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Random-Selection-Based Anomaly Detector
for Hyperspectral Imagery

Bo Du and Liangpei Zhang

Abstract—Anomaly detection in hyperspectral images is of
great interest in the target detection domain since it requires no
prior information and makes full use of the spectral differences
revealed in hyperspectral images. The current anomaly detection
methods are susceptible to anomalies in the processing window
range or the image scope. In addition, for the local anomaly
detection methods themselves, it is difficult to determine the win-
dow size suitable for processing background statistics. This paper
proposes an anomaly detection method based on the random se-
lection of background pixels, the random-selection-based anomaly
detector (RSAD). Pixels are randomly selected from the image
scene to represent the background statistics; the random selections
are performed a sufficient number of times; blocked adaptive
computationally efficient outlier nominators are used to detect
anomalies each time after a proper subset of background pixels is
selected; finally, a fusion procedure is employed to avoid contami-
nation of the background statistics by anomaly pixels. In addition,
the real-time implementation of the RSAD is also developed by
random selection from updating data and QR decomposition.
Several hyperspectral data sets are used in the experiments, and
the RSAD shows a better performance than the current hyper-
spectral anomaly detection algorithms. The real-time version also
outperforms its real-time counterparts.

Index Terms—Anomaly detection, hyperspectral images, multi-
variate outlier detection.

I. INTRODUCTION

HYPERSPECTRAL imagery, with high spectral resolu-

tion, reveals large amounts of detail about the spectral

features of the Earth’s surface. For example, Airborne Visible/

Infrared Imaging Spectrometer (AVIRIS) imagery, which has

over 200 bands covering a wide spectral range from 380 to

2500 nm and a spectral resolution of only 10 nm, presents a

nearly continuous spectral plot for ground objects. Therefore,

minor spectral differences between various materials, which
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cannot be distinguished in multispectral imagery, can be identi-

fied using hyperspectral imagery. Target detection in hyperspec-

tral imagery has been of great interest in the image processing

domain for years [1]–[4]. Recently, multilinear algebra, or ten-

sor representation, has been introduced into the target detection

domain [5], [6]. It is revealed that tensors integrate the spectral

and spatial features of the entire hyperspectral data cube, and

the signal can be restored and separated from noise by tensor

computation. Detection results from the restored and denoised

signals are more promising than those from the original data.

However, obtaining prior information about the targets may

sometimes be difficult. Therefore, anomaly detection, which

does not require prior information about the targets and focuses

on distinguishing unusual materials from typical backgrounds

without reference to target signatures or target subspaces, drew

the attention of researchers in hyperspectral imagery analysis

[7]–[12]. Anomalies usually refer to unusual observations or

objects in homogenous backgrounds. For example, tanks in a

forest background are referred to as anomalies. In anomaly

extraction methods, signals are no longer considered separable

from noise, but the whole anomaly pixel is assumed to be

derived from background statistics [7], [8].

The current anomaly detection methods mainly extract

knowledge from the background and use the difference between

anomaly targets and the background to detect anomalies. The

background refers to nontarget pixels that are predominant in an

image compared with target pixels. According to the different

ways of extracting knowledge from the background, anomaly

detection methods are classified into two main kinds. One as-

sumes that the background is composed of different classes, and

the information about these different classes can be estimated

from the image, including the probability density function and

a priori probability. The cluster-based anomaly detector

(CBAD) is one example; it detects anomalies in individual

clusters after the image scene has been segmented into different

clusters [13]. Another example is the multivariate normal in-

verse Gaussian (MNIG) detector, which assumes that each class

fits an MNIG distribution, and the negative log-likelihood of

each pixel belonging to its respective class distribution is com-

puted to judge whether a pixel is an anomaly [14]. The other

kind considers the background as one single type and acquires

the information about the entire background. In this method, the

background is assumed to be homogenous in some aspects. The

RX algorithm, proposed by Reed and Yu, is typical of this type

[15]. The RX algorithm assumes that the background classes

have the same multivariate normal distribution, and it uses the

sliding window where the center corresponds to the observed

pixel and the window is used to calculate background statistics.

0196-2892/$26.00 © 2010 IEEE
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It was first used in multispectral images and later also proved

efficient in hyperspectral images, and a subspace version called

SSRX was also proposed [7]. The SSRX and RX algorithms

are the most widely used methods in anomaly detection and

present good performance for anomaly detection in hyperspec-

tral images [7], [8], [15], [16]. However, all the aforementioned

anomaly detection methods use all pixels in each local class or

image scene to compute background statistics, which is the key

background information in anomaly detection. Thus, probable

anomalies may also be included in the background covariance

matrix, and this can weaken the difference between anomalies

and the background. Another problem originates from the local

anomaly detector, such as the local SSRX detector. The statis-

tics of the background in these methods are actually computed

from the pixels surrounding the observed pixel; hence, the

definition of the number of surrounding background pixels is

critical. The number of surrounding pixels should be large

enough to contain more pixels than the number of bands in

order to compute the background covariance matrix inverse.

However, a too large number is also undesirable as it may con-

tain anomaly target pixels in the background covariance matrix;

this would contaminate the background statistics and reduce the

separability of anomalies and the background. Furthermore, a

real-time blockwise detector, such as the real-time RX detector,

may present false alarms and miss targets as the sliding window

moves at the boundary between different backgrounds [17].

Recent research has introduced multivariate outlier detec-

tion methods into anomaly extraction from hyperspectral im-

ages [18]–[21]. The blocked adaptive computationally efficient

outlier nominator (BACON), minimum volume ellipsoid, and

minimum covariance determinant (MCD) method are typical

ones, which use robust statistics computed from the subsets

of the entire hyperspectral data set that is immune to anoma-

lies. Multivariate outlier detection methods present superior

performance to traditional benchmark anomaly detection meth-

ods, such as the RX and CBAD methods. The reason is that

traditional anomaly detection methods use statistics from a

contaminated data set, which means that background statistics

actually contain anomalies. Smetek and Bauer [19] point out

that even as little as 0.5% data contamination would cause

obvious covariance distortion. In fact, Smetek and Bauer [19],

[21] have established a basis for anomaly extraction by robust

statistics, which is the new trend in anomaly extraction from

hyperspectral images.

This paper proposes a random-selection-based anomaly de-

tector (RSAD) that randomly selects representative background

pixels from an image each time to obtain the background statis-

tics, detects probable anomalies by statistical differences, and,

finally, fuses all the detection results. In this way, the RSAD is

expected to present better separability between anomalies and

the background [1], [3] or lower sensitivity to the contamination

by the anomalies and a better performance in the transition

areas between different backgrounds.

The remainder of this paper is organized as follows. The

RSAD is described in Section II. Section III details the ex-

periments used to test our hypothesis and presents the results

of these experiments showing that the RSAD excels in these

areas: increased separation between targets and the background,

decreased contamination to background statistics by anomalies,

improved receiver operating characteristic (ROC) performance,

and fewer false alarms in the transitions between different

backgrounds. Section IV summarizes this paper.

II. RANDOM-SELECTION-BASED DETECTOR

A. Background Representation

If an anomaly detector is able to suppress the background,

the key process is to choose proper features to represent the

background. Generally, many anomaly detection methods use

the background covariance matrix to carry the background

information [10]–[12]. In the RX and SSRX methods, the

inverse of the background covariance matrix is used to measure

the statistical difference between the observed test pixel, or

inner area, and the background. This procedure can be con-

sidered as spherizing or whitening of the test vectors with a

Gaussian distribution, which produces a random vector with

a spherical distribution. Then, the anomaly detection method

can be considered as the evaluation of the correlation between

the background signature and the test pixel in the whitened

space, where both the background and test pixel lie in spherical

distributions but with different centers [7]. The background

covariance matrix for local detectors is computed from the pro-

cessing window. As for global detectors, they use all pixels but

the ones under detection in the image as the background pixels.

As a result, the anomaly pixels contaminate the background

covariance matrix.

The aim of the RSAD is to select adequate and representative

background pixels from the image scene to compute a proper

covariance matrix for the background while restraining the

effect of the anomalies. The background pixels are randomly

selected to reduce manual intervention. Then, the background

statistics from the selected background pixel set are computed

for detection purposes.

A number of blocks with the same size are used as the

smallest unit of selected background pixels. The following

paragraph studies the relationship between N and the proba-

bility of striking anomaly pixels.

Suppose the number of anomaly pixels is s and the number

of pixels in the complete image is n; then, the probability of

striking anomaly pixels when we randomly choose one pixel

from the image is s/n. Thus, the probability of striking at least

one anomaly pixel in at least one block is represented as

P = P ′(1) + P ′(2) + · · ·+ P ′(i) + · · ·+ P ′(N) (1)

where P ′(i) is the probability of striking i anomaly pix-

els in all the blocks, and it is considered to be a binomial

distribution [22]

P ′(i) =
N !

i!(N − i)!
qi(1− q)(N−i) (2)

with q = 4s/n, where q is the probability of each chosen block

striking the anomaly pixels in the image.

Suppose the number of pixels in the entire image is 10 000

and the number of anomaly pixels is 25. Then, q = 0.01. The
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Fig. 1. Relationship between q and P under different values of N .

relationship curves between P and q under different N values

are shown in Fig. 1. From Fig. 1, it is concluded that, as N
increases, the probability of striking anomaly pixels increases

sharply. The probability also increases when there are more

anomalies or q is larger. It can be concluded that a lower number

of blocks are preferred to reduce the probability of striking

anomalies in these blocks. However, the number of blocks has

to be greater than the number of hyperspectral image bands to

make the background covariance matrix invertible.

Since fusion of the detection results is performed after

the detection procedures according to each random selection

procedure, this paper further studies the probability that all

the selections strike anomaly pixels. Suppose that the number

of selection procedures is L; then, the probability of all the

procedures striking anomaly pixels can be computed as [22]:

PL = P ′′(i = L) =
L!

i!(L− i)!
P i(1− P )(L−i) = PL (3)

where P is equal to that in (1).

The relationship curves between L and PL are plotted in

Fig. 2. Two curves are plotted, both taking the number of

anomaly pixels as 25 and the number of blocks as 100 and 200

individually, and the corresponding P is computed from (1).

Different curvatures suggest that a larger number of randomly

chosen blocks require more procedures of random selection of

background pixels. It is obvious that, when L is large enough,

the probability of selecting anomaly pixels in these parallel

procedures would be dramatically reduced. In this case, the

contamination by anomalies in the selected background data

set would be minimized so that pixels containing anomalies

would be accentuated compared with the background pixels.

Combining all the detection procedures according to different

random selection procedures, real anomaly pixels should have

the largest probability of occurrence and have a comparatively

larger intensity in the detection result images. The fusion

processing uses this point to extrude anomaly pixels from the

background [13].

Fig. 2. Relationship between PL and L under different values of N .

B. Anomaly Detection and Fusion Procedure

After each random selection procedure, the final pixels rep-

resenting the background are extracted. Thus, the statistical

features of the background can be obtained from them each

time. We can then use the statistical features to build the

anomaly detector. The detector is assumed to suppress the back-

ground and illuminate the anomaly pixels. We use the

Mahalanobis-distance-based anomaly detector. Finally, we fuse

all the detection results from each detection procedure. The

entire procedure is described in the following paragraphs.

N blocks of pixels are selected randomly from the image. N
is chosen as a number larger than the number of image bands.

Each block contains 2 × 2 pixels, so there are, in total, 4N
pixels in the data set of background pixels. These pixels are

taken as background representative pixels. Using the data set,

the background mean and covariance matrix can be computed.

Research in the past decade has proved the effectiveness of

the Mahalanobis distance to detect anomalies from their back-

ground [23]–[25]. The key assumption of these Mahalanobis-

distance-based methods is that the statistical features of the

anomalies and background can be depicted by the mean and

covariance matrix. Hence, the main difference between these

methods is the different ways of computing the mean and co-

variance matrix of the background. Billor, Hadi, and Velleman

proposed the BACON method for multivariate outlier detection

in large data sets, and this has become one of the successful

outlier detection methods in the applied statistical domain [26].

Recent research has introduced multivariate outlier detection

methods to anomaly extraction from hyperspectral images

[18]–[21]. Among them, the BACON and the MCD method are

typical ones, which use robust statistics for anomaly detection

and achieve performance superior to the current benchmark

anomaly detection methods [19]. This is because the current

anomaly detection methods do not accommodate the effects

of outliers, while multivariate outlier detection methods use

robust mean and covariance estimates known to be reliable in

the presence of outlying observations [20].

The BACON uses an initial subset assumed to be free of

anomalies, while the MCD method chooses an initial subset



DU AND ZHANG: RANDOM-SELECTION-BASED ANOMALY DETECTOR FOR HYPERSPECTRAL IMAGERY 1581

with the MCD from a series of subsets. Thus, the difference

between the MCD method and BACON detector is that the

MCD method uses a robust starting point [19]. However, the

optimal initial subset in the MCD method may not improve

the performance of detection significantly [26]. Moreover, the

selected initial subset that is free of anomalies in the BACON

might be difficult to determine, while the computational cost

is increased. The proposed RSAD does not find an optimal

initial subset but has to define the number of random selections.

Then, the random selection procedure is performed a sufficient

number of times to ensure that at least one constructed subset

is free of anomalies. This is much like the MCD method, in

which the subsets are randomly selected, among which at least

one is assumed to be free of anomalies. The difference is that

the RSAD detects anomalies with different subsets’ statistics

and fuses all the detection results at the last stage, while the

MCD method chooses only one subset with the MCD and uses

this optimal subset for anomaly detection. Since several subsets

may have covariance determinants close to zero, the choosing

of such optimal subset is somewhat subjective [27]. In addition,

although the randomly selected subsets may not be optimal, the

fusion procedure makes the anomaly pixels stand out from the

background pixels due to the fact that anomalies would present

a high anomalous degree in more detection procedures than

nonanomaly pixels would. This is much like the pixel purity

index (PPI); the PPI chooses the pixels as end members that

have the largest accumulating scores in the projections onto

different randomly generated skewers [28]. As a result, the

RSAD provides an alternative to the current multivariate outlier

detection methods when the optimal initial subset is difficult to

determine.

The RSAD uses the same procedure as the BACON to

compute the mean and covariance matrix of the background

from hyperspectral imagery and finally extract the probable

anomalies.

Step 1: Take background pixels, randomly selected using the

aforementioned procedure, as the initial basic subset of

observed pixels from the hyperspectral imagery. Each ob-

served pixel is virtually a vector containing b′ components

according to the b′ bands.

Step 2: Compute the mean vector and the covariance matrix

using the initial basic subset as follows:

x =
1

M

M
∑

i=1

xi (4)

C =

⎡

⎣

σ11σ12 . . . σ1b′

. . .
σb′1σb′2 . . . σb′b′

⎤

⎦ (5)

where σij = (1/M)
∑

k(xik −mi)(xjk −mj), k =
1, . . . ,M , M is the number of pixels in the subset, and mi

and mj are the means of the ith band and the jth band,

respectively. xik is the value in the ith band of the kth

pixel.

Step 3: Compute the Mahalanobis distance of each pixel vector

in the image using the mean vector and the covariance

matrix previously mentioned

di =
√

(xi − x)TC−1(xi − x), i = 1, . . . ,M. (6)

Step 4: Set the threshold η, and the pixels in the image with

a distance under the threshold η would be set as the new

basic subset. Reed and Yu have shown that RX statistics

under the null hypothesis have a chi-square distribution

[15]. The BACON is also a Mahalanobis-based detec-

tor and has a chi-square distribution with p degrees of

freedom. The threshold is defined as the square root of

the 1− α percentile of the chi-square distribution with p
degrees of freedom. Since the basic subset contains only

part of the pixels in the hyperspectral imagery, the square

root is multiplied by the inflation factor, which is the same

factor as in [26], namely

η = χp,αcNpr (7)

where χp,α is the square root of the 1− α percentile of

the chi-square distribution with p degrees of freedom and

cNpr = cNp + chr is the inflation factor

chr = max {0, (h− r)/(h+ r)} (8)

h =(n+ p+ 1)/2 (9)

cNp =1 +
p+ 1

n− p
+

1

n− h− p
(10)

where r is the size of the current basic subset and n is the

total number of the pixels in the image.

Step 5: Iterate Step 2 to Step 4 until the basic subset no longer

changes.

Step 6: Nominate the pixels excluded by the final basic subset

as outliers.

It has been proved that the BACON is computationally

efficient for a large data set for it blocks the additional pixels

to the basic subset each time, but the number of iterations does

not increase with the number of pixels in the basic subset [26].

In addition, it searches for the most reasonable mean vector

and the covariance matrix for all the nonanomaly pixels by

including new pixels in the basic subsets, which tend to drift

toward the real center of nonoutlying background pixels.

The random selection of background pixels and the anomaly

detection are repeated L times. Based on the preceding section,

we know that repeating the parallel selection and detection

procedure several times would remarkably reduce the prob-

ability of selecting anomaly pixels as the background in all

the procedures. However, the detection results would have to

be fused. We use the majority voting rule in the fusion. Each

time, we obtain a resulting data set by the BACON anomaly

detector according to one random selection of background

pixels, nominating each pixel as an anomaly or background.

For each pixel xl (l = 1, . . . , n) in the jth (j = 1, . . . , L)
resulting data set, we use the following definitions.

1) If the pixel xl is judged as a nonanomaly: ∆0j =
1 and ∆1j = 0.

2) Else, if the pixel xl is judged as an anomaly: ∆0j =
0 and ∆1j = 1.
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3) Finally, after all the detection procedures, assign xl to

wi (i = 0, 1) if
∑L

j=1 ∆ij = max1i=0

∑L
j=1 ∆ij , where

w0 refers to a nonanomaly pixel and w1 refers to an

anomaly pixel.

C. Real-Time Implementation

Real-time implementation refers to a detection procedure

that provides results after the data sample or scanned line

arrives at the sensor with a negligible time lag. Real-time

implementation has the advantage of processing data online and

provides timely analysis to resolve critical situations. There has

been an increasing need for the real-time processing of hyper-

spectral images, particularly in battlefield, reconnaissance and

surveillance, environmental monitoring, disaster and damage

control, etc. [14]. Research has been carried out on the real-

time implementation of the RX and SSRX detection methods

[29], [30]. In these real-time detection methods, the sample

covariance matrix is replaced by the sample correlation matrix,

and the mean would not be removed. In this way, both the first-

order and second-order statistics of the images can be taken into

account, while the traditional counterpart detectors use only the

second-order statistics. Thus, when the target’s spectral proper-

ties can be solely characterized by the first-order statistics, the

real-time detection methods would outperform their traditional

counterparts [14]. Moreover, by using QR decomposition, real-

time detection methods can be implemented line by line or

block by block in the image [30].

We propose a real-time version of the RSAD (RRSAD).

In the current real-time detectors, the initial data set used to

compute the initial statistics comprises the first blocks or the

first lines of the image received by the sensor [31]. In the

RSAD, the initial sets of data are also needed. The difference

is that we may need more blocks or lines so as to ensure a

large enough number of samples for random selection. The

procedures for the real-time blockwise RSAD are detailed as

follows, and the RSAD can also be implemented in line-by-line

real-time processing.

Step 1: Select a pre-fixed number of pixels randomly from

the initial blocks or lines of the image to construct the

initial subset [31]. If the number of pixels in the initial

blocks or lines is less than the pre-fixed number of selection

pixels, new blocks or lines scanned by the sensor would be

added. The chosen number of the initial blocks obviously

affects the performance of the method. On the one hand, a

larger number would be necessary for the random selection

procedure. On the other hand, a too large number would

cause a considerable time lag. However, this time lag

can be minimized by choosing the first several blocks or

lines with the number of pixels being just greater than the

number of spectral bands and randomly selecting just one

more pixel than the number of bands for the initial subset.

This enables us to avoid the ill-rank singularity problem.

For simplicity, we assume that the two blocks contain more

than b′ pixels, and b′ refers to the number of bands in the

image. Thus, the optimal initial subset comprises the first

two blocks.

Step 2: Compute the statistics from the chosen initial subset and

construct the BACON detector. Exclude the pixels from

the initial data set that are over the threshold predefined

using the method mentioned in the previous section. This

BACON detector also utilizes the sample correlation ma-

trix instead of the sample covariance matrix, and the mean

no longer has to be subtracted

di =
(

xT
i C

−1
R xi

)1/2
, i = 1, . . . , n (11)

CR =
1

M ′

M ′

∑

i=1

xix
T
i (12)

where di is the detection measurement of the pixel xi, n
is the number of pixels in the image, CR is the correlation

matrix of the initial subset, and M ′ is the number of pixels

in the initial subset.

Using QR decomposition [32], the inverse of the sam-

ple correlation matrix does not need to be computed.

Rewrite the correlation matrix as

CR =
1

M ′

M ′

∑

i=1

xix
T
i =

1

M ′
[XXT ] (13)

where matrix X is composed of all chosen pixel vectors. X

can be represented by QR decomposition [32], [33]

X = QR (14)

where Q is a unitary matrix and QT = Q−1, R =
[

R
upper

0

]

. Rupper is an upper triangular matrix. 0 is a zero

vector. The inverse of the sample correlation matrix is

expressed as

C−1
R = M ′(XXT )−1 = M ′

{

(Rupper)−1
[

(Rupper)T
]−1

}

.

(15)

Thus, when a new block arrives, we only have to

update the matrix Rupper but do not need to compute

the inverse of correlation matrix CR. That is why the

implementation is called a real-time method [30].

Step 3: Update the subset by scanning the new block. The

updated subset comprises three parts. One part is the new

block. Another part contains the detected anomaly pixels

in the last block, if any. The third part consists of the pixels

that were randomly selected from the previous scanned

blocks with the number equal to that of a block minus the

number of anomaly pixels in the last block. The inclusion

of the detected anomaly pixels in the last block is to

inspect, using the statistics of the updated subset, whether

they are real anomaly pixels.

Step 4: Exclude the pixels from the updated subset that are

over the pre-fixed threshold, and iterate the detector until

the remaining subset no longer changes or the number

of iterations reaches three. The limitation on the number

of iterations is to ensure the least time lag. Experiments

have also shown that, in most cases, the BACON would

converge after just a few iterations, and the first iteration

would exclude most of the anomaly targets [26].
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Fig. 3. AVIRIS hyperspectral image.

Step 5: Iterate Step 3 and Step 4 to scan and detect a new

block until the last one of the image, and fuse all the

detection results at each detection procedure. In the fusion

procedure, only the pixels that are detected as anomalies

in both the pixels’ block and the neighboring block would

finally be considered as anomalies.

III. EXPERIMENTS AND ANALYSIS

A. Separability Analysis

An AVIRIS hyperspectral data set is first used for the sepa-

rability analysis. Here, the separability refers to the ability of

a detector to separate anomalies from the background, particu-

larly when there is contamination of the background statistics

by anomalies. The AVIRIS hyperspectral image hereinafter

covers the Lunar Crater Volcanic Field in Northern Nye County,

NV, downloaded from the National Aeronautics and Space

Administration Web site. In our experiment, a subimage was

used, which is segmented from the original image and has a

size of 200 × 200. Much research has been performed on the

same area [8], [9], [34], and it was revealed that there are five

main kinds of background material in the subscene, namely red

oxidized basaltic cinders, rhyolite, playa (dry lakebed), shade,

and vegetation. A single anomaly containing two pixels in the

subscene lies on the border of the dry lakebed in the scene.

The single-band image of the data set and the position of the

anomaly are shown in Fig. 3.

In the experiment, the atmospheric water bands and low

signal-to-noise ratio bands of the data set are removed, reducing

the dimension of the image cube from 224 to 120 bands [35].

To make the quantitative analysis possible, 14 target panels

are also added to the image, which are shown in Fig. 4. The

added targets have the same spectrum as the anomaly pixels

previously mentioned but with different sizes. The target panels

in the same column have the same size, and from the left to

right, their sizes are as follows: 1 × 2, 2 × 2, and 1 × 1. Each

column has five similar target panels, and the image with target

panels is shown in Fig. 4. In our proposed method, 50 blocks

are used to randomly select 200 background pixel vectors each

time to ensure the background covariance matrix is invertible.

The number of parallel anomaly detection procedures can be

determined by the method outlined in Section II and is set to 17

to minimize the probability of striking anomaly pixels.

The global SSRX algorithm [7], [36], BACON, and MCD

method are applied as the comparison in the experiment. All

Fig. 4. Target panels in the AVIRIS image.

these methods use 20 components from principal component

analysis transformation to increase the detection efficiency.

Fig. 5(a) shows the detection result of the SSRX algorithm on

the data set. Fig. 5(b) shows the results of all the detection pro-

cedures in our proposed RSAD method before fusion. The 3-D

detection results of the BACON and MCD method look similar,

so we only show that of the BACON in Fig. 5(c). From Fig. 5(a)

and (b), it is found that our proposed method suppresses the

background to a much lower range, and the background pixels

all lie on a steady range, while the SSRX method outputs

the background pixels with stronger fluctuations, with some

background pixels presenting high values that would cause false

alarms. From Fig. 5(b) and (c), our method presents a similar

result to that of the BACON, although the RSAD suppresses the

background to a slightly lower range.

To further investigate the separability between targets and

the background, we also plotted the output value range of the

different detection methods in Fig. 6. In Fig. 6, there are six

groups of bars. Each group has a black bar representing the

range of the background and a color bar representing the targets.

The first group is the detection results by the global SSRX. The

second and third groups are the detection procedures with the

largest separability and one with the smallest separability in

the RSAD, respectively. The fourth group contains the entire

accumulative range of the background and targets in all the

detection procedures in the RSAD. The last two groups are

according to the BACON and MCD method, respectively. From

Fig. 6, we can find that the SSRX presents the background with

an obviously higher range compared with those of the other

detectors. Meanwhile, the targets in the SSRX show a lower

and more widespread range than those of the RSAD. The gap

between the black bar and the color bar in each group refers

to the separability between anomalies and the background for

each case. Among these six groups, the second group presents

the largest gap. In other words, the RSAD can reveal better

separability between anomalies and the background.

To evaluate the final detection performances, the ROC curves

are used. These are computed by the detection probability

versus false alarm rate. The detector with the best performance

is the curve nearest to the upper left, representing the highest

detection probability under the same false alarm rates. The

ROC curves of the final detection results of the RSAD and the

other methods are shown in Fig. 7. In addition, the cluster-

based BACON (C-BACON) method [21] is also used this

time. It is found that all multivariate outlier detection methods

Zhang
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Fig. 5. Three-dimensional plot of detection results. (a) SSRX method. (b) RSAD. (c) BACON.

Fig. 6. Separability analysis.

Fig. 7. ROC curves of different detectors.

present better ROC curves than the SSRX method. The RSAD

shows a slightly better ROC curve than the BACON and MCD

method. However, when the cluster information is taken into

consideration, it is proved in Fig. 7 that the C-BACON performs

best. The reason is that the backgrounds of the hyperspectral

images are from multiple good populations so that applying

individual detection to a different background population would

be more appropriate [19]. However, the determination of the

number of clusters in the hyperspectral images may be some-

what subjective [19]. Furthermore, as the RSAD cannot use

the cluster information due to its selection from the whole

image, it is fairer to compare it with the multivariate outlier

detection methods considering no cluster information. In a

word, the RSAD provides an efficient way of using robust

statistics to detect anomalies in hyperspectral images with less

preprocessing.

Section II has proved that the probability of containing

anomaly pixels in all background statistics would be reduced

dramatically as the number of parallel detection procedures

increases. Anomaly pixels would present a high anomalous

degree in most of the parallel detection procedures. Meanwhile,

although some background pixels would show a high anoma-

lous degree due to the background statistics deviations such as

the false alarms in Fig. 5(a), these background pixels would

present a low anomalous degree in most of the parallel detection

procedures. Finally, by the fusion strategy of majority voting,

anomaly pixels can be accentuated, and false alarms in the

individual detection procedures can be suppressed. That is why

the RSAD is less sensitive to contamination by the anomalies

in the background statistics.

B. Real-Time Detection Experiments

1) Experiments With a Simulated Data Set: In real-time

anomaly detectors, the statistics are from the surrounding local

areas, resulting in false alarms and missed detection in the areas

where block boundaries cross the natural borders between two

or more different image backgrounds [17]. Since the RRSAD is

based on the statistics of a representative background pixel data

set randomly selected each time from the updated pixel data

set, it is expected that the RSAD would avoid the sharp change

in statistics at the transitions between different backgrounds.

Therefore, in this section, we focus on the detection perfor-

mance at the transitions between different backgrounds. In the

experiments, two data sets are used: a simulated hyperspectral

data set and a real-world hyperspectral data set. The former
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Fig. 8. Spectrum plot of the background materials.

is composed of five kinds of spectrum signatures from the

ENVI software spectrum library: grassland soil, coyote bush,

dry grass, lawn grass, and blackbrush leaves. The data set has

two background regions: One is composed of grassland soil and

grass, and the other is composed of bush and leaves. Dry grass

is added to the backgrounds and is considered as an anomaly

target. The spectrum plots of these five materials are shown

in Fig. 8. We calibrated their spectrums to the corresponding

bands of AVIRIS data in the overlapping parts of their spectrum

and chose 100 bands from 600 to 1800 nm. In this way, we

obtained five spectrum signatures, which were vectors with a

dimension of 100. Then, using methods similar to those in [2],

we obtained the synthetic hyperspectral data set composed of

these five spectrum signatures.

The details of the simulated data set are as follows. The data

set has 100 bands, and its size is 400 × 400. Thus, there are

160 000 pixels in the image, which are divided into two parts:

The first 200 lines of the image correspond to the background

composed of grassland soil and grass, and the remaining 200

lines correspond to the background composed of bush and

leaves. Each pixel in the same line has the same composition of

background materials. The first line of the image is composed

of 100% grass and 0% grassland soil. From the second line,

the percentage of grass decreases by 0.25% in each line, and

the percentage of soil increases by 0.25% in each line at the

same time until the 200th line, where the pixels are composed

of 50.25% grass and 49.75% soil. This is the border between

the two backgrounds. The above are the pixels of the first

background. For the remaining 200 lines of the other back-

ground, the synthesizing method is the same. The 201st line

is composed of 50% bush and 50% leaves. Then, with a 0.25%

increase of bush and a 0.25% decrease of leaves for each line,

the 400th line is composed of 99.75% bush and 0.25% leaves.

Finally, we replace the background pixels in some positions in

the image with the spectrum of dry grass to obtain anomaly

pixels, altogether creating ten anomaly targets, five of which

are single-pixel ones and five are 2 × 2. The single-band image

of our simulated data is shown in Fig. 9.

Fig. 9. Single-band image of the simulated data.

Fig. 10. Detection results of the simulated data set. (a) SSRX method.
(b) RSAD.

In the experiment, the block size is 10 × 10, so the image is

divided into 1600 blocks. Each time a new block arrives, the

updated subset is composed of the new block and a compa-

rable number of randomly selected pixels from the previously

scanned blocks and the detected pixels in the last block. This

ensures that the pixels detected in the previous block are

checked again. A sliding dual concentric window is used in the

real-time SSRX. The outer window contains two blocks, and

the inner window is 2 × 2, which is equal to the target size.

The detection results of the SSRX and RSAD are shown in

Fig. 10(a) and (b), respectively. In Fig. 10(a), it is seen that the

SSRX outputs an evident boundary at the transition between the

two backgrounds, where the anomalies do not stand out from

the boundary. Some anomaly pixels at the transitions between

the backgrounds cannot even be identified in the image. In fact,

this transition between the different backgrounds is the main

source of false alarms. Meanwhile, Fig. 10(b) shows that all

the anomaly pixels are separable from the background, and no

boundary is apparent in the image. Fig. 11 shows the ROC

curves of the two methods, and the RSAD performs much better

than the SSRX method: Ours is nearer to the upper-left corner

of the coordinate system than the SSRX method. The RSAD

keeps the false alarm number to a lower value than the SSRX

method under the same detection probability. The improved

performance is mainly due to the lower number of false alarms

at the transitions between different backgrounds.

The reason for the improved performance is that, in the

RSAD, the background statistics for the detector are computed

not only from the local areas around the observed pixels but

also the pixels randomly selected from the scanned data set,

while the SSRX uses local windows around the observed



1586 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 49, NO. 5, MAY 2011

Fig. 11. ROC curves of different detectors.

pixels to select background pixels for the background statistics.

When the window slides into the transitions between different

backgrounds, the pixels from the background with minority

pixels in the window would be statistically different since the

majority of pixels come from the other background. As a result,

these pixels are the false alarms in the output of the SSRX

detector. Although the RSAD may also select the transition

areas of the data set, our random selection procedure means

that the pixels from one homogeneous background can hardly

be dominant in the background statistics. Moreover, the RSAD

checks the detected pixels in the next block by the updated and

the newly randomly selected data set to reduce the false alarms

at the transitions between different backgrounds. Hyperspectral

images, particularly the ones scanned vertically to the flight

direction, such as the Airborne Real-Time Cueing Hyperspec-

tral Enhanced Reconnaissance hyperspectral data, usually have

sharp background transitions. In this case, the RSAD is more

practicable.

2) Experiment With a Real-World Data Set: To further

evaluate the detection performance at the transitions between

different backgrounds, another real-world hyperspectral data

set was used. This is an airborne hyperspectral data set from

the Reflective Optics System Imaging Spectrometer (ROSIS)

optical sensor, which was provided by the Data Fusion Tech-

nical Committee of the IEEE Geoscience and Remote Sensing

Society. The number of bands of the ROSIS-3 sensor is 115

with a spectral range of 0.43–0.86 µm. The data set has been

atmospherically corrected, and some channels have been re-

moved due to noise, with 102 spectral dimensions remaining.

We only used the lower part of the image scene with a size

of 400 × 400, as shown in Fig. 12. This subimage contains

four obviously different parts of backgrounds from the top to

the bottom, which are urban construction area I, river, urban

construction area II, and forest area, as shown in Fig. 13.

In the experiment, 18 pixels were chosen from these four

transition areas as the anomaly targets, and all are spectrally

different from their backgrounds. These anomaly pixels were

divided into five groups: The first four groups are from the four

different backgrounds previously mentioned, and the last group

Fig. 12. ROSIS image.

Fig. 13. Different background areas.

TABLE I
ANOMALIES IN DIFFERENT BACKGROUNDS

is the pixels at the transitions between different backgrounds.

The anomaly target pixels in different transitions are detailed

in Table I. The spectral plots of different anomalies and those

of their background materials are shown in Fig. 14, in which

the spectral differences between the anomaly pixels and their

backgrounds are obvious. The plots of the backgrounds in the

image are the mean spectrum of pixels of the same background.

The fifth group of anomaly pixels contains the ones on the

boundary of the forest area and construction area II.

The block size was chosen as 10 × 10, so the image was

divided into 1600 blocks. In the RSAD, each time a new

block arrives, the updated subset comprises the new block, a

comparable number of randomly selected pixels from the pre-

viously scanned blocks, and the detected pixels in the last block.

This ensures that the pixels detected in the previous block are

checked again. A sliding dual concentric window is used in the
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Fig. 14. Spectral plots of different groups of anomalies and their corresponding backgrounds. (a) Anomaly in construction I. (b) Anomaly in river. (c) Anomaly
in forest. (d) Anomaly in construction II.

Fig. 15. SSRX detection result image.

SSRX. The outer window contains two blocks, and the inner

window is 3 × 2, which is equal to the largest target size. The

result of the SSRX algorithm is shown in Fig. 15. To make

the result images comparable, we use the RSAD but with no

segmentation, only computing the anomaly degree of each pixel

in the image, with which we can finally compute the detection

results by threshold segmentation. The anomaly degree image

of our detector is shown in Fig. 16. In Fig. 15, there are obvious

boundaries between the different backgrounds. Compared with

Fig. 15, the boundaries are not so obvious in Fig. 16, and

the anomaly pixels are visually more outstanding from their

background. To compare the performance quantitatively, the

Fig. 16. Detection results of RSAD.

statistics of the SSRX algorithm and our proposed method were

calculated by ROC curves in Fig. 17. There is a significant im-

provement by the RSAD compared with the SSRX algorithm.

To further investigate the effect by the boundaries, the detection

rate versus the false alarms, appearing on the boundaries of

these different backgrounds, is also plotted in Fig. 18. From

Fig. 18, it is seen that, compared with our method, the detection

performance of the SSRX algorithm is decreased by boundary

false alarms.

To analyze the false alarms on the boundary, a subset of our

experimental image, segmented from the boundary of the forest

area and the construction area, was studied. This subscene is
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Fig. 17. ROC curves.

Fig. 18. Detection rate versus false alarms on boundary.

Fig. 19. Subscene of the boundary.

shown in Fig. 19. There are three kinds of background material:

tree, grass, and construction, with the former two kinds from

the forest area and the latter from construction area II. The two

pixels in the center of the scene correspond to a tree. The mean

spectral plots of the three materials are shown in Fig. 20. In

the SSRX detection results, these central pixels are considered

as anomalies due to their sparsity in the sliding window area

under the detection procedure. Meanwhile, the RSAD does not

present false alarms on these pixels. Trees are widely spread in

the image, so in the global scale of the image, they can never be

Fig. 20. Spectral plots of the materials in the subscene.

seen as anomalies. In other words, the RSAD takes both local

and global statistics into consideration, thereby avoiding false

alarms caused by isolated pixels.

IV. CONCLUSION

This paper has proposed an RSAD for hyperspectral images.

This method randomly selects representative background pixels

to compute background statistics and reduces the contamination

of the background statistics by anomaly pixels by employing

a sufficient number of random selections and the fusion of

each detection result from the random selections. An RRSAD

has also been proposed. The experiments have proven that the

RSAD performs better in detecting anomalies compared with

the current anomaly detection methods, such as the SSRX

algorithm. The RSAD has also presented better separability

between anomalies and the background than other successful

outlier detection algorithms, such as the BACON and MCD

method, when taking no cluster information into consideration.

Compared with other real-time anomaly detection methods, the

RRSAD can effectively decrease the number of false alarms in

the transition areas between different backgrounds and avoid

false alarms caused by isolated pixels.
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