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ABSTRACT

Consider am-vertex, medge, undirected graph with maximum
flow valuev. We give a newO(m-+ nv)-time maximum flow algo-
rithm based on finding augmenting paths in random samplégeof t
edges of residual graphs. After assigning certain speaiapting
probabilities to edges i®(m) time, our algorithm is very simple:
repeatedly find an augmenting path in a random sample of edge
from the residual graph.

1. INTRODUCTION

In this paper we consider the problem of finding maximum flows
in undirected graphs with small flow values. The history & th
study of algorithms for small flow values is as old as the sufdjie
general maximum flow problem. In fact, the origi@(mv)-time
Ford-Fulkerson algorithm [3] is still the best known det@nistic
algorithm for sparse graphs with sufficiently small flows. réim
is the number of edges,is the value of the maximum flow, amd
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edge of an undirected graph with probability inversely jombipnal

to a quantity calledstrengthyields a connected graph with only
O(nlogn) edges with high probability. This would be a great way
to find a first augmenting path quickly, but once you have a non-
zero flow the residual graph is directed, so it is no longep-hel
ful to know that you can sample from an undirected graph. One
sway to interpret our result is that we show that a residugplga-
mains similar to the original undirected graph, which metirad

the Benczlr-Karger sampling can be applied iterativeljthwhe
exception of computing the edge strengths at the beginoingal-
gorithm is just this simple iteration: sample accordingttersgth,
find an augmenting path, repeat until done.

In order to show which algorithms have the best performance
for different values ofm andyv relative ton, we have drawn fig-
ures (Figures 1 and 2): one for deterministic algorithmy @md
one including randomized algorithms. A point in the figurpree
sents the value ah andv relative ton. Specifically,(a,b) repre-
sentsy = n?, m=nP. Each region is labeled by the best time bound

will be the number of nodes. Karger opened the question of how that applies for values ah andv in that region. Note that the re-

much easier it might be to find flows in undirected graphs, fiyst
giving ané(mv/ /C)-time algorithm for graphs with connectivity

[9], and then by giving a®(m?/3n/3y)-time algorithm for simple
(unit-capacity, no parallel edges) graphs [7]. This lead tmmber

of results, the most recent being algorithms with the urgalet
time boundO(m+ nv?/4) andO(m+ n'/°v) [10]. See Table 1 for
a history of algorithms for small flow values.

All of the recent papers on flows in undirected graphs makeesom
attempt to avoid looking at all of the edges all of the time,aso
to reduce the amortized time per augmenting patb(ta). Our
work closes a chapter in this research, finally achie@im+ nv)
time, or amortized time per augmenting pattQgh). Since a flow
path can have as many as- 1 edges, this is the best result (up to
logarithmic factors) that one can hope to achieve by speasifin
alone.

gionm> nvis uninteresting, because the sparsification algorithm of
Nagamochi and Ibaraki [12] can always be used to nmakenvin
O(m) time. The shaded region corresponds to the algorithm given
in this paper. Note that th@(nn?/3v/®)-time algorithm (which
is the fastest algorithm for the region surrounded by a dhhe)
is the only one in the picture that cannot handle capacitigsmao
allel edges, so the picture looks stranger at n. If capacities are
being considered, then this algorithm should be removed tie
picture; if only simple graphs are being considered, therptbture
should end at = n. The complexity of the diagram for determinis-
tic algorithms suggests that more progress can be made iére
the addition of our result, the diagram for randomized atgors
is now fairly simple.

The rest of this paper is organized as follows. In Section 2 we
review some notation and basic definitions. In Section 3 we tiie

Our key advance is taking random samples of the edges of new algorithm. In Section 4 we give the analysis of the athani

residual graphs. Benczlr and Karger showed that sampéing e

We conclude and discuss some open questions in Section 5.
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We use the following notation:

the graph

value of a maximum flow

number of nodes

number of edges

the source

the sink

a flow

residual graph ofs with respect tof
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Source Year Time bound Capacities? Directed?| Deterministic?
Ford-Fulkerson [3]| 1956 Oo(mv) vV V vV
Even-Tarjan [2] | 1975| O(mmin{n?/3 m/2}) v v
Karger [7] 1997 O(m?/3nt/3y)

Goldberg-Rao [4] | 1997 | &(mmin{n®3 m'/2}logv) Vv v Vv
Goldberg-Rao [5] | 1997 O(ny/nm) vV
Karger [8] 1998 O(v,/nm) Vv

Karger-Levine[10] | 1998 O(nn?/3y1/6) Vv
Karger-Levine[10] | 1998 O(m-+nv?/2) v v
Karger-Levine[10] | 1998 O(m+nv®/4) v

Karger-Levine[10] | 1998 O(m+ /o) Vv

this paper 2001 O(m+nv) v

Table 1. Summary of algorithms. Thelong history of fl(mn)-timealgorithms, which are still best for large v, have been omitted.
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Figure 1. Pictures of the best deterministic bounds. (See text
for explanation.)
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Figure 2: Picturesof the best randomized bounds. (Seetext for
explanation.)

|f|  the value of flowf

e an edge

ke  the strength of edge

X the set of edges that cross a given cut

DEFINITION 2.1. Thestrengthof an edge e, denoted ks the
maximum value of k such that a k-connected vertex induced sub
graph of G contains e. We say e iskongif its strength is k or
more, and kweakotherwise.

Itis common to refer to a cut as a non-empty set of vertictat
is a proper subset of the vertices. For convenience, in @afpwe
use a shorthand of referring to a cut by the set of edges thascr
the cut, for which we have used the symbal In particular, in
several cases where we wish to sum over the edges that crogs a ¢
we Write ¥ ecx.-

3. THEALGORITHM

Our algorithm is easy to state. With the possible exception o
the first step, it ought to be correspondingly easy to implemk
is difficult to tell whether it might perform well in practiogithout
actually implementing it.

1. runthe Benczlr-Karger algorithm [1] to compute gooddow
bounds on the edge strengtks,

2.a=1

3. whilean<m

(a) sampling according to weightgi,, pick a sample of
anresidual edges

(b) search for an augmenting path in the sample
(c) if no path is found, doubla

4. repeatedly search for augmenting paths in the residaphgr
until no more are found

The correctness of the algorithm is obviously guaranteethéy
last step. Analysis of the running time is not obvious; ithe t
subject of the next section.



4. THE ANALYSIS at least(d +2)Inn. By Theorem 4.3¢; > , S0 we can bound

The foundation of our analysis is the following theorem selly our sum as
related to the main theorem of Bencz(r and Karger: 2" -1
< 21 7C1_|_ e 2im
THEOREM 4.1. Let K, be a lower bound on the strength of edge
e, as computed by the Benczlr-Karger algorithm. Bet sv'lnf"‘ 4ol (@42
If a sample o#4Bn residual edges are chosen according to weights < Zie e "‘. 2
1/k, then with high probability there is an augmenting path ia th e
sample. < -(@42) % ~1-d/2
i=n2
Given the theorem, we can easily add up the times for each step w'_n
to get the total running time. The first step requi&(snlog2 n) < 1/nd + x~1-9/2gx
time, orO(mlog®n) time if the input graph has capacities [1]. In X;”Z 5
each iteration of the loop we need to selé¢fn) edges and search < 1/nd + n?(-d/2)
for an augmenting path. Searching for an augmenting patstak d/2
only O(Bn) time. It is an easy matter to do the random sampling d+2
in O(Bnlogn) time. It is possible to give more elaborate schemes < ae

for sampling that achieve an amortized bound3dgfn) time per
iteration, but since we are not especially concerned althautog-
arithmic factors, we will not explain such a scheme here. H&o t
time per iteration iSO(Bn). This means that it take®(nvlogn)
time to halve the remaining flow. We can doulbleonly Ig(m/n) LEMMA 4.4.

times before we are simply finding augmenting paths in theent

residual graph, so the total time for the loogdgwvlognlogm/n). Z
Whena = my/n, it must be the case that(v—|f|) = Q(m/nlogn), €
sov— |f| = O((nvlogn)/m), which means that the time for the
last step is onlyO(nvlogn). Therefore, the total running time is
O(m-+nv).

O

We also need a results from Bencz(r and Karger [1] aboukthe

q?"\H

The final supporting result we need is a little combinatorial
lemma:

. LEMMA 4.5. Given positive real numbers;w..w; in decreas-

41 Squortmg Lemmas ing order, for any real numbers;x..x such thatz}zl X > 0, there
Before we can prove the main theorem, we need some support-exists a je {1...1} such thatZLj xw; > 0.

ing results. The first such is the result by Benczlr and Kajje

that sampling an undirected graph with probability invirgeo-

portional to strength preserves cut values well. The rebattwe PRoOOF Consider the largest such thatz}:j X > 0. Rewrite

need is slightly different from what they state, so we wiitstpre-

|
_iXiw; as
cisely what we need and provide a proof of it. 2i=j X
_ Wi(X+...+X)
THEOREM 4.2. In a connected undirected graph, 4 (Wit — W) (Xt %)
5 exp( (d+2)inn) _d+2 + (Wip2 —Wit1) (Xit2+...+X)
cutsX eeZ( ke drd + (Wir3 —Wit2)(Xig3+...+X)
+
To prove this we also need a theorem due to Karger and Stein .
[11]: Or more succinctly, as
I
THEOREM 4.3. In an undirected graph with minimum cut value Wj Zx, + Z ( W1 — W) Z xi>
¢, the number of cuts of valwe is at most A%, +1

The first term is clearly non-negative by the choicg .oBbserve
that j being largest means that for &> j we havez}zkxi <0,
so the inner sum of the second term is always negative. Strece t
w; are in decreasing ordev,1 — W is also non-negative, which
means that the second term is a sum of non-negative numbers. S
the entire expression is non-negative.]

We can now prove our restatement of the Benczlr-Kargettresu

PrRoOOF Consider the weighted graph with the same vertices and
edges a5 and weightwe = (d + 2)Inn/ke assigned to edge.
Order the cuts of this graph in increasing oragrcy, ... ,Con-1_1.

So our goal is to bound

g 4.2 Proof of the Main Theorem
21 g We now have all the pieces necessary to prove the main theo-
i= rem. The basic idea is to compare the residual graph to tgaali
For any cut of the original graph, consider the maximkeof an graph, which Theorem 4.2 gives us a handle on. As a result of
edge crossing it. By definition d¢ there must be at leakg such being a residual graph, at Ieast‘iéﬁ fraction of each cut is still
edges crossing the cut, so the value of the cut in the weigjtazh available. What we are trying to say is that we can comperisate

is at leas{(d + 2)Inn. Since this is true of every cut (note that no  the edges saturated by the flow by increasing the samplirig: pro
cut has no edges), the minimum cut of the weighted graph neust b ability by a factor of . Looking at an individual cut, this is



not immediately obvious because the flow is not necessaibesl

out evenly among the edges of different strengths. In pdaticthe
flow might use up the weakest edges, in which case the pratyabil
that at least one edge crossing the cut is chosen can desigaifie
cantly. However, if there is one edge thakistrong then there must
be at leask, so if the flow only uses up the weak edges, the many
strong edges that remain will be sufficient to make it verglijk
that some edge crossing the cut is chosen. We will use Lemina 4.
to formalize this idea. We now give the full details.

PROOF. Consider a cuX in the residual graph. Group the edges
of the cut by strength, and order the groups in increasingrord
by strength. Associate with théh groupw; = B/ke andx; = the

number of residual edges of that strength miﬂﬁ@ times the
original number of edges of that strength. Thus the sum okthe

is the residual capacity of the cut minds]ﬁ times the original
capacity of the cut. The residual capacity of every cut issast

a vam fraction of the original capacity, so this quantity is alway
non-negative. Applying Lemma 4.5 we find that there exisfs a
such thalz}:» xiw; > 0; or rephrased in terms of the graph, we find
that there exists k such that the sum over residdastrong edges
of B/ke > sum over originak-strong edges df6Inn) /ke.

Since, by Lemma 4.4 the total weight of edges is at mosthke

probability that we fail to choose any of thelsstrong edges is

Zresidualk—strongeex 1/ k:a 4Bn
: 4n )

IN

(1

B

<exp| — T
( residualkgtrongeex ke
<exp| — > L
residualk-strongee X ke

6Inn
o3 o
original k-strongee X ke

So with each cut we associate a strerigdnd ak-strong com-
ponent such that the probability we fail to choose an edga fie
k strong component is at most €xpy ecx %’;”). By Theorem 4.2,
summing this quantity over all cuts that have the s&maed com-
ponent is at most.5/n4. Since there can be oniy distinct values
of k, and at mosh components associated with agythe probabil-
ity that we fail to choose an edge from any cut is at moS{ri

If every st cut in the residual graph has a residual edge cross-

ing it, then by the maxflow-mincut theorem there is an augmgnt
path. [

5. CONCLUSION

Our result ofﬁ(m-i- nv) time is a natural stopping point, but it is
not necessarily the end of progress on algorithms for smakim
mum flows in undirected graphs. For one thing, it is randohize
there is still the question of how well a deterministic aian can
do. Perhaps there is some way to apply Nagamochi-lbaraksespa
certificates [12] in a residual graph. For another, Galil afud
showed that flows need only u€¥n,/v) edges on simple graphs.
Therefore, while some augmenting paths can requirel edges,
most of them are much shorter. Th@$m- n,/v) would be an-
other natural time bound to hope to achieve. And of coursecane
always hope for linear time.

Another open question is whether it is possible to give aefast
algorithm for small flows in directed graphs. In samplingnfro
residual graphs, we have shown that random sampling intditec

graphs is not entirely hopeless. Perhaps there is a suitilizce-
ment for edge strength in a directed graph that would allowloan
sampling in general.

Finally, it is still an open question whether there are lrettgo-
rithms for finding flows in undirected graphs with large flolues.
One obvious goal would be to replaoeby n in general. We note
that it is possible to prove a compression theorem for a wesid
graph—that sampling with probabilities proportional t¢kd and
multiplying up the capacity of sampled edges Kypreserves all
cut values reasonably well—but it is not clear to us that ithizc-
tually helpful.
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