RANDOM SUBDIVISIONS OF SPACE INTO CRYSTALS

By E. N. GILBERT
Bell Telephone Laboratories, Inc.

1. Introduction. This paper considers random subdivisions of a D-dimensional
Kuclidean space into disjoint regions. The regions will be called crystals because
they represent individual crystal grains in a metal or mineral (D = 3) in one
application. However, other interpretations are possible. The “crystals” may
also be cells in living tissue, bubbles in a froth, and (when D is large) detection
regions of a code (see Smith {16], [19], Shannon [15]).

Section 3 describes random processes which have been used to subdivide space
into crystals. Given such a process statistical properties of the crystals present
interesting problems in geometric probability. For crystals in two different min-
eral models Meijering [13] derived the mean surface area, mean number of faces,
mean total edge length and many other related mean values. Continuing with
the same two models, the present paper concerns itself with the distribution of
crystal volumes. Section 4 finds the variance of the volume of a crystal and also
finds some variances associated with plane or line sections through crystals.
Curiously these two models have similar values for many statistical parameters
but have very different volume variances. Section 5 gives bounds on the distribu-
tion functions for crystal volumes. Section 2 and 3 review related probabilistic
results from the literature on mineralogy and metallurgy.

2. Geometrical formulas. Basic geometrical facts imply some properties of
crystals even before the random process which subdivides space into crystals is
specified in detail. For solids composed of several different kinds of erystals,
Delesse [6] in 1848 and Rosiwal [14] in 1898 produced unbiased estimates of the
volume fraction occupied by the ¢th kind of crystal. These estimates are simply
the fractions of area or length which such crystals intersect on a plane or line
through the solid. Chayes [3] gives statistical details about these estimates. Even
for polycrystalline solids containing a single crystalline phase (the only solids to
be considered here), plane or line intersections are informative. A line segment
through the solid is a kind of Buffon needle. The expected number of times that
a unit length of this “needle” intersects crystal interfaces is related to the mean
total interface area per unit volume in the solid (see Smith and Guttman {17],

Corrsin [4]:
1 E (intersections in unit length = }E (interface area in unit volume).
Another one of several relationships like (1), given by Smith and Guttman, con-

cerns edges where three crystals meet. On a plane section through a solid, edges
appear as corners of the plane section through individual crystals. The expected
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number of corners per unit area of the plane is related to the mean total length
of edges per unit volume of solid by

(2) E(corners in unit area) = 1F(edge length in unit volume).

Cauchy’s formulas for convex bodies (see Section 30 of Blaschke [2]) provide
some other results about crystals. One of Cauchy’s formulas relates the perimeter
of a plane convex body C to the length D(6) of the normal projection of C onto
a line of inclination 6:

perimeter = f D(#) ds.
0

Applied to crystals in a two-dimensional subdivision (e.g., crystal sections in a
plane through a three dimensional solid) the formula yields

(3) E(perimeter) = wFE(length of projection).

Equality holds in (3) if crystals are convex. A three-dimensional Cauchy formula
relates the surface area of a convex body C to an integral of the area of the
projection of C' onto a variable plane. A result analogous to (3) is

(4) E(surface) = 4FE(area of projection)

with equality if crystals are convex. Formulas (3) and (4) may be of interest in
the theory of small particles (i.e., powder, sand, etc.) since projections are com-
monly used in estimating particle sizes (see Herden [8]).

3. Models. To estimate other parameters it seems necessary to postulate
special models. A simple kind of model uses congruent crystals fitted together to
fill space. A popular 3-dimensional shape is Lord Kelvin’s tetrakaidecahedron (a
truncated octahedron with 6 square faces, 8 hexagonal faces, and 24 vertices;
see Thompson [20]). Among space-filling solids of given volume, the tetrakaideca-
hedron has a small surface area. It was once supposed to approximate the shape
of soap bubbles in a froth and other kinds of crystals which minimize surface
area. However, tetrakaidecahedra almost never appear as bubbles in froth, cells
in living tissue, or crystal grains in a solid (see Lewis [11], Smith [16]). A related
approach has been to use formulas which apply strictly only to regular tessella-
tions and to assume suitable additional relations (for example, four crystals meet
at each vertex and three crystals meet at each edge). Although the corresponding
regular tessellations do not exist, Smith [18] obtains the figures 13.40 faces, 22.80
vertices, and Coxeter [5] obtains 13.56 faces, 23.13 vertices by different assump-
tions.

Other models introduce some randomness. One, more suitable for experimenta-
tion than for analysis, uses deformable spheres randomly packed together and
squeezed into polyhedral shapes. Marvin [12] measured an average of 14.16 faces
on compressed lead shot. Bernal [1] used balls of modelling clay and obtained 13.3
faces. Both authors observed a large number of pentagonal faces.

The next two models are the ones of main interest here. They follow from
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simple assumptions about the origin and growth of crystals in solids. In par-
ticular, the volumes of the crystals are not assumed to be identical. The crystal
volume is a random variable to be studied in Sections 4 and 5.

The following random construction produces what Meijering calls the cell

model. First pick points Py, Py, - - in space at random by a Poisson process of
density p points per unit volume. Next subdivide space into cells (crystals)
Ci, Ce, --- by the rule: C; contains all points in space closer to P; than to any

P;(j # 7). In the cell model C; is a convex polyhedron because it is the inter-
section of several half-spaces (points closer to P; than to P; form a half-space).
P; will be called the center of C; . Figure 1 shows a cell model with D = 2.

In mineralogy P; represents the location of the original nucleus or seed crystal
from which C; grew. One assumes

(1) the seeds for all crystals start growing at the same instant;

(ii) seeds grow at the same rate in all directions (i.e., as spheres); and

(iii) seeds stay fixed in space without pushing apart as they grow into contact.

Shannon [15] constructs random codes in a similar way. The centers P; now
form an alphabet of possible transmitted signals chosen at random from a suitable
function space. Cell C; contains all received signals which will be decoded as P; .

Johnson and Mehl [10] gave a more complicated random subdivision which
may be a better model of a mineral since it replaces assumption (i) by

(i) Starting at an initial time ¢ = 0, seeds appear at a constant rate, o seeds
per second per unit volume.

The Johnson-Mehl model uses a Poisson process of density « in a D + 1
dimensional space of arrivals. Each arrival point 4; has the form (P, t;) where
P; is the position and ¢; the (positive) arrival time of a seed. As in (ii), 4.
would grow a crystallized sphere of radius v(¢ — ;) at time ¢ if other crystals
were absent. However, other crystals interfere with the one from 4;. 4, ulti-
mately produces a cell C; containing all points P such that the sphere growing
from A; is the first one to reach P; ie.,

(5) ti + (ri/v) < t; + (ri/v), J &1,

where r; and r; are distances from P to P; and P; . If, for some j, the distance
between P; and P; is less than v(¢; — t;), then (5) holds for no point P. Thus a
cell may be empty. Only the nonempty cells are to be considered crystals.

Figure 2 shows a Johnson-Mehl model with D = 2. Figures 1 and 2 resemble
some actual metal crystallizations (for examples see the photographs in Wells
[21], plate II). Evans [7] also interprets the two-dimensional Johnson-Mehl
model in terms of circular waves spreading from raindrops which fall at random
into a puddle.

In the Johnson-Mehl model, crystals do not have plane faces and are not neces-
sarily convex. However, they are star-shaped; i.e., if P belongs to a crystal C;
with arrival 4; = (P;, t;), then the entire line segment PP; lies in C; . Crystal
faces need not be simply connected. Indeed, the common boundary between two
crystals may even be disconnected (in that case the different connected parts
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TABLE 1
Meijering’s Mean Values for Crystals

Cell Model JM Model
1. Surface area ‘ 5.821 p'—g 5.143 p~%
2. Edge length 17.50 p=* 14.71 p*
3. Number of vertices 27.07 22.56
4. Number of edges 40.61 >33.84
5. Number of faces 15.54 >13.28
6. Number of crystal sections per unit area cut by a plane 1.458 o! >1.225 p?

of the boundary are considered separate faces). These odd configurations occur
when one or more small crystals grow from late arrivals located near the interface
between two large crystals.

In arrival space, the set of possible arrivals A = (P, t) which might crystallize
the point P; before time ¢; is a cone. It has (D + 1)-dimensional volume

V = S8(D)"t"Y /(D + 1)

where
8(D) = «*”/T(3D + 1)

is the volume of a unit D dimensional sphere. Hence, as noted for D < 3 by
Evans and by Johnson and Mehl, exp(—aV') is the probability that an arrival
at time £; produces a crystal (nonempty cell).

Following Evans, exp(—aV)a df; is the expected number of arrivals 4; in a
unit volume during a time interval dt; which produce crystals. Integrate over
0 =, < «» to get the ultimate density p of crystals per unit volume:

(6) p = (a/v)”' D + 1)/8(DWPT(ID + 2/ID + 1)).

Numerically, p = .8794(«/v)! when D = 2 and p = .8960(«/v)! when D = 3.

Table I lists some of the mean values which Meijering derived for crystals in
the cell model and Johnson-Mehl (JM) model with D = 3. For ease of compari-
son, the results for the Johnson-Mehl model are expressed (using (6)) in terms
of the density p instead of «/v.

In Table I, items 1, 2, 3 are fundamental parameters from which items 4, 5, 6
and many other mean values follow directly. For instance, & (corners in unit
area) in (2) is related to item 2 because

3E (edge length in unit volume) = pE (edge length of a crystal).

Next, since a plane through the cell model contains 3 as many boundary lines as
- corners per unit area, item 6 follows by using Euler’s formula for polyhedra [9].
Similarly for the cell model, items 4 and 5 come from item 3 and Euler’s formula.
For the Johnson-Mehl model, similar arguments give only bounds. In the cell
model the mean number of vertices of a face is 3 X 27.07/15.54 = 5.23, in agree-
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ment with Bernal’s observation about pentagonal faces. According to item 1,
the interface area per unlt volume in a cell model solid is 2.910 p*. Then, by (1),
a line intersects 1.455 p' crystals per unit length on the average Similarly a
Johnson-Mehl solid cuts a line into an expected number 1.286 o} of sections per
unit length. However since Johnson-Mehl crystals need not be convex different
line sections may belong to the same crystal. ~

Since at least one high-dimensional instance of the cell model has been men-
tioned, formulas which hold for arbitrary dimension D may be of interest. The
expected (D — 1)-dimensional volume of the surface of a crystal in the cell
model is

(7)  E(surface) = 2°T(2 —(1/D)TGDHTGED — 1)/o) =" /T(D — §).

The proof of (7) will be omitted; it can be given in the manner of Meijering’s
derivation for the case D = 3. When a line is passed through a solid the expected
number of times per unit length that the line intersects a crystal interface can be
found by a Buffon needle argument; (1) generalizes to

8) E(intersections in unit length) _ pS(D — 1)
E(surface) ~ DS(D)

Then for a line through the cell model,

E (intersections in unit length)

(9) _ D 2F(2 — ]_/D){I‘(lD + 1)}(2D_I)IDP(D)
D{r(3D + $)}*T(D —

In deriving (9) from (7) and (8), Legendre’s duplication formula [22] was used.

4, Variances. Section 3 quoted some numbers of crystal sections per unit
length or area on a line or plane through a cell model solid. The reciprocals of
these numbers are mean lengths or areas of crystal sections. The variances of
these intersection lengths and areas and of the crystal volumes will now be con-
sidered. In the Johnson-Mehl model different crystal sections may belong to the
same (nonconvex) crystal. Some results will be derived for the intersection
between a Johnson-Mehl crystal and a line or a plane but such an intersection
may contain several crystal sections.

Consider the intersection between a K-dimensional hyperplane H and a D- dl—
mensional solid. Values of K satisfying 1 £ K = D will be allowed; if K = D
the intersection is the solid itself. Pick a crystal, say C;, which H intersects and
let F(V) be the probability density function for the K-dimensional volume of the
intersection HC; . If one first picks a point on the hyperplane (say the origin)
and then examines the K-dimensional volume of the intersection of H with the
crystal C* containing that point, this intersection volume has a different density
function {E(volume)} 'VF(V). In this expression the volume in the expected
value is that of HC; ; the factor V appears because a large intersection has a
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proportionally large chance of containing the origin. The expected K-dimensional
volume of HC* is

E(volume*) = E{(volume)} {E(volume)?.
Then the volume of HC, has variance equal to
(10) Var(volume) = E(volume)E(volume*) — {E(volume)}®.

Since E(volume) in (10) is known for the cell model, it suffices to find E(vol-
ume*). When K = D, E(volume) = p ' in both models.

Let P(b) be the probability that a point @, at distance b from the origin O,
belongs to the same crystal C* as O. Then the expected volume of the intersection
HC* is

(11) E(volume™) = E{fy . dm(Q)} = fow P(b) d{S(K)b"}.

The term P(b) in (11) requires separate derivations for the cell and Johnson-
Mehl models.

In the cell model, @ and the origin O belong to the same cell C* = C; if and
only if the two spheres K; , K, , centered on O, @ and with P; on their boundaries,
both contain no other P;. Given the location of P;, the probability that O and
@ both belong to C; is then exp{ —p Vol(K,V K;)} where K; V K is the union
Of Kl and Kg . Thus

(12) Pb) = p [ exp {—p Vol (Ks V K2)} dm(Py),

the integral taken over all D-dimensional space. To compute the integral, let
Rb denote the distance from O to the integration point P; and let  be the angle
P,0Q. Then the distance from P; to Q is b(R* + 1 — 2R cos u)* and the angle
PQO0 is a function U(R, u) defined by

1 —Rcosu

cos U(R,u) = (R + 1~ 2R cos u)t’

In terms of these variables,

Vol(K; V K;) = S(D — 1)bD{RDf sin® ¢t dt

u

s

4+ (R*+ 1 — 2R cos u)D”f

sin” ¢ dt}
U(R,u)
= b’V(R, u), say.

This formula follows because K; V K; is a union of two disjoint truncated
spheres. For any given value of D the integrals defining V' (R, ») may be evaluated
in terms of elementary functions. Now (12) becomes

(13) P(b) = p f fo PTEP(D _ 1)S(D — 1) sin®? ub®R* dR du.
0
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After substituting (13) into (11) and integrating first on b a double integral
remains

5P (D —1)8(D — l)KS(K)I‘((D + K)/D)

E(volume™®) =

(14)
f f sin®? uR” ™ dR du
V(R u) (D+K)/D :

The double integral appears analytically intractable but can be evaluated
numerically. The items for the cell model in Table IT were computed on an IBM
7090 using (14).

A similar analysis applies to the Johnson-Mehl model. Only cases with D = 3
will be considered. In (11) P(b) is now the probability that points O and @,
distant b apart, are both crystallized by the same arrival say Ao = (Yo, Yo , 20, t0)-
Thus

(15) PO) =« f f f f Prob(A4, crystallizes both O and Q) dz.dy, dz, di, .

The integrand in (15) must be of the form
(16) Prob(A4, crystallizes both O and Q) = exp(—FE),

where F is the expected number of arrivals which could crystallize either O or @
or both before 4,. E/a is the volume, in arrival space, of the points (z, v, 2, t)
which satisfy one or both of the inequalities

RBb 4+ vt < Rb + vt,, rb + vt < rsb + vi,,

where Rb is the distance from (z, y, 2) to O, R,b is the distance from (z, , ¥, , 2,)
to O and rb, r,b are similar distances from (z, y, 2), ( , Y., 2,) to Q. Introduce
new variables £, 17, , {», 7o by means of

Xo = bzo 3 Yo = bno 3 Zo = bg‘o y to = b‘r.,/v.
Then E = (a/v)b*'W where

(17) W = fff desdndg‘dr.

In (17) the region of integration is a union of two four-dimensional cones I and
J defined by

ItR+ 1< R,+ 7, T
Jor+r<r,+ 7, T

v
o o

v

where
=f+r+, rF=E-D+7+ 0
Note that W is a function of only two variables R, 4+ 7, and r, + 7.
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A quintuple integral for E(volume*) now follows from (11), (15), (16), and
(17):

E(volume®) = (a/v)KS(K) fo b g f f f f exp{—(a/v) b*W} dt, dn.d dt. dr, .

It only remains to simplify this result.
Since W does not depend on b, integrate first with respect to b to get

(18) E(volume*) = Cffff WS g, dn, dt, dr,

where C is the constant (v/a) T ((K + 4)/4)KS(K) /4.

Next change coordinates from 7,, %, %, {» t0 7o, Bo, 7, and an angle & of
rotation about the ¢ axis. The volume element in these coordinates is r.R.dr,-
dRd®dr, . Since W does not depend on &, (18) simplifies further to

E(volume®) = 24C f d, f f W EWA L R, dr, dR, .
0

The integration extends over values r,, R, satisfying both r, + B, > 1, and
|ro — R, | < 1.

A finalreductionfollows by introducingnew variables =7, — R,,s=7,4+ R, + 27,
to replace 7, and R, . Since R, + 7. = (s — ¢)/2and 1o + 70 = (s + )/2, W
can be expressed entirely in terms.of s and g. Now r,R.dr«dR, becomes

{(s — 27,)" — ¢) ds dg/8
and the range of integrationis 1 < 1 4+ 27, < s, —1 < ¢ < 1. Integrate with
respect to 7, to obtain

) 1
(19) E(volume*) = C'f ds f1 (8 —1—3¢%s— 1)} W =1y
1 —

where ¢’ = 7(v/a)**T((K + 4)/4)KS(K)/96.
(19) is suitable for numerical integration once W is expressed as a function
of s and q. The cones I and J of (17) have heights

R, +m=(—¢)/2 and 7,4+ 7, = (s + q)/2.
Their volumes are
7(s — ¢)'/48 and w(s + ¢)*/48.
Thus
W = =(s' + 65’ + ¢*)/24 — Vol (IJ).

Since the axes of the cones I and J are unit distance apart, the values of 7 in
the intersection IJ range over

0% 7= 3(Rot ot 27— 1) = 4(s — 1).
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The points of I.J, having a fixed value of 7 in this range, lie in the intersection of
two three-dimensional spheres. Their radii are
(s —2r—¢)/2 and (s — 274 ¢q)/2

and their centers are unit distance apart. The intersection has three-dimensional
volume

w{(1 — 3¢") -+ 6¢°(s — 27) — 3(1 + ¢*)(s — 27)* + 2(s — 27)3}/12.

Vol (IJ) is the integral of this function of 7 from + = 0 to » = (s — 1)/2.
The final result for W in (19) is

W = x{l — 2¢ + 2¢* + (6¢° — 2)s + 6¢°s" + (2 + 2¢°)s* + s} /48.

Using (19), Mrs. C. M. Kimme computed the values shown in Table IT for
the Johnson-Mehl model. The volume variances for the two models are very

TABLE 11
E(volume*) Var(volume)
D K
Cell ™ Cell M
2 1 1.027 o2 .188 ot
2 1.280 ! .280 2
3 1 .919 -3 1.093 p* .159 %
2 1.018 o4 1.482 p~% 298 ot
3 1.180 p* 2.136 o1 .180 o2 1.186 p2

different. Meijering found both distribution functions for crystal volumes when
D = 1 and noted that the cell model distribution had a wider spread than the
Johnson-Mehl distribution. The methods of this section give the variances as
integrals which turn out to be elementary. The variances are 1/(25°) for the
cell model and

p{(m/4) (1 + logo( D) — 1} = .1029 0"

for the Johnson-Mehl model. Meijering expected that the cell model might con-
tinue to have the wider spread in crystal size when D > 1 but Table II shows
the opposite when D = 3. Judging from Figures 1 and 2, the opposite may also
hold when D = 2. .

5. Large crystals. This section will examine, for both models, the distribution
function for the crystal volume V as V becomes large. Let @(V) denote the
probability that a crystal has volume V or greater. Upper and lower bounds on
on Q(V) will be given. These bounds ((20, (22), (24), and (28)), although not
very accurate, are sharp enough to show that large crystals are rarer in the
Johnson-Mehl model than in the cell model. Specifically, —log @(V') is O(V) for
the cell model and is O(V°*/? for the Johnson-Mehl model (the exponents 1
and (D + 1)/D are smallest possible,
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For a lower bound on @Q(V) it suffices to find the probability g(R) that a
crystal C; contains a sphere of radius B (where V = S(D)R®) centered on P; .
In the cell model, g(R) is just the probability that no other center P; lies within
2R of P;. Thus

(20) g(r) = exp{—p2°V} = Q(V)

for the cell model.

To find g(R) for the Johnson-Mehl model, consider all the arrivals A ; having
P; in a certain unit volume of space. Let N(R) be the expected number of such
arrivals for which the cell C, contains a sphere of radius R and center P;.
Since any such cell is certainly a crystal it follows that

(21) N(R) = pg(R).

Also, an argument like the one which derived (6) will give a formula for N(R).
An arrival A = (P, t) with P at distance  from P; will interfere with the sphere

about P; if
lr —R|+vt =R+ vt;.
In arrival space this inequality describes part of a cone
r<2R +v(t; —t), O=t=Zt+ R/
from which a conical piece
r St —t), LSttt + R/

has been removed. The expected number of arrivals in this region is

m(t:) = (a/v) [S(D)/(D 4 DI{(2R + vt:)"*" — 2R”*}.
Then

N(R) = a[o exp | —m(t:)} di;.

After using (21) and simplifying, the result for g(R) is

o« 2¢8(D)RPM [ {—aS(D)xD+1
(22) g(R) = E)_; exp {W)— ‘/;R exXp —1)(D——l—1)— dx.
For large R, g(R) has an asymptotic expansion which can be obtained by re-
peatedly integrating (22) by parts. The leading term is
exp {— (2" — 2)(a/0)S(D)R""/(D + 1)}
pS(D)(2R)? ’
Thus, for the Johnson-Mehl model, the llg)wer bound g(R) on Q(V) has the as-

ymptotic form exp {const. VPP /(> V1.
The proofs of the upper bounds use expected values of certain integrals where

g(R) ~
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the crystal C; is the region of integration. For the cell model the appropriate
formula is

(23) E{/; exp {$pS(D)7"} dzy - - - dxp} = {p(1 —8)}7,

which holds for all s < 1. In (23) r is the distance from P; to (21, -+, Zp).
To prove (23) note that a point (2 , - -+ , Zp) at distance r from P; has probabil-
ity exp { —pS(D)r”} of belonging to C;. Then the expectation is

[ exp (68(D)(s = 1"} A(S(D)”)

which has the value (23).
Note, for 0 < s < 1, that the integral in (23) is greater than a similar integral

taken over a sphere of the same volume as C; . Thus
s Efexp(ps Vol (C)) — 1} = (1 — 8)™*
s (exp(ps V) — 1)Q(V) = (1 — )7
when 0 < s < 1. The choice s = 1 — (pV)'_l gives a simple bound for the cell
model
(24) Q(V) < {(pV — 1)/lexp(pV — 1) — 1]}

which holds for V > o
For the Johnson-Mehl model, the expected integral to consider is

(25) J(s) = E{fc exp {8(a/v)S(DY"H/(D + 1)} dy - - - dx,,}.

To evaluate (25), consider first an expected value of a sum of integrals

(26) E{;fc}

where the integral over C; is as in (25) and the sum extends over arrivals 4;
which appear in some unit volume of space. In (26) it is immaterial whether all
arrivals A; are summed or only the arrivals which produce crystals; if an arrival
A; does not produce a crystal, the cell C; is empty and the contribution of 4;
to the sum (26) is zero. By summing over crystals only, one finds for (26) the
value pJ (s). By summing next over all arrivals one concludes

(27) pJ(s)=a‘/:E’{fCi-~-}dt,

where the integral over C; is again the one in (25) and where now C; is a cell
(not necessarily a crystal) produced by an arrival at time £.
In the integral over C;, a point P at distance r from P; will belong to C' only
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if it remains uncrystallized up to time ¢ + (r/v). Thus (see discussion preceding
(6)) P has probability
exp{ — (a/v)S(D) (vt + r)*"/(D + 1}
of belonging to C; . Now (27) becomes

pJ(s) = a‘£ f exp {(a/v)S(D) [sr®™ — (vt + r)°7)/ (D + 1}DS(D)r" dr dt.
0
Make the substitution ¢ = ry/v and integrate on r to get
p1(s) = D [ {dy/lly + )™ = ).

Although J(s) can now be evaluated in elementary terms for each value of D,
it will suffice to note that J(s) exists for s < 1.

Again, for 0 < s < 1, the integral over C; in (25) exceeds a similar integral
taken over a sphere of the same volume as C; . Let R be the radius of this sphere.

Then
Iz E{ [ exp laam)s(D)*/(D + 1)} d(s(D) rl’)}

> DJ(D + VE {R—l [ exo 1aCamS(D) /(D + 1)) a(S(D) rD+1>}

> D(v/a)s  E{R*(exp {s(a/v)S(D)R*"/(D + 1)} — 1}.

Since the expression in the last expectation is an increasing function of R, the
expectation is greater than Q(S (D)R”) times the same function of R. In terms
of the volume V = S(D)R” of C; the inequality is
1/D y~1 —1/D
(28) V) = sJ(s)(a/v)V""D (_S(D)) _ '
&xp (s(a/) VoD + DASD) ] — 1
Although one could study this bound further, picking s to make it as small as

possible, any value of s in 0 < s < 1 completes the proof that —log Q(V) =
O(V®*™'?) for the Johnson-Mehl model.

6. Generalizations. The assumption (ii), which both models make, is unrealistic
for many minerals. Single crystals, growing without interference, may be as
unspherical as flat plates or thin needles. One may alter either the cell or Johnson-
Mehl model by assuming that crystals grow as star-shaped figures of some given
shape and that they are randomly oriented. A crystal then hasa velocity of growth
»(U) defined for each direction U. This velocity is to be measured along the
straight line ray of direction U from the center P; to the point where the ray
intersects the surface of the crystal.

Evans considered a generalized Johnson-Mehl model for D = 2'and assigned
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each point P to the crystal which, if growing free of interference from other
crystals, wouldreach P first. This rule for defining cells C; seems a natural general-
ization of (5) and is convenient in analysis. For example, the expected number
of arrivals per unit volume which appear at uncrystallized locations is now

(29) a{aS(D)E(®)/(D + DY T(D + 2)/(D + 1)},

Here E(v”) denotes the expected value of {v(U)}” when U is chosen at random
with constant density for all directions. The case D = 2 of (29) was given by
Evans. However crystals in this model appear to grow through one another and
in fact may even be disconnected. For example, in the case D = 2 with crystals
which grow as squares, consider two isolated seeds differing in orientation by 45°.
Since the corners are the fastest-growing points each of the two crystals is sure
to contain all points sufficiently far out on the rays through its corners; thus both
crystals cannot be connected. The same argument applies regardless of the arrival
times of the seeds. In particular one seed may arrive after its location is already
crystallized. Then (29) is not the density of crystals.

Retaining assumption (ii), similar difficulties arise in constructing a model of
a polycrystalline solid composed of two substances with arrival rates oy , o , and
(constant) growth rates v, v, . A fast-growing crystal may penetrate through
an array of slow-growing crystals and become disconnected. A fast-growing ar-
rival may appear inside an existing slow-growing crystal, overtake it, and sur-
round it. The rule for defining crystals in such cases should be changed to stop
growth permanently along a ray once it meets another crystal. Such a rule seems
to entail analytical difficulties.

Mr. Brian Bayly (University of Chicago) has suggested to the author that in
(ii) the rate of crystallization » might be made a decreasing function »(r) of the
distance r from the nucleus to the crystal face. In this way one might try to ac-
count for the retarding effect of the heat liberated during crystallization. The
larger crystals (which have liberated more heat and so are warmer) are made to
grow more slowly. This modification is easy to include in the cell model. Although
crystal faces now grow at a variable rate, all crystals still have the same growth
rate at the same time. Consequently the final crystals are the same cells C; defined
in Section 3. A similar modification of the Johnson-Mehl model presents the
following difficulty. Consider a large, and hence slow-growing, crystal C. A new
nucleus A may arrive inside C but near the surface of C. A ought to be discarded.
However, the analytically convenient way of generalizing the rule (5) permits A
to grow until it overtakes the surface of €' and forms a crystal ¢’ which does not
contain its own nucleus.
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