uniformly distributed random from B+ trees. Such methods are intended to reduce 
number, j, between 1 and n, and then sample the j’th or eliminate the re-reading of disk blocks incurred by 
record. To do this we must be able to identify the j’th iterative sampling algorithms assuming that the buffer 
record. If our access method to the file is a B+ tree, pool can hold one entire path through the B+ tree. 
then we must be able to find the j’th ranked record in They process the entire sample as one batch, proceeding 
the file. Hence we must store information in the tree from one end of the file to the other. Batch sampling 
which allows one to calculate the rank of each record. from ranked B+ trees completely eliminates m-reading 

This idea is discussed in [Knui’3]. Similar ideas are 
used in [BK75] and [WE80]. Essentially we store in each 
node of the tree a count (partial sum) of the number 
of leaves in that subtree. In a binary tree [Knu73] the 
rank of each leaf can be calculated by suitable sums and 
differences of the count fields of all the nodes on the path 
from root to leaf. In a B+ tree we promote the count 
fields one level in the tree so that each node stores not 
only the total count of leaves in its subtree, but also the 
counts for each child (alongside its key). Hence, while 
a rank access to the tree must still examine on average 
half the entries in each B+ tree page, the number of disk 
pages which must be fetched is only equal to the height 
of the tree. 

This matter is discussed in [SL88], and (for tries) in 
[Gho86]. 

For this algorithm, which we call the ranked iterative 
algorithm (denoted RI), we simply generate a random 
number, j, between 1 and n (the total number of records 
in the file) and then access the B+ tree via the rank fields 
to retrieve the j’th record. If there is no caching of disk 
pages, then each random probe retrieves a complete path 
from root to leaf, consisting of h’ pages where h’ is the 
height of the ranked B+ tree. 

Theorem 4 The expected number of disk pages accessed 
for a simple random sample with replacement of size s 
from a ranked B+ tree via the ranked iterative algorithm 
RI is: 

E(CRI(S)) w s(h’ - 1) + 1 (20) 

where h’ is the height of the ranked B+ tree, i.e., h’ = 
hl(l+lwJW))~ assuming that storing the rank field 
reduces the fan-out of internal nodes by l/3. 

Proof: Proof omitted. See full paper. q 
In practice, the ranked B+ tree will have a height no 
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disk blocks. Batch sampling of regular B+ trees via ac- 
ceptance/rejection methods returns a sample of random 
(i.e., binomial) size. Hence, it may occassionally be nec- 
essary to repeat the process to obtain a sufficiently large 
sample. 

4.1 Standard B+ trees 

4.1.1 Naive Batch 

The naive batch sampling algorithm for standard B+ 
trees simply applies the naive iterative algorithm in par- 
allel. Instead of sampling paths through the tree one at 
a time, we process a batch of paths at once. The advan- 
tage is that we reduce the number of times pages must 
be rereferenced. 

Suppose that we halre an estimate s’ of the required 
gross sample size needed to produce a net sample of size 
s. We start at the root with a gross sample size of s’ and 
proceed with a depth first search of the tree. 

At each internal node of the tree we allocate the in- 
coming portion of the sample to the various subtrees by 
generating a multinomial random vector. A multinomial 
random vector from a population of size s in k cells is 
a vector V = (211,212 , . . . . vk) of length k, which records 
the number of balls vi which fall in cell i, when s balls 
are thrown in the the cells at random (equiprobably). 
(More generally the probability of balls falling into each 
cell could vary, but we do not need this.) The uniform 
multinomial vector can be generated in two ways: by 
generating a random branch for each of s balls and in- 
crementing the corresponding cell count, or alternatively 
by generating a Poisson random variable for each cell, 
and then adjusting the resulting variable with the first 
method, so that their sum is correct. 

Only those branches with nonzero sample sizes allo- 
cated to them are pursued. 

Upon reaching a leaf node we perform accep- 
tance/rejection sampling on the portion of the gross sam- 
ple allocated to this leaf. This we do by generating a 
binomial random variable, 2) N B(sk , ok) with param- 
eters, Sk = gross sample size allocated to this leaf, and 
(Yk =acceptance probability for this path k (as in naive 
iterative algorithm). 

Having determined the net sample size for a particular 
leaf, we extract a simple random sample with replace- 
ment of this size from the records on the leaf (this is 
trivial). 

We then continue with the depth first search of the tree 
until complete. The resulting sample may be the wrong 
size (because of acceptance/rejection). If the resulting 
sample is too large, we discard the excess (chosen at 
random). If the resulting sample is too small, we repeat 
the process (adding to our sample) until we have enough. 

Lemma 3 Cardenas’s Lemma The expected number 
of disk blocks referenced, d, when sampling k records 
(with replacement) from a file of m equal size blocks is 
given by: 

d = m(1 - (1 - (l/m)k)) (21) 
We will denote this function of m and k as Y(k,m). 

Proof: See fya0773. 0 
For the naive batch method, the effort to retrieve a 

gross sample of size s’, is the same as the effort to per- 
form batch searching on a B+ tree, with the same batch 
size. 

Theorem 5 The ezpected cost in I/O to retrieve a sam- 
ple of size s via the naive batch sampling method is ap- 
proximately: 

j=h-l 

E(CNE(~)) = 1+ c Y(s’,foP-‘) (22) 
j=l 

where f = favg and and a’ = s(p-‘)“-’ (inflated gross 
sample sire) as before. 

Proof: As before, we use a gross sample size of 
s’ to compensate for the losses due to acceptance rejec- 
tion. This theorem is a derived by applying Carder&s 
Lemma (Lemma 3) for each level of the tree. We have 
assumed that all nodes have fan-out f = favg, except 
the root which has fan-out fe. 

Let us number the levels 0, 1, 2, . . . . h-l from root to 
leaf, and let j denote the level number. 

For level 0, we have s’ records, 1 block (the root). For 
level 1, we still have s’ records, and fo blocks. For level 
2, we have s’ records, and fof blocks. Thus for level 
j, j > 1, we have s’ records and fs fj-’ blocks, hence 
by Cardenas’s Lemma the number of blocks accessed at 
level j will be Y(s’, fofj-‘). Summing yields the theo- 
rem. 0 

4.1.2 Early Abort Batch Method 

The early abort batch method is simply the batch 
analog of the early abort iterative method. It is iden- 
tical to the naive batch method, except that the accep- 
tance/rejection sampling is performed (by computing bi- 
nomial samples) at each node (except the root) as we 
search from root to leaf. As was the case with the iter- 
ative methods, the early abort batch method dominates 
the naive batch method. 

Thus we commence our depth first search at the root 
with a gross sample size of s’. At the root, and each sub- 
sequent internal node, we allocate the incoming sample 
to the various branches by means of a multinomial ran- 
dom vector. Only those branches with nonzero sample 
sizes allocated to them are pursued. 
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At each level beyond the root, we perform accep 
tance/rejection sampling of the incoming sample by gen- 
erating a binomial random variable, zi - B(si, /3) with 
parameters si, (the incoming sample size), and accep- 
tance probability pi ( as in the iterative early abort al- 
gorithm). The resulting net sample size for the node is 
then allocated the branches via a multinomial random 
vector. Only those branches with nonzero sample sizes 
allocated to them are pursued. 

Upon reaching a leaf we perform one last accep- 
tance/rejection test (by generating a binomial random 
variable, zi - B(si, p)) to account for the variable load- 
ing of leaf pages. We then extract a simple random sam- 
ple with replacement of size zi of the records on the 
page. 

Incorrect net sample sizes are dealt as described above 
for the naive batch sampling algorithm. 

For the early abort batch method, the analysis is more 
complicated. The search paths which are aborted early 
do not generate as many page accesses. If we number 
the levels from 0 to h, denoting by level i the node at 
distance i from the root, then at level i, i > 0, we will 
access ki records from fsfaugi-r pages, where ki is ap- 
proximately a binomial random variable with expecta- 
tion 8’ . /9-l, where we have ignored the variation in fi, 
replacing it with faus. 

Theorem 6 The expected I/O cost to retrieve a simple 
random sample of size s’ via the early abort batch sam- 
pling method is approximately: 

j=h-1 

E(CEAB(S)) w 1 + c Y(s’@-‘, fe0p-l) (23) 
j=l 

where f = favr and s’ = ~(/3-‘)~-’ (inj?ated gross sam- 
ple size) as before, and Y(k,m) is Cardenas’s function 
defined above. 

Proof: As before, we use a gross sample size of s’ to 
compensate for the losses due to acceptance/rejection. 
This theorem is derived by applying Cardenas’s Lemma 
(Lemma 3) for each level of the tree. We have assumed 
that all nodes have fan-out f = foug, except the root 
which has fan-out fo. 

Let us again number the levels 0, 1, 2, . . . . h-l from 
root to leaf, and let i denote the level number. 

For level 0, we have s’ records, 1 block (the root). 
For level 1, we still have s’ records, and fo blocks. For 
level 2, we have s’p records (because we have done ac- 
ceptance/rejection at level l), and fof blocks. Thus for 
level j, j > 1, we have s/pi-’ records and fofj-1 blocks, 
hence by Carder&s Lemma the number of blocks ac- 
cessed at level j will be Y(s’@-l, fofj-‘). Summing 
yields the theorem. q 

4.2 Ranked B+ trees 

Finally, we consider batch sampling of ranked B+ 
trees. We simply generate a simple random sample of 
the ranks, sort it, and then perform a batch search of 
the ranked B+ treefile. Alternatively we could use Vit- 
ter’s algorithm [Vit84] to generate the sequential skips 
required to determine the ranks of the sampled records. 
(Note that Vitter’s algorithm generates a simple random 
sample without replacement, rather than with replace- 
ment. This is easily corrected.) In any case we are only 
concerned here with I/O, and we assume the sample of 
ranks can easily fit in memory. 

We shall assume that we have a cache large enough to 
hold a complete path through the tree from root to leaf, 
so that reexamining pages along this path required to re- 
trieve the sample is costless (in terms of disk I/O). Then 
retrieval of the sample is equivalent to batch searching of 
a B+ tree, a classic problem treated by [Pa1851 (among 
others). Essentially, the number of pages to be retrieved 
is simply the number of distinct pages in the union of all 
paths to sampled pages. 

Theorem 7 The expected I/O cost to retrieve a simple 
random sample of size s from a B+ tree via the ranked 
batch sampling method is approximately: 

j=h-1 

E(Gw(s)) = 1+ c Y(s, for-‘) (24) 
jtl 

where f = favg, fo is the fan-out of the root, and Y(k, m) 
is Cardenas’s function defined above. 

Proof: The proof is identical to that of Theorem 
5, except that we do not need to inflate the sample size 
since we are not doing acceptance/rejection sampling. ~1 

4.3 Comparisons 

It is clear the batch &Igorithms will dominate the 
respective iterative algorithms, because they avoid re- 
reading disk blocks which are used in more than one 
sample path. 

Furthermore: 

Theorem 8 The early abort batch outperforms naive 
batch. 

E[CEAB(S)IS E[Crw(s)l (25) 

Proof: This result follows from the cost functions and 
the fact that Carndenas’s functions Y(k, m) is monotone 
increasing in JZ (the sample size). q 

The relationship between the performance of the 
ranked batch algorithm and the early abort batch al- 
gorithm is more subtle. Because the ranked batch algo 
rithm may increase the height of the B+ tree it is possible 
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that RB will perform worse than EAB. However, more 
typically RB will not increase the height of the B+ tree 
and will out-perform EAB. How big is the difference be- 
tween E[CRB(S)] and E[C EAB (s)]? It is clearly less than 
a factor of (/3 -’ ) h-1, the factor by which we inflate the 
gross sample size of EAB to compensate for the attrition 
due to acceptance/rejection sampling. For random B+ 
trees /3 is known to be 0.7. Hence for a random B+ tree 
of height 5, the methods differ by a factor of no more 
than 4. 

5 Conclusions 

Our most important results concern algorithms to re- 
trieve simple random samples of Bt trees, without any 
additional data structures or indices. These methods 
are baaed on acceptance/rejection sampling, and pro- 
vide a simple, inexpensive way to add sampling to a re- 
lational database systems. They are appropriate for sy5 

tems which only infrequently need to support sampling, 
e.g., for auditing. The batch early abort algorithm offers 
the best performance of algorithms of this class, and is 
to be generally preferred to the iterative algorithms. 
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