
Random Sampling in Residual Graphs

David R. Karger
�

MIT Laboratory for Computer Science
Cambridge, MA 02138

karger@theory.lcs.mit.edu

Matthew S. Levine
�

MIT Laboratory for Computer Science
Cambridge, MA 02138

mslevine@theory.lcs.mit.edu

ABSTRACT
Consider ann-vertex, m-edge, undirected graph with maximum
flow valuev. We give a newÕ(m+nv)-time maximum flow algo-
rithm based on finding augmenting paths in random samples of the
edges of residual graphs. After assigning certain special sampling
probabilities to edges iñO(m) time, our algorithm is very simple:
repeatedly find an augmenting path in a random sample of edges
from the residual graph.

1. INTRODUCTION
In this paper we consider the problem of finding maximum flows

in undirected graphs with small flow values. The history of the
study of algorithms for small flow values is as old as the studyof the
general maximum flow problem. In fact, the originalO(mv)-time
Ford-Fulkerson algorithm [3] is still the best known deterministic
algorithm for sparse graphs with sufficiently small flows. Here m
is the number of edges,v is the value of the maximum flow, andn
will be the number of nodes. Karger opened the question of how
much easier it might be to find flows in undirected graphs, firstby
giving anÕ(mv=pc)-time algorithm for graphs with connectivityc
[9], and then by giving añO(m2=3n1=3v)-time algorithm for simple
(unit-capacity, no parallel edges) graphs [7]. This lead toa number
of results, the most recent being algorithms with the unpleasant
time boundsÕ(m+nv5=4) andÕ(m+n11=9v) [10]. See Table 1 for
a history of algorithms for small flow values.

All of the recent papers on flows in undirected graphs make some
attempt to avoid looking at all of the edges all of the time, soas
to reduce the amortized time per augmenting path too(m). Our
work closes a chapter in this research, finally achievingÕ(m+nv)
time, or amortized time per augmenting path ofÕ(n). Since a flow
path can have as many asn�1 edges, this is the best result (up to
logarithmic factors) that one can hope to achieve by sparsification
alone.

Our key advance is taking random samples of the edges of
residual graphs. Benczúr and Karger showed that sampling each�Research supported by NSF contract CCR-9624239 and a David
and Lucille Packard Foundation Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02,May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

edge of an undirected graph with probability inversely proportional
to a quantity calledstrengthyields a connected graph with only
O(nlogn) edges with high probability. This would be a great way
to find a first augmenting path quickly, but once you have a non-
zero flow the residual graph is directed, so it is no longer help-
ful to know that you can sample from an undirected graph. One
way to interpret our result is that we show that a residual graph re-
mains similar to the original undirected graph, which meansthat
the Benczúr-Karger sampling can be applied iteratively. With the
exception of computing the edge strengths at the beginning,our al-
gorithm is just this simple iteration: sample according to strength,
find an augmenting path, repeat until done.

In order to show which algorithms have the best performance
for different values ofm and v relative ton, we have drawn fig-
ures (Figures 1 and 2): one for deterministic algorithms only and
one including randomized algorithms. A point in the figure repre-
sents the value ofm andv relative ton. Specifically,(a;b) repre-
sentsv= na;m= nb. Each region is labeled by the best time bound
that applies for values ofm andv in that region. Note that the re-
gionm> nv is uninteresting, because the sparsification algorithm of
Nagamochi and Ibaraki [12] can always be used to makem� nv in
O(m) time. The shaded region corresponds to the algorithm given
in this paper. Note that theO(nm2=3v1=6)-time algorithm (which
is the fastest algorithm for the region surrounded by a dashed line)
is the only one in the picture that cannot handle capacities or par-
allel edges, so the picture looks strange atv= n. If capacities are
being considered, then this algorithm should be removed from the
picture; if only simple graphs are being considered, then the picture
should end atv= n. The complexity of the diagram for determinis-
tic algorithms suggests that more progress can be made there. With
the addition of our result, the diagram for randomized algorithms
is now fairly simple.

The rest of this paper is organized as follows. In Section 2 we
review some notation and basic definitions. In Section 3 we give the
new algorithm. In Section 4 we give the analysis of the algorithm.
We conclude and discuss some open questions in Section 5.

2. NOTATION AND DEFINITIONS
We use the following notation:

G the graph
v value of a maximum flow
n number of nodes
m number of edges
s the source
t the sink
f a flow
G f residual graph ofG with respect tof

Source Year Time bound Capacities? Directed? Deterministic?

Ford-Fulkerson [3] 1956 O(mv) p p p
Even-Tarjan [2] 1975 O(mminfn2=3;m1=2g) p p
Karger [7] 1997 Õ(m2=3n1=3v)
Goldberg-Rao [4] 1997 Õ(mminfn2=3;m1=2g logv) p p p
Goldberg-Rao [5] 1997 O(npnm) p
Karger [8] 1998 Õ(vpnm) p
Karger-Levine[10] 1998 O(nm2=3v1=6) p
Karger-Levine[10] 1998 Õ(m+nv3=2) p p
Karger-Levine[10] 1998 Õ(m+nv5=4) p
Karger-Levine[10] 1998 Õ(m+n11=9v) p
this paper 2001 Õ(m+nv) p

Table 1: Summary of algorithms. The long history of Ω̃(mn)-time algorithms, which are still best for large v, have been omitted.

m
p

m

mn2=3

nm2=3v1=6

nv3=2

Uninteresting

logn m

nv3=2

mv

logn v0 1
1

2

Figure 1: Pictures of the best deterministic bounds. (See text
for explanation.)

nv

logn m

Uninteresting

logn v 10

1

2

m
p

m

mn2=3

Figure 2: Pictures of the best randomized bounds. (See text for
explanation.)

j f j the value of flowf
e an edge
ke the strength of edgee
X the set of edges that cross a given cut

DEFINITION 2.1. Thestrengthof an edge e, denoted ke, is the
maximum value of k such that a k-connected vertex induced sub-
graph of G contains e. We say e is k-strongif its strength is k or
more, and k-weakotherwise.

It is common to refer to a cut as a non-empty set of verticesY that
is a proper subset of the vertices. For convenience, in our proofs we
use a shorthand of referring to a cut by the set of edges that cross
the cut, for which we have used the symbolX. In particular, in
several cases where we wish to sum over the edges that cross a cut,
we write∑e2X .

3. THE ALGORITHM
Our algorithm is easy to state. With the possible exception of

the first step, it ought to be correspondingly easy to implement. It
is difficult to tell whether it might perform well in practicewithout
actually implementing it.

1. run the Benczúr-Karger algorithm [1] to compute good lower
bounds on the edge strengths,k0e

2. α = 1

3. whileαn< m

(a) sampling according to weights 1=k0e, pick a sample of
αn residual edges

(b) search for an augmenting path in the sample

(c) if no path is found, doubleα

4. repeatedly search for augmenting paths in the residual graph
until no more are found

The correctness of the algorithm is obviously guaranteed bythe
last step. Analysis of the running time is not obvious; it is the
subject of the next section.

4. THE ANALYSIS
The foundation of our analysis is the following theorem, closely

related to the main theorem of Benczúr and Karger:

THEOREM 4.1. Let k0e be a lower bound on the strength of edge
e, as computed by the Benczúr-Karger algorithm. Letβ = 6vlnn

v�j f j .
If a sample of4βn residual edges are chosen according to weights
1=k0e, then with high probability there is an augmenting path in the
sample.

Given the theorem, we can easily add up the times for each step
to get the total running time. The first step requiresO(mlog2n)
time, orO(mlog3 n) time if the input graph has capacities [1]. In
each iteration of the loop we need to selectO(βn) edges and search
for an augmenting path. Searching for an augmenting path takes
only O(βn) time. It is an easy matter to do the random sampling
in O(βnlogn) time. It is possible to give more elaborate schemes
for sampling that achieve an amortized bound ofO(βn) time per
iteration, but since we are not especially concerned about the log-
arithmic factors, we will not explain such a scheme here. So the
time per iteration isO(βn). This means that it takesO(nvlogn)
time to halve the remaining flow. We can doubleα only lg(m=n)
times before we are simply finding augmenting paths in the entire
residual graph, so the total time for the loop isO(nvlognlogm=n).
Whenα=m=n, it must be the case thatv=(v�j f j) =Ω(m=nlogn),
so v� j f j = O((nvlogn)=m), which means that the time for the
last step is onlyO(nvlogn). Therefore, the total running time is
Õ(m+nv).
4.1 Supporting Lemmas

Before we can prove the main theorem, we need some support-
ing results. The first such is the result by Benczúr and Karger [1]
that sampling an undirected graph with probability inversely pro-
portional to strength preserves cut values well. The resultthat we
need is slightly different from what they state, so we will state pre-
cisely what we need and provide a proof of it.

THEOREM 4.2. In a connected undirected graph,

∑
cutsX

exp

 � ∑
e2X

(d+2) lnn
ke

!< d+2
dnd

To prove this we also need a theorem due to Karger and Stein
[11]:

THEOREM 4.3. In an undirected graph with minimum cut value
c, the number of cuts of valueαc is at most n2α.

We can now prove our restatement of the Benczúr-Karger result.

PROOF. Consider the weighted graph with the same vertices and
edges asG and weightwe = (d+ 2) lnn=ke assigned to edgee.
Order the cuts of this graph in increasing order,c1;c2; : : : ;c2n�1�1.
So our goal is to bound

2n�1�1

∑
i=1

e�ci

For any cut of the original graph, consider the maximumke of an
edge crossing it. By definition ofke there must be at leastke such
edges crossing the cut, so the value of the cut in the weightedgraph
is at least(d+2) lnn. Since this is true of every cut (note that no
cut has no edges), the minimum cut of the weighted graph must be

at least(d+2) lnn. By Theorem 4.3,ci � c1 ln i
2lnn , so we can bound

our sum as � n2

∑
i=1

e�c1 + 2n�1�1

∑
i=n2

e� c1 ln i
2 lnn� n2

∑
i=1

e�(d+2) lnn+ ∞

∑
i=n2

e� (d+2) ln i
2� n2�(d+2)+ ∞

∑
i=n2

i�1�d=2� 1=nd +Z ∞

x=n2
x�1�d=2dx� 1=nd + n2(�d=2)

d=2� d+2
dnd

We also need a results from Benczúr and Karger [1] about thek0e:

LEMMA 4.4.

∑
e

1
k0e � 4n

The final supporting result we need is a little combinatorial
lemma:

LEMMA 4.5. Given positive real numbers w1 : : :wl in decreas-
ing order, for any real numbers x1 : : :xl such that∑l

i=1 xi � 0, there
exists a j2 f1: : : lg such that∑l

i= j xiwi � 0.

PROOF. Consider the largestj such that∑l
i= j xi � 0. Rewrite

∑l
i= j xiwi as

wi(xi + : : :+xl)+(wi+1�wi)(xi+1+ : : :+xl)+(wi+2�wi+1)(xi+2+ : : :+xl)+(wi+3�wi+2)(xi+3+ : : :+xl)+ : : :
Or more succinctly, as

w j

l

∑
i= j

xi + l�1

∑
k= j

 (wk+1�wk) l

∑
i=k+1

xi

!
The first term is clearly non-negative by the choice ofj . Observe

that j being largest means that for allk > j we have∑l
i=k xi < 0,

so the inner sum of the second term is always negative. Since the
wi are in decreasing orderwk+1�wk is also non-negative, which
means that the second term is a sum of non-negative numbers. So
the entire expression is non-negative.

4.2 Proof of the Main Theorem
We now have all the pieces necessary to prove the main theo-

rem. The basic idea is to compare the residual graph to the original
graph, which Theorem 4.2 gives us a handle on. As a result of

being a residual graph, at least av�j f j
v fraction of each cut is still

available. What we are trying to say is that we can compensatefor
the edges saturated by the flow by increasing the sampling prob-
ability by a factor of v

v�j f j . Looking at an individual cut, this is

not immediately obvious because the flow is not necessarily spread
out evenly among the edges of different strengths. In particular, the
flow might use up the weakest edges, in which case the probability
that at least one edge crossing the cut is chosen can decreasesignifi-
cantly. However, if there is one edge that isk-strong then there must
be at leastk, so if the flow only uses up the weak edges, the many
strong edges that remain will be sufficient to make it very likely
that some edge crossing the cut is chosen. We will use Lemma 4.5
to formalize this idea. We now give the full details.

PROOF. Consider a cutX in the residual graph. Group the edges
of the cut by strength, and order the groups in increasing order
by strength. Associate with theith groupwi = β=ke andxi = the

number of residual edges of that strength minusv�j f j
v times the

original number of edges of that strength. Thus the sum of thexi

is the residual capacity of the cut minusv�j f j
v times the original

capacity of the cut. The residual capacity of every cut is at least

a v�j f j
v fraction of the original capacity, so this quantity is always

non-negative. Applying Lemma 4.5 we find that there exists aj
such that∑l

i= j xiwi � 0; or rephrased in terms of the graph, we find
that there exists ak such that the sum over residualk-strong edges
of β=ke� sum over originalk-strong edges of(6lnn)=ke.

Since, by Lemma 4.4 the total weight of edges is at most 4n, the
probability that we fail to choose any of thesek-strong edges is� (1� ∑residualk-stronge2X 1=k0e

4n
)4βn� exp

 � ∑
residualk-stronge2X

β
k0e!� exp

 � ∑
residualk-stronge2X

β
ke

!� exp

 � ∑
original k-stronge2X

6lnn
ke

!
So with each cut we associate a strengthk and ak-strong com-

ponent such that the probability we fail to choose an edge from the
k strong component is at most exp(�∑e2X

6lnn
ke

). By Theorem 4.2,
summing this quantity over all cuts that have the samek and com-
ponent is at most 1:5=n4. Since there can be onlym distinct values
of k, and at mostn components associated with anyk, the probabil-
ity that we fail to choose an edge from any cut is at most 1:5=n

If every s-t cut in the residual graph has a residual edge cross-
ing it, then by the maxflow-mincut theorem there is an augmenting
path.

5. CONCLUSION
Our result ofÕ(m+nv) time is a natural stopping point, but it is

not necessarily the end of progress on algorithms for small maxi-
mum flows in undirected graphs. For one thing, it is randomized, so
there is still the question of how well a deterministic algorithm can
do. Perhaps there is some way to apply Nagamochi-Ibaraki sparse
certificates [12] in a residual graph. For another, Galil andYu
showed that flows need only useO(npv) edges on simple graphs.
Therefore, while some augmenting paths can requiren�1 edges,
most of them are much shorter. ThusÕ(m+ n

p
v) would be an-

other natural time bound to hope to achieve. And of course onecan
always hope for linear time.

Another open question is whether it is possible to give a faster
algorithm for small flows in directed graphs. In sampling from
residual graphs, we have shown that random sampling in directed

graphs is not entirely hopeless. Perhaps there is a suitablereplace-
ment for edge strength in a directed graph that would allow random
sampling in general.

Finally, it is still an open question whether there are better algo-
rithms for finding flows in undirected graphs with large flow values.
One obvious goal would be to replacem by n in general. We note
that it is possible to prove a compression theorem for a residual
graph—that sampling with probabilities proportional to 1=ke and
multiplying up the capacity of sampled edges byke preserves all
cut values reasonably well—but it is not clear to us that thisis ac-
tually helpful.

6. REFERENCES
[1] A. A. Benczúr and D. R. Karger. Approximates–t min-cuts

in Õ(n2) time. InProceedings of the28th ACM Symposium
on Theory of Computing, pages 47–55. ACM, ACM Press,
May 1996.

[2] S. Even and R. E. Tarjan. Network Flow and Testing Graph
Connectivity.SIAM Journal on Computing, 4:507–518,
1975.

[3] L. R. Ford, Jr. and D. R. Fulkerson. Maximal flow through a
network.Canadian Journal of Mathematics, 8:399–404,
1956.

[4] A. Goldberg and S. Rao. Beyond the flow decomposition
barrier. InProceedings of the30th Annual Symposium on the
Foundations of Computer Science[6], pages 2–11.

[5] A. Goldberg and S. Rao. Flows in undirected unit capacity
networks. InProceedings of the30th Annual Symposium on
the Foundations of Computer Science[6], pages 32–35.

[6] IEEE. Proceedings of the30th Annual Symposium on the
Foundations of Computer Science. IEEE Computer Society
Press, Oct. 1997.

[7] D. R. Karger. Using random sampling to find maximum
flows in uncapacitated undirected graphs. InProceedings of
the29th ACM Symposium on Theory of Computing, pages
240–249. ACM, ACM Press, May 1997.

[8] D. R. Karger. Better random sampling algorithms for flows
in undirected graphs. In H. Karloff, editor,Proceedings of
the9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 490–499. ACM-SIAM, Jan. 1998.

[9] D. R. Karger. Random sampling in cut, flow, and network
design problems.Mathematics of Operations Research,
24(2):383–413, May 1999. A preliminary version appeared
in Proceedings of the 26th ACM Symposium on Theory of
Computing.

[10] D. R. Karger and M. Levine. Finding maximum flows in
simple undirected graphs seems faster than bipartite
matching. InProceedings of the29th ACM Symposium on
Theory of Computing, pages 69–78, New York, May 23–26
1998. ACM, ACM Press.

[11] D. R. Karger and C. Stein. A new approach to the minimum
cut problem.Journal of the ACM, 43(4):601–640, July 1996.
Preliminary portions appeared in SODA 1992 and STOC
1993.

[12] H. Nagamochi and T. Ibaraki. Linear time algorithms for
findingk-edge connected andk-node connected spanning
subgraphs.Algorithmica, 7:583–596, 1992.

