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RANDOM SET THEORY AND PROBLEMS OF MODELING*

NOEL CRESSIEf AND G. M. LASLETT

Abstract. The three- or four-dimensional world in which we live is full of objects to be measured and
summarized. Very often a parsimonious finite collection of measurements is enough for scientific investi-
gation into an object’s genesis and evolution. There is a growing need, however, to describe and model
objects through their form as well as their size. The purpose of this article is to show the potentials and
limitations of a probabilistic and statistical approach. Collections of objects (the data) are assimilated to a
random set (the model), whose parameters provide description and/or explanation.

Key words. Boolean model, hitting function, random set limit theory, random fields

AMS(MOS) subject classifications. Primary 62M99; secondary 60D05

1. Introduction. In any scientific investigation, the relationship between data
and theoretical models is very important. Which comes first is not always clear, since
the collection, storage and retrieval of large data files already relies on a more or less
vague underlying theory. In this article, the data will be recordings of objects, often
images on a photographic plate or a TV screen. Such visual images may be analyzed
per se, or they may be converted into numerical data by defining pixels, and recording
for each pixel a gray level, or (color) frequency and intensity. A further conversion to
a two-phase image might be made by recording "black" or "1" if the gray level of a
pixel is above a certain threshold, or of a certain color. We will see how random-set
models can be used to explain or describe them.

Theoretical models are not expected to represent the data exactly, but at the
very least they act as a sorting device that directs the data analyst to efficient ways of
extracting information. When a model has a component of randomness in it, there
is an extra, although exploitable, source of inexactness. By definition, two realiza-
tions of the same random phenomenon will not be exactly the same. However,
parameters estimated from two such realizations should be stable; the larger the real-
izations, the closer the two parameter estimates should become. Figures l(a) and l(b)
show a small part of two artificially generated realizations of the two-dimensional
Boolean model (with random parallelograms as the primary sets) discussed in 4. The
parameters used for each generation were identical, and summarized by, 0.02, E(P(S)) 20.00, E(ISI) 15.92 (see 4.4 for details). Generalized-least-
squares-estimation techniques, described in 4, yield for Fig. l(a):

,=0.020, (P(S))= 16.27, /(ISI)= 15.47,

and for Fig. l(b):

,=0.017, ’(e(s))= 18.26, (ISI)= 18.18.

The statistical and probabilistic techniques which ensure the existence of sto-
chastic models, and efficient estimation of their parameters, are very well developed
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FIG. l(a). A realization ofa Boolean model whose primary sets are random parallelograms.
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FIG. l(b). Another realization ofthe same Boolean model that was used to generate Fig. l(a).
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for data that are modeled as independent and identically distributed random variables.
Here the interrelationships between any two subcollections are extremely simple, and
one only needs to determine the law of any individual to determine the law of the
whole. In fact only the probability of the events "{X_-< x}, for all x (-, )," is
needed. These techniques have been extended for the following:

(a) A sample whose variables are vectors, or are elements of a Banach space, etc.
(b) A collection of (often real-valued but also vector-valued) random variables

whose dependence structure is Markov, or (strong or weak) stationary, etc.
It is our aim in this paper to present random-set models, to analyze objects in d-

dimensional Euclidean space Rd, d _-> .’Section 2 compares random sets with random
functions and specifies where their approaches diverge. Section 3 discusses the role of
the hitting function Pr {X B }, B a test set (or "trap," according to Kendall
(1974)), in characterizing the random closed set X. Its utility in building random-set
models is severely limited; we shall indicate by example why the hitting function has
really failed to be a useful analogue to the cumulative distribution function for
random variables. Basically, the construction of any but the simplest set models
becomes extremely difficult because the hitting function is usually intractable. Even
random-set limit theory has avoided its use. Section 4 discusses the problem of
estimating model parameters from data, in the case of the Boolean model; even here,
little is known about optimal estimators and their statistical properties. The parallel-
ogram data of Fig. l(a) are analyzed. Section 5 brings together the various themes of
the paper.

2. Random sets and random functions. In one sense, a random set is just a special
case of a random function (or random field) that takes only the values 0 or 1. In fact,
if any random function (Adler (1981)) is "sliced" at, say, a level u and looked at from
above, then the boundaries of the slice trace out the boundary of a random set. Any
analysis of the original random function should be equally possible on these "level
sets" indexed by u, and conversely. Both random sets and random functions have the
concept of covariation; however, beyond this there seems little in common in their
analysis (see below and Adler (1981, p. 71)). The main reason is that (random-
function) operations such as convolution and Fourier filtering are linear, whereas the
(random-set) morphological transformations (i.e., transformations that affect shape,
(Serra (1982, Part 1))) are highly nonlinear.

In random-function theory, the variogram of a random function {Z(x): x Rd}
is defined as var (Z(x) Z(x + h)), which is usually considered to be a function only
of the vector h (known as intrinsic stationarity (see Matheron (1963) and Cressie
(1986)). Now suppose that X is a stationary random closed set (defined in 3),
and let Zx(x) denote its indicator function. Then it is not difficult to prove that
Zx is a random function satisfying intrinsic stationarity, w.th variogram
2(p Pr {x X, x + h X}), where p Pr {x X}. If we write X-h for the (random)
setX translated to the point -h, then the variogram is 2(p Pr {x X X_ }). Clearly
K(h) =-- f Pr {x X X-h} dx is the probabilistic analogue of the geometrical covari-
ance of a (deterministic) set A C Rd, defined as meas (A A_). But K(h) contains
information about the surface measure of X as h 0. Provided X is almost surely
(a.s.) regular (see Serra (1982, p. 274)) then {K(h)-K(O)}/Ihl exists; call it K,’(0),
where a h/lhl; in R2,

K’ (0)d Elperimeter ofXf.
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Now knowledge gained from the behavior at the origin of the covariance of a
random function usually relates to the behavior of its spectrum at very high frequen-
cies. This is exactly what is happening in the above relation, where the random
function is the indicator function of a random set; the left-hand side (lhs) can be
interpreted simply as covariance behavior near the origin, and the fight-hand side
(rhs) pertains to the boundary ofX where there is "high frequency," i.e., where the 0-
random function undergoes its most drastic change. But it is at this stage of an

image analysis that a random-function approach fails to capture the full geometric
complexities of the image. This is clear when we write X tq X-h in terms of the erosion
operation X 0 =- OaB X-a. The choice of "structuring element" B {0, h }, which
yields X q X-h, is just one of many that could be made in order to structurally sort
the random set X. The scope of geometric possibilities expands enormously through
varying the structuring element B, and (linear) spectral analysis in random-function
theory is just one of these.

3. The hitting function.
3.1. Preliminaries. A summary of the main definitions and results of random-

set theory (Matheron (1975)) will be needed. Let E be a locally compact, Hausdorff
and separable space, and define -- to be the set of all closed subsets of E (including
the empty set ). Let denote the set of all compact sets, and’ ---\ the set of
all nonempty compact sets. For any set of sets , C() denotes that subset whose
sets are convex. For any A C E, define

-= {F-:Ff3Af}, -A= {F-:FfqA=}.
For K compact and G,..., G, open, generate sets of the form -r, ...
tq ,. It can be shown that this class of subsets of- is a base for a topology on -(called the hit-or-miss topology), and that the topological space is compact, Hausdorff
and separable. In fact it can be shown (Matheron (1975, p. 28)) that all that is needed
is hit-or-miss information either on the set of all compact sets, or on the set of all
open sets; we will return to this point later. Equipped with a topology on ,, one can
now be rigorous about convergence of a sequence of closed sets. Furthermore, by
taking countable unions and intersections of the open sets of the topological space ,,
a -algebra Z on - is generated.

A random closed set or RACS (which is often just called a random set) is defined
as a measurable mappingX from a probability space (ft, , Q) into the measure space
(,, ). Let Pr be the law of X, i.e., the probability induced on 2; by

Pr(v)--- Q(X-(v)), v6 ,.
Special cases are random variables, random vectors and point processes, while for its
more general form, Matheron (1975) has defined a RACS whose realizations are
elements of a locally compact, Hausdorff, and separable topological space.

3.2. Hit-or-miss. The hit-or-miss topology is basic to this theory ofrandom sets.
It was chosen because it reflects the way image data in Rd are analyzed; i.e., its roots
are in practical applications. Often there is little to be gleaned from an image
or pattern in Rd just by looking at it (although of course it is the first thing to be
done). Clearly some sort of systematic probing is needed, which leads to the use
of structuring elements B (chosen independently of the image) to check whether
"B hits X" (BfhX#() or "B misses X" (BX=). Furthermore, suppose
(Rd), the set of all subsets of R d, is equipped with a -algebra generated by
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shows that in order to study any random set with the a-algebra generated by G, it is
equivalent to study its closure using the r-algebra E. Hence we see also how the "hit-
or-miss" approach virtually demands the study of random closed sets. This restriction
of the type of sets under study is a strength of the approach, since it reflects the reality
of the objects being modeled. For example, no experiment can hope to distinguish
between X being a disk of the plane, or being only the set of irrational points in that
disk.

3.3. Choquet’s theorem and the hitting function. It can be shown that all the
interesting set transformations (dilation, erosion, opening, closing, convexification,
etc.) of a RACS X are themselves RACS. Matheron (1975, p. 28) has shoWn that,
provided the set transformation is upper or lower semicontinuous into ,, then the
transform of the RACS X is also a RACS. Therefore, to analyze set data, all one needs
is a "bagful" of random-set models, and the rest is in principle straightforward. But it
is here where the random-set approach fails to fulfill its potential.

How can the models be specified? What are the important events that make
two random sets different? For a partial answer, we return to the hit-or-miss topol-
ogy. If we can specify Pr (X e-: fq fq) for all compact K, and all
open G, ..., G, for all integers n, in a consistent way, then X is well defined.
Fortunately a great reduction of test sets is possible.

For any K e, define the hittingfunction T as

T(K) Pr(X@) Pr

Then Thas the following properties (Matheron (1975, p. 29)):
(i) T()=0and0_-< T-< 1.
(ii) T is increasing.
(iii) T satisfies the following recurrence relations. For any n=>0, let

S,(Bo; B, , B,) denote the probability thatX misses B0 but hits B, , B,. Then

So(Bo T(Bo >- 0

Sl(Bo’,al T(Bot3 B, )- T(Bo) >-O

&(Bo; Bl, B)= &-i (Bo; Bl, Bn-1 &-I (Bo t3 Bn; Bl,"" Bn-, >- O.

That is, T is a Choquet capacity of infinite order. A powerful result, proved independ-
ently by Matheron 1971) and by Kendall (1974), is Choquet’s theorem in the context
of random-set theory; it says that the converse of the above is true. In other words, if
a given T on is a Choquet capacity of infinite order, there exists a necesarily unique
Pr on 2; such that

PT(@)= T(K) for all Ke.

An immediate example of its use is when the RACS X is an orderly point process
(i.e., no more than one event at any location) in Rd, a.s. locally finite. Let N(A) denote
the number of points of the process in A C R d. Then Choquet’s theorem says the
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point process is completely specified from

T(K)= Pr(XClK#)

Pr(Xf’IK=)

1-Pr(N(K)=0) forall

This observation that the point process is uniquely determined from
{Pr (N(K)= 0): K e 5f} was made by Ripley (1976) in his corollary on p. 989. It is
tempting to bracket Choquet’s theorem with the result which says that a random
variableX is well defined once the probabilities of events {X -< x }, for all x e (-o, o),
are specified in a consistent way. But the results, while being similar, are not identical.
In fact, Choquet’s theorem for a random variable, where the RACS X is a one-point
set in R , involves test sets {[a, b]:- < a 5- b < }; more work is needed to modify
the necessary test sets down to {(-, x]:-o < x < }. It is in this domain, namely
finding ways to reduce the hitting-function test sets down from the full comple-
ment , that results are scarce. We believe that this has greatly held back the
development of random-set models.

If something extra is known about the random set X, say all its Minkowski
functionals (e.g., volume, surface area, diameter, etc.) a.s. exist and are finite (see
Serra (1982, Chap. V)), then in principle this extra knowledge should reduce the
number of test sets needed (Molchanov (1984)). For example, Trader and Eddy 1981)
considered a.s. compact convex sets, and were able to work with events {X c C},
for all CeC(). But Pr(XCC)=Pr(XC=)=I-Pr(XC#)=
1- T(C). Not only are the number of test sets reduced from that of Choquet’s
theorem, but also {C:C C(K)} is not even contained in . Trader (1981) has
demonstrated the quite general result that just as {T(K):K 5z/} determines the
probability measure of a RACS X, so also does Pr {X c K}, for all K e W/; i.e., so also
does T(K): K I. This is perhaps not so surprising since K is an open set, which
in turn can be approximated by a sequence of compact sets, and the compact sets
themselves are measure determining. Ripley (1981, 9.1) also discusses the problem
of choice of test sets. The strongest result so far available is due to Salinetti and Wets
(1986), who prove that {T(U): U set of all finite unions of closed balls in E}
determines the probability measure of a RACS.

Those who wish to build models depending on sets more regular than those
of struggle with the test sets of Choquet’s theorem and, even when a reduction is
possible, it is not always easy to calculate the hitting function. Suppose that the
random set X in R2 is the random ray obtained by taking a random point on the unit
circle, according to a distribution function given by F(O) Pr {point arc [0, 0]}, and
joining this point to the origin. The test sets are simply the arcs {A(0): 0 [0, 2r]}
pictured in Fig. 2.

Now generate an independent random vector W in R2, according to a distribution
function G(. ). Then the random set X W {x + W: x X} is well defined and has
hitting function Tx.w(K) IR Tx(K-w) dG(w), K e /; recall K-w {k w: k K}. In
fact the test sets can again be reduced to arcs, but no longer necessarily centered at
the origin. Hence we need to be able to calculate Pr {X A (0)b }, for any b e R 2

and any 0 e [0, 27r]. This is not a trivial task once the harmony of both X and the test
set, being centered at the origin, is broken.

3.4. Tumor-growth models. An important naturally occurring phenomenon to
try to characterize geometrically is that of tumor growth. Models have usually been
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FIG. 2. Examples oftest setsfor random rays on the unit disc in R2.

formulated by mathematicians at the local (i.e., cell) level, leading to a very sophisti-
cated theory of interacting particles. The simple growth model of Eden (1961) is
generalized by Williams and Bjerknes (1972), who show geometric shapes from their
simulations, and make conjectures about the geometry of the boundary of the
cancerous cells. For the most part, the subsequent literature has not dealt with the
geometric problems, but rather with characterizing one-dimensional summaries (e.g.,
volume, leading front, radius) ofthe tumor through (sometimes stochastic) differential
equations (Laird 1964); Burton 1966); Saidel, Liotta and Kleinerman 1976); Hanson
and Tier (1982); LeCam (1982); Bartoszynski, Brown and Thompson (1982)). Thus
in spite of comments made by clinicians (Rubin (1982)) that the tumor’s appearance
(i.e., fibrous versus solid) is extremely important in characterizing its growth, very
little research has been devoted to working directly with the tumor as a geometric
object. Some asymptotic results have appeared that prove, for the interacting-particle
models mentioned above, that the tumor is asymptotically circular (Richardson
1973); Schurger 1979); Bramson and Griffeath 1981); Durrett and Liggett 1981 )).
However, there is little guidance as to what this means in vivo.

Cressie (1984) has proposed to build generations of the tumor via the iterative
equation (for which the hitting function can be calculated):

(3.1) Yt+l-- I,.J xa])a,
aePo( Yt)

where Po(A) is a Poisson process on the set A (i.e., N(A) is a Poisson random variable,
and conditional on N(A) the points of the process are distributed uniformly over the
set A), and where {xa: a P0(A)} is a collection of independent and identically
distributed compact RACS. By appropriate tuning of the parameters of (3.1), the
tumor can be made to grow or regress. Further details of this modeling of tumor
growth using random sets (e.g., hitting function, simulation, fitting to image data,
etc.) will be found in Cressie (1988, Chap. 9).

3.5. Random set limit theorems. Even such a simple transformation as random
translation involves extremely complicated hitting function calculations (see 3.3).
The situation becomes intractable when we try to calculate the hitting function of the
sum of two independent copies of X, namely Tx,.x; by definition X X2, the
Minkowski sum ofX and X, is simply the union of random translates of X, the
random translation vector ranging over the random set X2.
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An important set parameter to estimate is the "expected value" E(X) of the
random set X. This can be well defined via selections (Aumann (1965); Artstein and
Vitale (1975)). The natural estimator is

Xn=-(Xl (X2( (Xn)/n,
the Minkowski average of n independent copies X, X2, , X,, ofX. Limit theorems
for this estimator are necessary for formal inference. Artstein and Vitale (1975),
Cressie (1978), Hess (1979), Artstein and Hart (1981) and Purl and Ralescu (1983)
prove strong laws of large numbers for X, under various conditions. They show that

converges to the expected convex hull of X, with probability 1. Eddy (1982) used
the union and intersection operations instead ofthe Minkowski sum to find analogues
of univariate extreme-value limit theorems for RACS.

Cressie (1979b), Ljaenko (1979), Trader and Eddy 1981 ), Vitale 1981), Weil
(1982) and Artstein (1984) show, under various conditions, that the rate of conver-
gence in the strong law of large numbers is n-/2; Cressie’s central limit theorem is
geometric in that limiting normalized sets are given, whereas the other authors’
theorems are in terms of normalized Hausdorff distances, which lose the geometric
subtleties of the limiting process. These latter methods are employed by Gin6, Hahn
and Zinn (1983) to carry over any probability result in a Banach space (law of large
numbers, central limit theorem, law of the iterated logarithm, etc.) to Minkowski
sums of compact convex random sets. The convexity condition has recently been
dropped by Purl and Ralescu (1985).

All of the proofs of the above limit theorems are obtained by direct inspection of
the random set (X X2 X,)/n; the absence of the hitting function is notable.
Norberg’s (1984) result, which for convergence in distribution requires only conver-
gence of hitting functions on a suitable countable class of bounded Borel sets, might
possibly be used in cases where direct inspection of the random set is not possible.

4. The Boolean model. Data analysis when the data are sets is not a situation
with which most statisticians feel comfortable. There are certain exploratory ways of
looking at the data, but if one wants to consider them as being "representative" of a
phenomenon, with information on interpretable "average" quantities (parameters)
associated with the phenomenon, then one must turn to a model. This is true for
studying any type of random variation, but it is particularly difficult in the case of
random sets because of the dearth of tractable models available. Moreover, since the
sets (in Ra) usually have to be probed in some one- or two-dimensional way, there is
an extra source of "inexactness" in the inference process. Suppose a particular set
model is Used to represent a random phenomenon; inference from the probes to the
model parameters (a part of stereology) is a hard problem in itself, quite apart from
the problem of assimilating a model to the set data.

In this section we shall present what is arguably the most important set model,
namely the Boolean model, and show how its properties can be used in the analysis
of the data of Fig. l(a). Generalizations to other models will be discussed, but it is
clear that a fruitful path to broader classes of models has yet to be developed.

It appears that Solomon (1953) was the first person to consider this model in the
literature (see also Matern (1960)). Marcus (1966), (1967) uses the Boolean model to
examine the meteoroidal impact hypothesis for the origin of lunar craters, Dupa6
(1980) considers the etching of tracks formed by the fission of randomly located
uranium atoms in a fission material, Serra (1980) models ore-sintering, and Diggle
(1981) uses it to model the incidence of heather (he calls it a random binary mosaic).

The Boolean model is obtained by fixing independent realizations of a random
closed and bounded set (called the primary set) S in R a, at each point of a realization
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{t} of a homogeneous Poisson process in Rd, and then taking the union. This results
in

(4.1)

whereS t; is the ith realization of S fixed at t. Thus there are two sources of
randomness in the model:

(i) The Poisson process, characterized by the intensity
(ii) The probability law of the (random) primary set S.

4.1. The hitting function. The hitting function of the Boolean model X can be
constructed in several stages.

Consider the homogeneous Poisson process in R a, with constant intensity
which is characterized as follows. Let N(A) denote the number of points ofthe process
in any subset A C R. Then ifA A2 Q, N(A) and N(Az) are independent Poisson
random variables with respective means ,[AI and [Az[. Also,

Pr {N(dA) 0} Xdx,

Pr {N(dA Xdx,

where dx is the volume element of the infinitesimal region dA; i.e., dx dA[.
Now

Qx(K) Pr(X K=)

Pr((Sitg)K=, for all i),

where S; is a realization of a random closed and bounded set S and {tgl are the points
of the Poisson process. In the infinitesimal region of volume dx centered at x R a,
two mutually exclusive events may happen:

(i) There is no element of {t} in dx; this occurs with probability Xdx.
(ii) There is one element of {t;} in dx centered at x, but S x does not hit K;

this occurs with probability Xdx Qs(K-).
To the order of magnitude ignored, this yields

( Qs(K-z))dx exp [-,( Qs(K-x)) dx].

Hence, Qx(K) is obtained by taking the product over all disjoint regions:

(4.2) Qx(K)=exp[-;(1-Qs(K_))dx1.
This formula is fundamental in linking the hitting function ofX to the hitting function
of S.

Now define Is.:(. to be the indictator function of S/ {s k" s S, k K},
where/-= {-k" k K}. But

IsRI alsk(xldx,
and so

E{lS(3[fl}=f E(Is.k(x))dx=f Ts(Kx)dx=y Ts(K-x)dx

=; Qs(K-)) dx,
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where the integrals with respect to x are taken over Rd. Finally then,

Tx(K) Ox(K),

where

(4.3) Qx(K) exp [-XE{ S/l 1].

4.2. Properties of the Boolean model. We will summarize the main characteristics
of the Boolean model, from which it should be made clear why it is central among
random-set models. More details can be found in Serra (1980).

(i) Porosity, q. Porosity is the probability that a point of the space is in the
complement ofX (i.e., in the pores).

Let K= {x}. Then q =- Qx({X})=Pr {x X}; i.e., q e-xellsll.
(ii) Covariogram ofthe pores, x(h). The covariogram is the probability that two

points, h-apart, are both in the complement of X; it measures dependence between
pores.

Let K={x, x + h}, and x(h) Qx({X, x + h}). Then

(h)= Pr {x,x+ heX}

where

=exp [- XE{ISS-hl}]

q2eX/h)

K(h)=EIlSfqS-hI}=f Pr {xeSfqS_} dx,

the probabilistic analogue of the geometrical covariance.
(iii) Stationarity. Since E(]. l) ignores location, X is clearly stationary.
(iv) Stability under dilation. From (4.3), the RACS X L {x + l: x e X, e L 1,

for L any deterministic compact set, is also a Boolean model.
(v) Cross-sections are Boolean models. This is true because K in (4.3) may

belong to a subspace of R a.
(vi) Infinite divisibility with respect to union. A RACS Y is said to be infinitely

divisible with respect to union if for any integer rn > 0, Y is equivalent to t_l= Y of rn
independent equivalent RACS {Y; i= 1, ..., rn}. This shows the Boolean model to
be a candidate model for limits of unions of RACS.

(vii) The Boolean model with convex S is semi-Markov. A RACS Y is said to be
semi-Markov if for any K, L and M e g/, and K and M separated by L (i.e., the
segment joining any point of K to any point ofM hits L), the RACS Y f)K and
YOM are conditionally independent given Y f3 L . Thus the Boolean model’s
probability law is really determined by "local" conditions. Widely separated parts of
the set are only weakly dependent.

In terms of the functional Q, Matheron (1975, p. 132) has shown that if Y is
infinitely divisible with respect to union, and if for any K, M, K tOM C(),

Qr(K toM)Qr(K f3M) Qr,(K)Qr(M),

then Y is semi-Markov. Matheron (1975, p. 148) has furthermore provided the
following important characterization theorem (presented here in R3): Any RACS in
R 3 which is stationary, infinitely divisible with respect to union and semi-Markov is
equivalent to

X u X: uX,
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where X, X2, X3 are stationary, independent and
X Boolean model with primary (random) sets S convex.
X2 union of cylinders with bases that are two-dimensional Boolean models

with primary sets S (in R2) convex.
X3 union of cylinders with bases that are one-dimensional Boolean models

with primary sets S (in R 1) convex.
Notice that if the S in X2, X3 are a.s. points, then the associated cylinders become
Poisson lines and Poisson planes respectively, yielding Poisson-flat processes studied
extensively by Miles (1969).

(viii) The union oftwo independent Boolean models with identically distributed
primary sets S is a Boolean model.

In fact, if the Poisson points of a Boolean model are thinned so that they now
occur with an intensity o,(o < 1), leaving behind a Boolean model whose union is
taken with another, independent Boolean model of intensity (1 -o) and the same
primary set distribution, then the resulting random set is a Boolean model identically
distributed to the original one.

4.3. Generalizations of the Boolean model. The choice of mathematical models
available to the data analyst is often governed by their tractability rather than their
applicability. When the data are sets, this leaning is even more pronounced. Serra
(1982, Chap. XIII) has provided users with a menu of models and of examples for
which they are appropriate. By far the most important groupings are those based on
the Boolean model, which we will present and extend in this section.

The most general extension of the Boolean model considered thus far is the so-
called grain-germ-model (Hanisch (1980)). It removes the Poisson assumption and
the independence of the S;’s, and allows for nonoverlapping of the grains. Let

(4.4) X= LJ (S ti),
i,S )b

where ,I, is a random marked point process with mark space. Let U be the set of
all measurable functions from Rax to [0, 1], and V= {1 u: u U}. Let be a
random marked point process in R with mark space and corresponding distribu-
tion P on M, e%), whereM is the set of all Radon counting measures on
R x with (B x) < for any bounded Borel set B, and’ is the corresponding
a-field. The functional Gp:V [0, 1], which is given by

(4.5) Ge(v f ]-I v(x, S)P(d4 ), o V,
x,S)--is called the generating functional ofthe point process I,. ForX given by (4.4), Hanisch

is able to relate Qx to

For K let ok be the mapping given by

VK(X, S) Isk(x), xRd, Sc:-.

Special cases of (4.4) yield models already studied in the literature:
(i) The marked point process a.s. yields independent markings (see Stoyan

(1979) and Mase (1982)).

Then

(4.6) Qx(K) Ge(v), K.
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(ii) The point process is a cluster process where initial points are generated
according to a homogeneous Poisson process, and final points are generated inde-
pendently and identically around each initial point (see Neyman and Scott (1958)).

(iii) The point process is regionally independent, in particular a (not necessarily
homogeneous) Poisson process with intensity function {,(x); x e Rd}; if we define the
weighted measure ofS/ as

IS/l -- fRalsk(X)X(x)dx,
then

(4.7) Qx(K)=exp [-E{ IS/lxl].
Hypothesis testing for constant intensity function in the Boolean model is not, as yet,
well developed.

(iv) The point process is regionally independent and stationary. Then this must
be a Poission process with ,(x)= ,, which yields the Boolean model (4.1). Serra
(1982, p. 484ff) has a detailed discussion of the model and various of its associates.
One interesting extension is to consider a series of independent Boolean models
occurring from the "infinite past"; at each instant of time the Boolean model fills part
of the space. At the next instant, some of the pores (and sets) will be covered by a set
from the new Boolean model, and some of the sets (and pores) will remain exposed.
This process is continued until "the present," so that finally a tesselation of the space
results. This tesselation is called the dead-leaves model.

(v) The points are not generated by a point process, but are fixed and finite in
number in R d. The only source of randomness is from the S. Then in (4.5) the
measure P becomes degenerate, and

Hence,
Ge(v) 1-I E(v(a, S)).

Ox(K)= I-[ Os(K-).
a

(vi) The point process is homogeneous Poisson and the S have the property that
SI is not random (although in general unknown)

logq=-lSI,

flog (x(h)/q) dh= XlSl ,
where q and x(h) are given in 4.2, and can be estimated from the set data. Hence ,
and SI can also be estimated (although the statistical properties of these estimates
are unknown).

(vii) The point process is homogeneous Poisson and the S can be written as
B(1)R, where R is a random variable and B(1) is the closed unit ball. The parameter, and the distribution ofR can be estimated from the covariance x(h) (Serra (1980)),
although little is known about the estimators’ statistical properties (see Dupa6 (1980)).

4.4. Statistical inference for the Boolean model. In this section, we shall analyze
the two-dimensional data of Fig. l(a), an artificially generated Boolean model whose
primary elements are uniformly oriented random parallelograms. More specifically,
at each point of a simulated Poisson process with rate , .02, we fixed the bottom
left-hand corner of a random parallelogram (the length of both sides was uniform on
[2.5, 7.5], and the angle between the adjacent sides was uniform on [0, r]), which was
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then uniformly oriented on [0, 2zr]. Figures l(a), (b) show two realizations of the same
Boolean model, discretized onto a 100 x 100 grid.

More generally, consider an a.s. convex primary set S, whose probability law is
invariant under rotations ofS about its "fixing" point. This yields a stationary isotropic
Boolean model X. Under these circumstances, and for K convex, Steiner’s formula
(Mack (1954) and Serra (1982, p. 111)) in R: yields

(4.8) E{ISRI]=E(ISI)+-E(P(S))P(K)+ IKI,

where P perimeter. When S B(1)R, E(P(S))/27r E(R), and E(ISI)/r E(R2).
Faced with one realization of what is believed to be a Boolean model, one wishes to
make inferences about the convex set S. From (4.3) and (4.8)

(4.9) Qx(K)-exp -X IKI +--P(K)E(P(X))+E(IXl)
and hence estimators can be found for X, E(P(S)) and E(ISI) by, for example, fixing
K to be B(1), the disk with unit radius, and considering a number of test sets
B(t) - tB(1) for various t. Theoretically,

-log Qx(B(t))= X[Tr/2 + E(P(S))t+ E(ISI)]

/0+ /t+C/2t 2

By scanning the image, one obtains an estimate Ox(B(t)), for various t, which, when
regressed on 1, t, 2, yields/0,, 2. Image analyzers (Sea (1982)) are specifically
built to do this type of task; however, it is not difficult to use conventional computers
to analyze random-set data like Fig. l(a). We computed both least squares and
generalized least squares estimates of quadratic regression coefficients for Fig. l(a).
The set parameters in the above case ofK B(t) are easily obtained as

(4.10) (e(s))=l/,
 (ISI)  0/X.

Alternatively, choice of the three different types of test set: Ko the origin, K the
straight line segment of length l, K2 the closed square of side 1, yields

Qx(Ko)=exp [- XE(ISI)],

(4.11) Qx(K,)=exp [- X{E(ISI)+E(P(S))},r

from which estimates could be obtained. Hall (1985) and Kellerer 11985) take
essentially this approach; however, it leaves no degrees of freedom to assess model
adequacy.

Because the original Boolean model has been discretized onto a square grid, we
chose to analyze Fig. l(a) with K tC, where C is a square of side 2, and took

0, l, 2, 3, 4 (larger values of led to Ox 0). Then (4.9) gives

-log Qx(tC)= XE(IXl)+ 14XE(P(X))/It +4Xt.
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Explicitly, the estimator for the left-hand side (lhs) is

O_x(tC) Y {1 Ixtc(Xi)}/Nt, t= 0,..., 4,
xiE

where N, is the number of pixels (at locations {x;: 1,..., N,}) in the eroded mask
E EOtC fqcE,, placed over the region of interest E (in Figs. l(a) and l(b), E is
the bordered region). Clearly this is an unbiased estimator of Qx(tC). Write
_Y’= (-log Ox(tC): 0 4), and let X be the 5 3 matrix whose tth row is
(1, t, t:); =0,..., 4. Then the usual ordinary-least-squares (ols) estimator is given by
(X’X)- X’Y, which estimates the coefficients of 1, t, and 2 without taking into
account correlations between the elements of Y. To exploit these correlations we took
a generalized-least-squares (gls) approach to the estimation of the parameters X,
E(P(S)), and E(ISI). Table gives the ols and gls estimates for the data of Fig. l(a).

TABLE
Summary statistics, andfinal estimatesfor the simulated Boolean
model data ofFig. l(a); the true values ofparameters are , .02,

E((P(S)) 20.00, E([S[) 15.92.

Fitted Fitted
O_x(tC) quadratic (gls) quadratic (ols)

0 0.72950 0.72985 0.72692
0.44138 0.44137 0.44430

2 0.22797 0.22678 0.22831
3 0.09948 0.09901 0.09863
4 0.03568 0.03673 0.03582

Parameter Parameter
estimates (gls) estimates (ols), 0.020 0.022

[(P(S)) 16.27 14.69
(ISI) 15.47 14.71

To give the gls estimator explicitly, some definitions are needed first. From the
definition of O_x(tC) given above, it is easily seen that for the Boolean model,

where

xiEtxEu

C,.,(h) [exp {XE(I(StC)(S_uC)I)}- 1]

x exp {-XE(IStCI)- XE(ISuCI)}.

The first term in this expression for C,.,,(h) can be simplified for special cases of
structuring element C. Regardless, the expression for the covariance depends on the
unknown parameters; recall our objective here is to estimate these parameters. For
this reason, it makes more sense to compute the empirical covariance function, and
use it in gls estimation of the parameters.

The pixels of Fig. are regularly spaced, and so Ct,,(h) can be estimated for h in
horizontal, vertical, and diagonal directions. Let

t,u(h)=[ {1-Ixtc(Xi)}{1-Ixuc(Xj)}/ YY ll-Ox(tC) Ox(uC),
Lxi, xj M(h) xi,xjM(h)
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where M(h {(xi, xj): xi E gt, xj Eu, Xi Xj h }. Write

; =(crv (Ox(tC), O_x(uC)): t= 0,..., 4; u= 0,..., 4),

and

r_=(Ox(tC)-exp - [3o-t- [32t2}: t=O, ,4).

571

Then our proposed gls estimator for o XE(ISI), 3 {4XE(P(S))/r}, and 32 4X,
is obtained by minimizing r’5;-r. This was done using a quasi-Newton numerical
optimization procedure.

Occasionally Z has proved not to be positive-definite. Difficulties of this sort are
to be expected when empirical covariances are used; for example, a time series
{zt" 1,..., n] has the empirical covariance function {’/ (zt+ )(z,- )/(n-h):
h 1,..., n- 1}, which is not assured of being positive-definite. The usual way
around this problem is to fit a positive-definite model to the empirical covariance
function. We have been experimenting with a displaced Weibull for the Boolean-
model covariance, and will report on these results elsewhere. After we analyzed a
number of images like Fig. 1, the general rule emerged that gls fitting of the equation
(4.9) yielded superior estimates (to ols) of the Boolean-model parameters.

The estimation technique of (4.10) and (4.1 1) could be liberally described as a
"method-of-moments." The matching of theoretical moments to sample values to
estimate parameters is well known in the statistics of random variables and random
vectors, although it is usually used only when other approaches such as maximum
likelihood fail. This is because there is no general theory that will yield statistical
properties of the estimators. The same is true here when the method is applied to
random sets. Are the estimators from (4.10) and (4.11) biased? What are their variances
and covariances? Under what conditions are they consistent and asymptotically
Gaussian (normal)? Are the estimators in any way optimal? Dupa (1980), by
assuming S B(1)R where R is Gaussian, produces method-of-moments estimators
where for the first time, approximate variances (but not biases) are presented. Ohser
(1980) writes about the more general problem, and indicates how expected values of
the Minkowski functionals of S could be estimated (via a method-of-moments). It
should be possible, from straightforward but tedious application of his results, to
develop estimators of precision.

Another possibility for formal inference appears in the paper by Baddeley (1980).
Although he is not directly involved with the estimation ofBoolean-model parameters,
he presents a limit theorem for the empirical distribution function/(t) of the scalar
function p(t) associated, e.g., with the random set X dilated by tB(1), _-> 0. Suppose
p(t) Pr {0 X tK}; K fixed compact. IfX is a Boolean model (with primary set S),
then so is X tK (with primary set S tK). Hence

p(t) exp (-EIS tKI)

Qx(tK).

Thus, Baddeley’s limit theorem should be able to be modified to prove weak conver,

gence of the empirical process {- log Ox(tK):t >= 0] (used in obtaining o,,, and
hence , .(P(S)),/(ISl); see (4.10)) to a Gaussian process. The design question of
which t,..., t, to choose for the regression of-log Qx(tK) on t, is yet to be resolved.

In this section, we have concentrated on the two-dimensional problem. Esti-
mation of the Boolean-model parameters in R contains a further source of error,
since the three-dimensional object is usually sliced up in some way, and two-
dimensional sections are analyzed. Recent results that do not assume the primary
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three-dimensional sets are necessarily spheres have been obtained by Tallis and
Davis (1984).

5. Conclusions. Our aim has been to present the theory of random sets from a
modeling point of view. The emphasis has been on demonstrating both its flexibility
and its shortcomings. For example, summarizing an object in terms of a finite number
of measurements (e.g., volume, surface area, etc.), and building a stochastic model
based on these measurements is not very helpful if it is important to say something
about the object’s shape. In this situation a random (stochastic) set model would be
more appropriate. But can we then find a meaningful definition of, say, the volume
ofthe random set X? Matheron 1975) has shown that a nonempty stationary random
closed set X in Ra is almost surely unbounded, causing some difficulty in defining
one-dimensional summaries of a stationary X. Intuitively, we need a notion ofvolume
per unit area, but it is not clear that a sensible definition can be found. Weil and
Wieacker (1984) resolve this problem by giving a formula which involves the nor-
malized limit as r-- ofX intersected with rC, where C is a compact convex set,
and show that it does not depend on C. Their result is very much in the spirit of this
article, since it hints at how these specific volumes may then be estimated.

We have explored the random set as a special case of a 0-1 random function, and
demonstrated that the usual random function techniques handle the geometry of the
random set rather crudely. New (nonlinear) operations are needed to probe and sort
complicated sets; Matheron (1975) calls these morphological transformations.

Distribution theory for random-set models depends on the hitting function;
important advances need to be made to reduce the number of test sets needed to
determine the probability measure of X. The Boolean model and its various general-
izations are a tractable suite of models from which hitting functions can be calculated,
and parameters can be estimated. We have shown how to carry out statistical inference
on the data of Fig. 1. Sound statistical principles are needed for first estimating set-
model parameters, and then estimating the bias and precision of these estimators. For
the Boolean model, we have used generalized least squares to solve the first problem;
how to effectively solve the second is at present under investigation.
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