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Random talk: Random walk and synchronizability in a moving
neighborhood networkI

Maurizio Porfiria, Daniel J. Stilwellb,∗, Erik M. Bolltc, Joseph D. Skufcac

a Department of Mechanical, Aerospace and Manufacturing Engineering, Polytechnic University, Brooklyn, NY 11201, USA
b The Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA

c Department of Mathematics and Computer Science, Clarkson University, Postdam, NY 13699-5815, USA

Available online 7 November 2006

Abstract

We examine the synchronization problem for a group of dynamic agents that communicate via a moving neighborhood network. Each agent
is modeled as a random walker in a finite lattice and is equipped with an oscillator. The communication network topology changes randomly
and is dictated by the agents’ locations in the lattice. Information sharing (talking) is possible only for geographically neighboring agents. This
complex system is a time-varying jump nonlinear system. We introduce the concept of ’long-time expected communication network’, defined as
the ergodic limit of a stochastic time-varying network. We show that if the long-time expected network supports synchronization, then so does the
stochastic network when the agents diffuse sufficiently quickly in the lattice.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Over the past few years, synchronization in complex
networks has attracted a massive research attention, see
the excellent reviews [1–4]. Synchronization problems can
be found in a wide variety of phenomena, ranging from
epidemics [5], to biological systems [6], sociology [7],
chemistry [8], nonlinear optics [9], and meteorology [10].

Despite the very large literature to be found, the great
majority of research activities have been focused on static
networks, whose connectivity and coupling strengths are
constant in time. For example, static networks are assumed

I Maurizio Porfiri and Daniel Stilwell were sponsored by the National
Science Foundation via grant IIS-0238092, and by the Office of Naval Research
via grants N000140310444, N000140510780, and N000140510516. Erik Bollt
was supported by the National Science Foundation under DMS-0404778, and
the DOE through Los Alamos National Laboratory.

∗ Corresponding address: 369 Science Center, Department of Mathematics
and Computer Science, Clarkson University, Postdam, NY 13699-5815, USA.
Tel.: +1 315 268 2307; fax: +1 315 268 2395.

E-mail addresses: mporfiri@poly.edu (M. Porfiri), stilwell@vt.edu
(D.J. Stilwell), bolltem@clarkson.edu (E.M. Bollt), jskufca@clarkson.edu
(J.D. Skufca).

0167-2789/$ - see front matter c© 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2006.09.016
for the analysis of [11–18]. However, in many real-world
complex networks, such as biological, epidemiological, and
social networks, it is reasonable to assume that the coupling
strengths and even the network topologies can evolve over time.
Recent works such as [19–25] are among the few to consider
time-dependent couplings.

To our knowledge, [24] is the first research attempt, in the
synchronization literature, to naturally model the time evolution
of communication networks. In particular, in [24] synchroniza-
tion over a network of diffusing agents communicating within
geographical neighborhoods is considered. Each agent carries
an oscillator and moves ergodically in the environment.1 A
communication network is formed based on the agents’ motion.
When two diffusing agents are close, a communication link is
established, and information sharing is possible: the agents talk.

1 An ergodic measure, as it is used in dynamical systems [26], is an invariant
measure such that any invariant set measures either zero or one. That means that
“typical” orbits are likely to explore almost everywhere. We will use the phrase
ergodic in an alternative setting in this paper, for Markov chains [27], which are
similarly defined in terms of a stationary measure and are invariant event which
measure either zero or one. This also implies that the system recurrently visits
all states.
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When the same two agents move apart, the communication link
is broken, and information sharing ceases. Through numerical
experiments, it is shown that the oscillators’ synchronization is
possible even if the communication network is mostly discon-
nected at any frozen time instants. It is conjectured that the syn-
chronization of the set of oscillators can be assessed by examin-
ing a time-averaged communication network that is computed
from the underlying time-varying and sparsely connected net-
work. The model proposed in [24] seems particularly promising
for modeling social interactions and the spread of epidemics.

In [25] we made a first attempt to mathematically formalize
our results of [24]. However, whereas in [24], our agents moved
ergodically in an underlying state space, which automatically
formed time varying networks, our work in [25] simply
concerned deterministic switching between a finite collection of
networks representing couplings between oscillators. Network
switching was not due to the agents’ motion. In this paper,
for the first time we are able to put the results in [24] onto a
much firmer footing, using a related system, where we assume
the agents are randomly walking through an underlying graph.
Our results here are similar in spirit to those in [24], in that
fast switching allows even for instantaneously disconnected
coupling networks to synchronize, but now we are able to
state our results rigorously. Some of the methods of proof
we use here are very closely related to those we developed
in [25]. Here we show that suitably adapting our methods of
proof in [25], and adding further substantial arguments, now
allows us to rigorously address the problem where the fast
switching is due to stochastically moving agents, similar to
what we studied empirically in [24]. Furthermore, it is well
known that for some classes of dynamical systems, the so-
called “Markov maps” are dense in an appropriate space of
ergodic transformations [28], such as skew tent maps [29].
Consequently, we believe the treatment via Markov chains in
this paper provides a significant step toward the analysis of a
broad class of moving neighborhood networks.

We consider a system of N identical agents that meander in
a finite region. Each agent carries an oscillator and diffuses in
the environment as a random walker. Each agent is described in
terms of a spatial coordinate X , specifying its random walk,
and a state variable x , characterizing the oscillator’s state.
We assume that the random walkers are independent and that
diffusion takes place in a bounded lattice described by a finite,
connected, and non-bipartite graph. In addition, we assume that
the random walkers move only at prescribed instants in time,
equally spaced with a period ∆. The period ∆ is a measure of
the time-scale of the diffusion process: the smaller ∆ is, the
faster the agents meander in the environment.

We associate with the random walks a time-varying
communication network, represented by a graph on an N -
dimensional vertex set that we name the moving neighborhood
graph. The edges of the moving neighborhood graph are
determined by the agents’ locations in the lattice; that is, a link
between two agents is present only when the corresponding
random walkers occupy the same site of the lattice. Therefore,
this graph is generally not connected at frozen instants in
time. The time evolution of the moving neighborhood graph,
due to motion of the agents in the lattice, is called the
network dynamics, and is independent of the states of the
oscillators. When a link is present between two agents in
the moving neighborhood graph, the corresponding oscillator
systems are dynamically coupled. The time evolution of the set
of oscillators is called the system dynamics, and it is influenced
by the network dynamics.

The set of oscillators coupled by the moving neighborhood
graph are synchronized if all their states are equal. We
determine sufficient conditions for asymptotic synchronization
by combining results from Markov chains, stochastic stability,
and fast switching theory. We define the long-time expected
communication network as the ergodic limit of the moving
neighborhood graph. In the long-time average, the network
behaves like an all-to-all coupling scheme among the
oscillators, and the related synchronization problem may be
addressed by using the well-known master stability function,
see e.g. [11,12,15]. We show that if the oscillators synchronize
when coupled by the all-to-all network, then synchronization is
possible if the period ∆ is sufficiently small.

The paper is organized as follows. In Section 2, we review
some basic concepts of Markov chains and graph theory that are
used in the subsequent sections. In Section 3, we formally state
the synchronization problem, describe the network and system
dynamics, and derive their variational equations of motion.
In Section 4, we present a few propositions on the stochastic
stability of time-varying jump linear systems. In Section 5, we
directly address the synchronization problem and elucidate our
main contribution. In Section 6, we illustrate an application
of the theoretical framework to a system of agents that move
on a small-world planar network [30] while carrying Rössler
oscillators. Conclusions appear in Section 7.

2. Review of relevant terms

2.1. Markov chains

A sequence of discrete valued random variables X (k), k ∈

Z+ with sample space F is called a Markov Chain if it satisfies
the Markov Condition:

P(X (k + 1) = s|X (k) = xk, X (k − 1) = xk−1, . . . X (1) = x1)

= P(X (k + 1) = s|X (k) = xk)

for all k ∈ Z+ and all s, x1, . . . , xk ∈ F . In this paper, we
restrict ourselves to homogeneous Markov chains, which have
the additional property that

P(X (k + 1) = j |X (k) = i) = P(X (2) = s|X (1) = x),

∀k ∈ Z+, and s, x ∈ F.

Additionally, we assume that F is finite and we indicate its
cardinality with |F |. Without loss of generality, we number
the possible states of the chain using positive integers, so that
F = {1, . . . |F |}. (For ease of description, when we say Markov
chain in this paper, we are considering only the restriction to
this smaller set of finite, homogeneous processes.)

The matrix P = [pi j ], where pi j = P(X (k+1) = j |X (k) =

i), is called the transition matrix of the Markov chain and is a
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stochastic matrix, that is, it is nonnegative and all its rows sum
to one. A matrix is nonnegative (positive) if all its entries are
greater than or equal to zero. Since the rows of P sum to one,
the |F |-vector e|F | = [1, . . . 1]

T is always an eigenvector of
P , corresponding to an eigenvalue equal to one. The random
variable X (0) is called the initial state of the Markov chain
and its probability distribution π(0) = [π1(0), . . . π|F |(0)]T,
defined as:

πi (0) = P(X (0) = i)

is called the initial distribution. The distribution of the chain at
the kth time step π(k) = [π1(k), . . . π|F |(k)]T is defined as:

πi (k) = P(X (k) = i)

and can be expressed in terms of the initial distribution and the
transition matrix by using the Chapman–Kolmogorov equation,
see e.g. Theorem 1.1 in Chapter 2 of [31], as:

π(k)T
= π(0)T Pk . (1)

Two states i and j are said to communicate if there exists k̄ ∈

Z+ such that the i j and j i entries of P k̄ , say p(k̄)
i j and p(k̄)

j i , are
positive. If all the states in F communicate, the chain is called
irreducible, and P is an irreducible matrix. The period di of a
state i is defined by di = gcd{n ∈ Z+

\ {0} : p(n)
i i > 0}, and if

di = 1 the state i is called aperiodic. For an irreducible Markov
chain, all the states have the same period, see e.g. Section
2.4 in [31]. An irreducible aperiodic Markov chain is called
ergodic, as explained in footnote 1, (when F is not finite
additional assumptions are needed, since an irreducible chain is
not necessarily positive recurrent, see e.g. Chapter 4.2 in [31]).
The transition matrix of an ergodic Markov chain is a primitive
stochastic matrix, see e.g. Chapter 6 of [31]. P being primitive
means that there exists k̄ ∈ Z+ such that P k̄ is a positive matrix.
A probability distribution π is called stationary if πT

= πT P .
If all the entries of π are positive and πi pi j = π j p j i for all
the states i and j , the Markov chain is called reversible. The
spectrum of the transition matrix of an ergodic Markov chain
is λ1, . . . λ|F |, with λ1 = 1 having algebraic and geometric
multiplicity equal to one and with |λr | < 1 for r = 2, . . . |F |.
For a reversible Markov chain, all the eigenvalues of P are real.
For an ergodic Markov chain, there exists a positive constant µ

and a positive constant ρ < 1, such that:

|p(k)
i j − π j | ≤ µρk (2)

where p(k)
i j is the i j entry of Pk , and π is the unique stationary

distribution of the chain, see e.g. [32]. From (2), for any initial
probability distribution and state j ∈ F , the distribution at the
kth time step satisfies the ergodicity condition:

|π j (k) − π j | ≤ µρk . (3)

Inequality (3) may be easily deduced from (2). Indeed, using
(1) and considering that

∑|F |

i=1 πi (0) = 1, the LHS of (3) is:
|π j (k) − π j | =

∣∣∣∣∣ |F |∑
i=1

p(k)
i j πi (0) − π j

∣∣∣∣∣
=

∣∣∣∣∣ |F |∑
i=1

(p(k)
i j − π j )πi (0)

∣∣∣∣∣ .
Applying the triangle inequality and using (2) we get:

|π j (k) − π j | ≤

|F |∑
i=1

|(p(k)
i j − π j )|πi (0) ≤ µρk

|F |∑
i=1

πi (0) = µρk

which proves (3).

2.2. Graphs

A graph is a pair of sets G = (E, V ), where V = {1, . . . |V |}

and E ⊆ V × V are finite, see e.g. [33]. The elements of
V are called nodes, vertices or sites, and the elements of E
are unordered pairs, and are called edges or links. Two nodes
q, r ∈ V are neighbors if there is an edge connecting them, that
is, if the unordered pair (q, r) ∈ E . A path from q to r is a
sequence of distinct vertices, starting with q and ending with r ,
such that all the consecutive vertices are neighbors. The graph
G is connected if there exists a path between every two vertices
in V . If the graph is connected, all the components of d are
nonzero. The graph is called bipartite if V can be partitioned
into two subsets V1 and V2, such that every edge has one end
in V1 and the other in V2. A graph is said to have a self-loop at
node q if (q, q) ∈ E . The graph’s topology can be algebraically
represented by introducing the adjacency matrix A = [aqr ],
defined by:

aqr =

{
1 if (q, r) ∈ E
0 otherwise.

Since edges are represented by unordered pairs, we may
immediately infer that A is symmetric. The degree matrix
D = diag(d) is a diagonal matrix, whose diagonal elements
are dq =

∑n
r=1 aqr . A graph is said to be regular if all the

nodes have the same degree. The Laplacian matrix L = [lqr ] is
defined as the difference between the adjacency matrix and the
degree matrix, that is L = D − A. The graph’s Laplacian is a
symmetric positive semidefinite matrix. Spectral properties of
graph Laplacians may be found, for example, in [34,35].

The Laplacian matrix is a zero row-sum matrix. Therefore,
the null space of L contains the |V |-vector e|V | = [1, . . . 1]

T,
corresponding to the zero eigenvalue. The multiplicity of the
zero eigenvalue is one if and only if the graph is connected.
The highest eigenvalue is less than or equal to max{dq + dr :

(q, r) ∈ E} (see e.g. [35]), which is less than 2|V |.

3. Problem statement

3.1. Moving neighborhood network

Let the network dynamics be described by a set of N
independent random walkers X1, . . . X N on a finite, non-
bipartite connected graph: Grw

= (E rw, V rw), see e.g. [36].
(We use the superscript (·)rw to denote that these objects
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are associated with the lattice graph that determines where
the random walkers can move.) Each random walk represents
the motion of an agent in the system. The initial probability
distribution of each random walker Xq , q = 1, . . . , N , is
πq(0) = [πq1(0), . . . πq|V rw|(0)]T.

Consider a random walker Xq on Grw. If at the kth time step,
k ∈ Z+, Xq is located at the site i , that is Xq(k) = i , we allow
the walker to move to any of its neighboring sites with equal
probability, so that:

pi j =

{
1/drw

i (i, j) ∈ E rw

0 otherwise.

The sequence of positions Xq(k) is a Markov chain on the
set V rw, with transition matrix P = [pi j ]. Since the graph is
connected and not bipartite, the Markov chain is ergodic, see
e.g. [36]. The stationary probability distribution is:

πi =
drw

i
|V rw|∑
j=1

drw
j

(4)

and the chain is reversible. We remark that our analysis does
not require that the transition probabilities of (4) be uniform,
other than the need to recompute πi in (4). Allowing arbitrary
transition probabilities will allow us to discuss agents which
move according to a Markov dynamical system [37] rather than
random diffusion, which we focus on here.

The random walkers move independently from each other,
and share the same transition matrix P , and stationary
distribution π . From (3), for any initial probability distribution
and site j ∈ V rw, the distribution at the kth time step satisfies
(3). If the graph Grw is regular, then from (4) πi = 1/|V rw

|.
Fig. 1 shows the dynamics of five random walkers (N = 5)

meandering on a small-world planar graph Grw, with ten sites
(|V rw

| = 10) for the first six time intervals (k = 0, . . . , 5).
The random walkers are indicated by gray balls, and the sites
of the graph are shown as black dots. If multiple agents occupy
the same site at a point in time, the condition is indicated by
multiple stacked balls.

The overall state of the independent random walkers may be
represented by a sole augmented Markov chain on a space of
cardinality |V rw

|
N , whose transition matrix is P ⊗ · · · ⊗ P (N

times), where ‘⊗’ is the standard Kronecker product. The first
state of the augmented chain corresponds to all the walkers in
the first site, the second is obtained by changing the location
of the N th walker to the second site, and so on up to the N th
state of the augmented chain, which is determined by placing
the N th walker in the site |V rw

|; the next set of |V rw
| states is

obtained by following the same iterations on the N th walker’s
site, but changing that of the (N − 1)th walker to the second
site. The procedure is then inductively iterated until all states of
the augmented chain are determined. The augmented Markov
chain is ergodic and reversible, and its stationary probability is
π ⊗ · · · ⊗ π .

Given that the static graph Grw describes the lattice where
the agents meander, we now introduce a second graph Gmn that
describes the agents’ talking. The moving neighborhood graph:
Gmn(k) = (Emn(k), V mn) is a sequence of random graphs,
whose node set is V mn

= {1, . . . , N }, where we associate a
node with each of the random walkers, and whose edges depend
on the random walkers’ locations in the graph Grw. (Note that
for the moving neighborhood graph, we use superscripts (·)mn

to distinguish this communication graph from the lattice where
the random walkers are moving.) In the kth time interval, the
set of edges of Gmn(k) is defined by:

Emn(k) = {(q, r) ∈ V mn
× V mn, q 6= r : Xq(k) = Xr (k)}

that is, the edge (q, r) is present at the kth time step if and
only if the random walkers Xq and Xr occupy the same site
in the graph Grw during the kth step. Clearly, the moving
neighborhood graph does not have self-loops.

Fig. 2 shows the dynamics of the moving neighborhood
network generated by the random walks of the five agents
shown in Fig. 1. For each of the time steps depicted in Fig. 1,
we show the resultant Gmn(k). The nodes of Gmn(k) represent
the agents, and links among them are present whenever the
corresponding random walkers in Fig. 1 occupy the same site
of Grw. Note that each of these graphs has five nodes, one for
each agent, and the associated graph Laplacian, Lmn(k) is 5×5.

For q 6= r , the qr entry of the expected value of the
adjacency matrix of the moving neighborhood graph Gmn at
the kth step is:

E[amn
qr (k)] =

|V rw
|∑

i=1

πqi (k)πri (k) (5)

and it represents the probability that the qth and r th random
walkers occupy the same site in the graph Grw during the kth
time interval. The expected value of the r th diagonal element
of the degree matrix at the the kth time interval is:

E[dmn
q (k)] =

N∑
r=1,r 6=q

|V rw
|∑

i=1

πqi (k)πri (k) (6)

and it represents the probability that the qth random walker
occupies the same site of any other random walker in the graph
Grw during the kth time interval. Therefore, the expected value
of the graph Laplacian in the kth time interval is: E[Lmn(k)] =

E[Dmn(k)] − E[Amn(k)], and it is a zero-row sum matrix.
We have introduced the notion of the long-time expected

graph, which describes the communication of the agents with
respect to the stationary distribution π . We note that the
sequence of random graphs Gmn(k) is used to generate several
sequences of random variables, such as Amn(k) and Lmn(k). For
a sequence of random variables Y (k), we introduce the ergodic
limit, E∗

[Y ], defined by:

E∗
[Y ] = lim

k→∞
E[Y (k)]

if the limit exists. We note that for q 6= r , by using the
ergodicity condition (3) and (5), we have:

E∗
[amn

qr ] =

|V rw
|∑

i=1

πiπi

while amn
qq (k) = 0. So:
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Fig. 1. Time evolution of five random walkers diffusing on a small-world planar network Grw.
E∗
[Amn

] = πTπ [IN − eeT
]

where IN is the N ×N identity matrix. (This notation is adopted
throughout.) We note that E∗

[Amn
] is not a binary matrix

consisting of entries 0 and 1, and therefore cannot be described
as an adjacency matrix. However, it does provide a description
of the time-averaged connectivity within the network. From (6),
we have:

E∗
[dmn

q ] =

N∑
r=1,r 6=q

|V rw
|∑

i=1

πiπi
so that: E∗
[Dmn

] = (N − 1)πTπ IN .

Therefore, we associate our notion of long-time expected
graph with a weighted Laplacian matrix given by:

E∗
[Lmn

] = πTπ [N IN − eN eT
N ]. (7)

The weighted Laplacian (7) represents a weighted all-to-
all coupling among the random walkers, see e.g. [15]. The
eigenvalues of E∗

[Lmn
] are 0 (with multiplicity 1), and πTπ N

(with multiplicity N − 1).
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Fig. 2. Dynamics of the moving neighborhood network. For each of the time steps depicted in Fig. 1, we show the resultant Gmn(k).
3.2. Synchronization problem

Let each agent carry an oscillator characterized by an
n dimensional autonomous dynamics. We study the time
evolution of the complex dynamical system obtained by
coupling the oscillators’ dynamics according to the moving
neighborhood network generated by their random walks. We
assume that the random walkers do not move over time intervals
of duration ∆ > 0. Jumps are allowed only at equally spaced
transition instants tk = k∆, k ∈ Z+. The resulting system
dynamics is described by:

ẋq(t) = f (xq(t)) + σ B
N∑

r=1

lmn
qr (t)xr ,

q = 1, . . . , N , t ∈ R+ (8)
where t is the time variable, xq ∈ Rn is the random state
vector of the qth agent, f : Rn

→ Rn describes the
oscillators’ individual dynamics, B ∈ Rn×n describes coupling
between oscillators, σ is the coupling strength and Lmn(t)
is the graph Laplacian of the moving neighborhood network.
In the time interval Tk = [tk, tk+1), the random process
Lmn(t) corresponds to the random variable Lmn(k). Thus, it is
a function of the random walks X1, . . . , X N at the kth time
interval. We collect all the states of the system in the nN
dimensional vector x . The initial conditions are prescribed at
the initial time t = 0 as x(0) = x0.

If for any t ∈ R+ all the oscillators have the same state s(t),
that is:

x1(t) = · · · = xN (t) = s(t)

or equivalently:
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x = eN ⊗ s

then we say that the agents are synchronized. Since eN is in the
null space of Lmn, a synchronized solution s is a solution of the
individual agent equation, namely:

ṡ = f (s). (9)

The manifold in RnN consisting of all trajectories eN ⊗ s(t),
where s(t) is a solution of (9) is called the synchronization
manifold.

Synchronization can be assessed by examining the local
stability of the oscillators with respect to the synchronization
manifold. Linearizing each oscillator about the trajectory s(t),
which is assumed to be on the synchronization manifold, yields:

żq(t) = F(t)zq(t) + σ B
N∑

r=1

lmn
qr (t)zr (t)

where:

zq(t) = xq(t) − s(t)

and F(t) is the Jacobian of f evaluated at s(t). Thus, the system
of linearized coupled oscillators may be rewritten as:

ż(t) = (IN ⊗ F(t) + σ Lmn(t) ⊗ B)z(t) (10)

where z(t) = [zT
1 (t), . . . , zT

N (t)]T. To assess the asymptotic sta-
bility of the set of oscillators, we partition the state of (10) into
a component that evolves along the synchronization manifold,
and a component that evolves transverse to the synchronization
manifold. For analysis, it suffices to show that the component
that evolves transverse to the synchronization manifold asymp-
totically approaches the synchronization manifold.

Let W ∈ RN×(N−1) satisfy W TeN = 0 and W TW = IN−1.
Note that the state vector z(t) in (10) can be decomposed as
z(t) = (W ⊗ In)ζ(t) + eN ⊗ zs(t), where ζ = (W T

⊗ In)z is
transverse to the synchronization manifold, and zs =

1
N (eN ⊗

In)Tz is on the synchronization manifold. Note that:

((W ⊗ In)ζ )T(eN ⊗ zs) = 0.

The variational equation (10) in terms of ζ and zs becomes:

żs(t) = F(t)zs(t) + σ(eT
N Lmn(t)W ⊗ B)ζ(t)

ζ̇ (t) = (IN−1 ⊗ F(t) + σ W TLmn(t)W ⊗ B)ζ(t). (11)

We say that the set of oscillators (8) locally asymptotically
synchronize almost surely at the synchronized solution s(t) if
(11) is almost surely asymptotically stable, see e.g. [38], that is,
if ζ converges to zero almost surely for any ζ0 ∈ R(N−1)n and
any initial probability πq(0), q = 1, . . . , N . The definition of
almost sure convergence may be found, for example, in Chapter
5 of [39]. System (11) represents a jump linear time varying
system, see e.g. [40].

We associate with the stochastic dynamic network (8) the
deterministic dynamic network:

ẋq(t) = f (xq(t)) + σ B
N∑

r=1

E∗
[lmn

qr ]xr (t),

q = 1, . . . , N , t ∈ R+ (12)
where E∗
[Lmn

] is the long-time expected value of the graph
Laplacian, as defined in (7).

Synchronization of the deterministic set of coupled oscilla-
tors (12) may be studied using the master stability function. As
a representative parameter for the synchronizability of (12), we
introduce the friendliness Φ of the graph Grw, defined by:

Φ = ‖π‖
2
2 (13)

where ‖ · ‖2 is the Euclidean norm. The stability question
reduces by linear perturbation analysis to a constraint upon the
coupling parameter σ , the friendliness π , and the number of
agents N of the form ΦN ∈ S, where S is the stability region
and is an interval of R+. For many oscillator dynamical systems
(see e.g. [15]) the stability region is a bounded interval of the
type S = (α1, α2). The parameters α1, α2 are given by the
master stability function, which is a property of the individual
oscillator dynamic equation and of the coupling matrix B.
Therefore, synchronization of (12) is generally expressed as a
constraint on the control parameter σ , that is:

α1

NΦ
< σ <

α2

NΦ
. (14)

For large values of Φ (i.e. highly friendly networks) the set of
oscillators (12) synchronizes for small values of the coupling
parameter σ , while large coupling is required for achieving
synchronization in unfriendly networks. In addition, we note
that for a prescribed graph Grw, synchronization for small
coupling may also be possible by increasing the number of
agents N . For a regular graph Grw, and the product NΦ
represents the average occupancy number of the graph Grw.

Our main contribution is to show that if the static network
in (12) supports synchronization, the stochastic network (8)
also does so, if the random walkers are sufficiently fast (or
equivalently, if the switching period, ∆, is sufficiently small).

4. A few propositions on stochastic stability

In this section we present two propositions on linear system
stability that are used to determine sufficient conditions for
almost sure asymptotic synchronization of (8). For clarity,
we restate the well-known Borel–Cantelli lemma in the form
presented in Lemma 1 of [41] (Chapter 8), but in the notation
of this paper.

Lemma 1. Consider the stochastic process ξ(k) with k ∈ Z+,
in Rm . If f : Rm

→ R is a nonnegative function, and:

∞∑
k=0

E[ f (ξ(k))] < ∞

then f (ξ(k))
a.s.
→ 0, that is f (ξ(k)) converges to zero almost

surely.

The following proposition generalizes the claim in Theorem
1 of [41] (Chapter 8) to a class of time-varying jump linear
systems.
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Proposition 2. Consider the stochastic system:

ξ(k + 1) = A(X (k), k)ξ(k) (15)

where X (k) is an ergodic Markov chain in F, ξ(0) ∈ Rm , and
A is a bounded matrix function. Suppose there is a sequence of
symmetric bounded positive definite matrices Q(k), such that
for any k ∈ Z+:

E∗
[A(X (k), k)T Q(k + 1)A(X (k), k)] − Q(k) = −C(k) (16)

where E∗ indicates expected value computed with respect to
the stationary chain distribution π , and C(k) is a sequence
of symmetric positive definite matrices such that C(k) > ν

for every k ∈ Z+ with ν > 0. Then (15) is almost surely
asymptotically stable, that is ξ(k)

a.s.
→ 0 for any initial condition

ξ(0) and any initial distribution π(0).

Proof. Define in Rm the quadratic Lyapunov function:

v(x, k) =
1
2

xT Q(k)x, x ∈ Rm

and the related random process:

V (k) = v(ξ(k), k). (17)

Thus, using (15) and (17) iteratively, we obtain:

E[V (1)] =
1
2
ξ(0)TE[A(X (0), 0)T Q(1)A(X (0), 0)]ξ(0)

E[V (2)|ξ(1)] =
1
2
ξ(1)TE[A(X (1), 1)T Q(2)A(X (1), 1)]ξ(1)

E[V (k + 1)|ξ(k)]

=
1
2
ξ(k)TE[A(X (k), k)T Q(k + 1)A(X (k), k)]ξ(k). (18)

The expected value in (18) may be algebraically manipulated to
give:

E[A(X (k), k)T Q(k + 1)A(X (k), k)]

= E∗
[A(X (k), k)T Q(k + 1)A(X (k), k)] + R(k) (19)

where:

E[A(X (k), k)T Q(k + 1)A(X (k), k)]

=

|F |∑
i=1

A(i, k)T Q(k + 1)A(i, k)πi (k)

E∗
[A(X (k), k)T Q(k + 1)A(X (k), k)]

=

|F |∑
i=1

A(i, k)T Q(k + 1)A(i, k)πi

and R(k) is defined by:

R(k) =

|F |∑
i=1

A(i, k)T Q(k + 1)A(i, k)(πi (k) − πi ).

Using the triangle inequality, Schwartz inequality, and (3), R(k)

may be bounded by:

‖R(k)‖2 ≤

|F |∑
i=1

‖A( j, k)T Q(k + 1)A( j, k)‖2µρk

≤ |F |µρkα2ϑ (20)
where for any k ∈ R+ and j ∈ F , ‖A( j, k)‖2 ≤ α and
‖Q(k)‖2 ≤ ϑ . Substituting (16) and (19) into (18), we obtain:

E[V (k + 1)|ξ(k)] =
1
2
ξ(k)T(Q(k) − C(k) + R(k))ξ(k)

= v(ξ(k), k) −
1
2
ξ(k)T(C(k) − R(k))ξ(k).

(21)

Since C(k) is a positive definite matrix bounded away from zero
and (20) holds with ρ < 1, it is possible to find an integer k̄ and
a positive constant κ , such that for k ≥ k̄ and for any x ∈ Rm ,
xT(C(k) − R(k))x ≥ κxTx . Iterating (21), we obtain:

E[V (k)|ξ(k̄)] = v(ξ(k̄), k̄) −
1
2

k−1∑
i=k̄

E[ξ(i)T(C(i) − R(i))ξ(i)]

which gives:

v(ξ(k̄), k̄) ≥ v(ξ(k̄), k̄) − E[V (k)|ξ(k̄)]

=
1
2

k−1∑
i=k̄

E[ξ(i)T(C(i) − R(i))ξ(i)]

≥
κ

2

k−1∑
i=k̄

E[ξ(i)Tξ(i)].

Applying Lemma 1 to V (k − k̄) with f (x) = κ 1
2 xTx , the claim

follows. �

The following intuitive result is useful for assessing the
stochastic asymptotic stability of a linear system in terms of
its sampled discrete version.

Proposition 3. Consider the stochastic linear system in Rm1m2 :

ẏ = (A(t) + B(t) ⊗ H(t))y, t ∈ R+

where y(t) ∈ Rm1m2 , A(t) ∈ Rm1m2×m1m2 and B(t) ∈ Rm1×m1

are bounded and continuous functions for all t ∈ R+, and
H(t) ∈ Rm2×m2 is a bounded random process such that for
some ∆ > 0 is constant for all t ∈ [k∆, (k + 1)∆) and
switches at time instants k∆, for all k ∈ Z+. If y(k∆)

a.s.
→ 0,

then y(t)
a.s.
→ 0.

Proof. For any t ∈ [k∆, (k + 1)∆), y(t) = Φ(t, k∆)y(k∆),
where there exist positive constants α, β, and η such that, for
any t ∈ R+:

‖A(t)‖2 ≤ α, ‖B(t)‖2 ≤ β, ‖H(t)‖2 ≤ η. (22)

From Coppel’s inequality, see e.g. [42], we have:

‖y(t)‖2 ≤ exp
∫ t

k∆
µ2(A(τ ) + B(τ ) ⊗ H(τ ))dτ‖y(k∆)‖2 (23)

where µ2(·) is the Euclidean measure. The Euclidean matrix
measure for every C ∈ Rm×m is defined by (see e.g. [43]):

µ2(C) = lim
h→0+

‖Im + hC‖2 − 1
h

. (24)
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Since, for any C ∈ Rm×m , µ2(C) ≤ ‖C‖2 from (23) we obtain:

‖y(t)‖2 ≤ exp
∫ (k+1)∆

k∆
‖A(τ ) + B(τ ) ⊗ H(τ )‖2dτ‖y(k∆)‖2

which, by applying the triangle inequality, by using (22) and
Fact 9.12.22 in [43], yields:

‖y(t)‖2 ≤ exp((α + βη)∆)‖y(k∆)‖2

for any t ∈ [k∆, (k + 1)∆). Thus, the claim follows. �

5. Synchronization through fast-switching

In this section, we apply the results of Section 4 to the
stochastic variational system (11), and show that asymptotic
synchronization is achieved almost surely if the deterministic
network (12) asymptotically synchronizes and if the random
walkers are moving sufficiently fast. By means of Theorem 4,
the synchronization problem for the network of oscillators
described by (8) reduces to the analysis of synchronization
over a static network. Thus, we reduce the problem to one
which has been extensively studied in the literature and may be
addressed by using the well known method of master-stability
function (MSF) analysis, see e.g. [15]. We remark that in the
standard usage, the MSF identifies a parameter range based
on Lyapunov stability, whereas our argument requires uniform
asymptotic stability of the deterministic system. However, as
indicated in [15]), an MSF can be developed based on any
stability criteria, with the rest of the mathematical structure of
the MSF argument remaining intact.

Theorem 4. Consider the deterministic dynamic system:

ẏ(t) = (IN−1 ⊗ F(t) + σ W TE∗
[Lmn

]W ⊗ B)y(t) (25)

representing the linearized transverse dynamics of (12).
Assume that F(t) is bounded and continuous in R+. If (25)
is uniformly asymptotically stable, there is a time-scale ∆∗ > 0
such that for any shorter time-scale ∆ < ∆∗, the stochastic
system (8) locally asymptotically synchronizes almost surely.

Proof. We define M(t) ≡ IN−1 ⊗ F(t)+σ W TLmnW ⊗ B, and
rewrite the variational equation (11) as:

ζ̇ (t) = M(t)ζ(t). (26)

Consequently, Eq. (25) may be compactly rewritten as:

ẏ(t) = E∗
[M(t)]y(t) (27)

where E∗
[M(t)] ≡ IN−1 ⊗ F(t) + σ W TE∗

[Lmn
]W ⊗ B. With

Proposition 3 in mind, we consider the sequences of sample
data ζ(k∆) and y(k∆). Let Γ (k) and Θ(k) be the transition
matrices of (26) and (27), respectively, over the time interval
Tk = [k∆, (k + 1)∆). Thus:

ζ((k + 1)∆) = Γ (k)ζ(k∆) (28a)

y((k + 1)∆) = Θ(k)y(k∆). (28b)

By hypothesis, y(k∆) in (28b) asymptotically converges to zero
for any initial condition y(0). Our task is to show that ζ(k∆) in
(28a) converges to zero almost surely for any initial condition
and any initial probability distribution if ∆ is sufficiently small.

Since F is bounded, there is a positive constant φ, such that
‖F(t)‖2 ≤ φ for all t ∈ R+. Define ‖B‖2 = β, then since
‖W‖2 = 1 and ‖Lmn

‖2 ≤ 2N :

‖M(t)‖2 ≤ α, ‖E∗
[M(t)]‖2 ≤ α (29)

for any t ∈ R+, where α = φ + 2σβN .
Since (27) is uniformly asymptotically stable and E∗

[M]

is continuous, there exist positive scalars η, ρ, µ, and a
symmetric continuously differentiable matrix Q(t), such that
(see e.g. Theorem 7.2 of [44]):

ηI ≤ Q(t) ≤ ρ I, (30)

where the inequality indicates sign-definitiveness. The related
Lyapunov function:

V (t, y(t)) =
1
2

y(t)T Q(t)y(t)

satisfies:

d
dt

V ((t, y(t))) ≤ −µ‖y(t)‖2
2.

For linear systems, uniform asymptotic stability is equiva-
lent to uniform exponential stability, thus (see e.g. the proof of
Theorem 7.4 of [44]):

V ((k + 1)∆, y((k + 1)∆)) − V (k∆, y(k∆))

≤
ρ

2
(−1 + exp(−µ∆/ρ))‖y(k∆)‖2

2. (31)

From (31) the following condition arises:

Θ(k)T Q((k + 1)∆)Θ(k) − Q(k∆) = −G(k) (32)

where G(k) is a sequence of symmetric positive definite
matrices satisfying:

‖G(k)‖2 ≥ ρ(1 − exp(−µ∆/ρ)). (33)

In addition, since E∗
[M] is bounded, by using Coppel’s

inequality, see e.g. [42], and by noting that the matrix measure
of a matrix is less than or equal to its corresponding norm [43],
we have:

‖Θ(k)‖2 ≤ exp(α∆). (34)

Recalling the Peano–Baker expansion for Γ (k) (see
e.g. Chapter 3 of [44]), we have:

Γ (k) = I(N−1)n +

∫ (k+1)∆

k∆
M(σ1)dσ1

+

∞∑
i=2

∫ (k+1)∆

k∆
M(σ1)

∫ σ1

k∆
· · · M(σi−1)

∫ σi−1

k∆
M(σi )dσi · · · dσ1

we can express:

R(k) = Γ (k) − Θ(k) (35)

as:

R(k) =

∫ (k+1)∆

k∆
(M(σ ) − E∗

[M(σ )])dσ + ε(k) (36)
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where:

ε(k) =

∞∑
i=2

∫ (k+1)∆

k∆
M(σ1)

∫ σ1

k∆
· · ·

∫ σi−1

k∆
M(σi )dσi · · · dσ1

−

∞∑
i=2

∫ (k+1)∆

k∆
E∗

[M(σ1)]

×

∫ σ1

k∆
· · ·

∫ σi−1

k∆
E∗

[M(σi )]dσi · · · dσ1. (37)

By taking the ergodic limit, that is the long-run expected value
of both sides of (36) we have:

E∗
[R(k)] = E∗

[ε(k)]. (38)

From (29), the Euclidean norm of the first term on the RHS of
(36) may be bounded by 2∆α. On the other hand, from (29) and
(37), the Euclidean norm of ε(k) is bounded by:

‖ε(k)‖2 ≤

∞∑
k=2

(2∆α)k
=

∞∑
k=0

(2∆α)k
− (1 + 2∆α)

= exp(2∆α) − 1 − 2∆α (39)

which implies:

‖E∗
[ε(k)]‖2 ≤ exp(2∆α) − 1 − 2∆α. (40)

Using (29) and (40), the Euclidean norm of R(k) is bounded
by:

‖R(k)‖2 ≤ exp(2∆α) − 1. (41)

We emphasize that from (39) and (41), one obtains that:

‖R(k)‖2 ≤ O(∆), ‖ε(k)‖2 ≤ O(∆2).

Next, we show that for sufficiently small values of ∆, the matrix
Q(k∆) defines a quadratic Lyapunov function for the system
(11) in the sense of Proposition 2. Indeed, by substituting (35)
into (32), and by using (38), we obtain:

E∗
[Γ (k)T Q((k + 1)∆)Γ (k)] − Q(k∆)

= E∗
[(R(k) + Θ(k))T Q((k + 1)(R(k) + Θ(k)))]

− Q(k∆) = −G(k) + Θ(k)T Q((k + 1)∆)E∗
[ε(k)]

+E∗
[ε(k)]T Q((k + 1)∆)Θ(k)

+ E∗
[R(k)T Q((k + 1)∆)R(k)]. (42)

Considering all the bounds presented above, that is (29), (30),
(33), (34) and (40)–(42) yields:

E∗
[Γ (k)T Q((k + 1)∆)Γ (k)] − Q(k) ≤ −g(∆)I(N−1)n

where the continuous function g(∆) is defined by:

g(∆) = ρ(1 − exp(−µ∆/ρ))

− 2 exp(α∆)ρ(exp(2∆α) − 1 − 2∆α)

− ρ(exp(2∆α) − 1)2.

It can be shown that g(0) = 0 and d
d∆ g(0) = µ > 0. Thus,

since g(∆) → −∞ as ∆ → ∞, there exists ∆∗ such that
g(∆) > 0 for all ∆ ∈ (0,∆∗), and by applying Proposition 2
the claim follows. �
Fig. 3. Small-world graph Grw used for the numerical illustration.

We remark that the stability claims in this paper are actually
statements about the linearized system near a trajectory on
the synchronization manifold of the full nonlinear system.
Extending these results to the nonlinear system would depend
upon the applicability of the Hartman–Grobman theorem [45].
However, for most chaotic systems, it is not possible to
establish the hypothesis of that theorem. Additionally, to extend
from the local nonlinear system to the full nonlinear system
would require a proof of ergodicity for the system of coupled
oscillators, which is an outstanding open problem for typical
chaotic systems. Consequently, rather than stating theorems
that the hypothesis cannot be established, we have limited our
claims to properties of the linearized system.

6. Illustration by numerical simulation

For the purposes of illustration, we consider a set of N = 20
agents diffusing in the small-world planar graph Grw, with
|V rw

| = 50 sites as depicted in Fig. 3. The graph Grw is
connected and non-bipartite. The friendliness of the network,
as defined in (13), is Φ = 0.020.

Each agent is equipped with a Rössler oscillator. When
agents occupy the same site, their first state is coupled. Thus
the system of oscillators is described by:

ẋq1(t) = −xq2(t) − xq3(t) − σ

N∑
r=1

lmn
qr xr1(t)

ẋq2(t) = xq1(t) + axq2(t)

ẋq3(t) = b + xq3(t)(xq1(t) − c)

(43)

where q = 1, . . . , N , and a, b, c are constants.
By choosing the parameters a = 0.2, b = 0.2, and c = 7

from the stability region plot of Figure 2 of [15], we have
that the stability regions α1 and α2 in (14) are α1 = 0.2
and α1 = 2.3. Therefore, from (14), the deterministic system
(12) asymptotically synchronizes in the sense of the transverse
Lyapunov exponents if 0.50 < σ < 5.7. As previously
remarked, this does not always mean the transverse dynamics
are uniformly asymptotically stable. We choose σ = 2. Fig. 4
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Fig. 4. Time evolution of the x1 coordinate of the set of coupled Rössler
oscillators using the long-time expected graph. Observe the asymptotic
synchronization.

Fig. 5. Time evolution of the x1 coordinate of the set of coupled
Rössler oscillators using the moving neighborhood graph. Even though the
neighborhood graph is instantaneously disconnected, fast switching allows for
synchronization.

depicts the time evolution of the x1 coordinate of the Rössler
oscillators with static coupling given by the long-time expected
graph.

For the stochastic network (45), we consider a switching
period for the random walkers of ∆ = 0.1. Fig. 5 depicts the
x1 coordinate of the set of coupled Rössler oscillators coupled
by the moving neighborhood graph, using the same initial
conditions as in Fig. 4.

7. Conclusions

New generalizations on the synchronization of mutually
coupled oscillators are presented. We pose the synchronization
problem in a stochastic dynamic framework, where each agent
diffuses in a finite lattice and carries an oscillator. The commu-
nication network topology evolves in time, and is determined by
the agents’ locations in the lattice. Communication takes place
only within geographical neighborhoods. We introduce the con-
cept of the long-time expected communication network, defined
as the ergodic limit of the stochastic time-varying network.
We utilize tools based on fast switching and stochastic stabil-
ity, and show that synchronization is asymptotically achieved if
the long-time expected network supports synchronization and if
the agents are moving sufficiently fast in the lattice. A numer-
ical simulation illustrates the theoretical achievements of the
present paper. We expect the theoretical framework presented in
this paper to provide a better understanding of synchronization
problems in biological, epidemiological and social networks,
where the dynamics of the agent cannot be ignored.
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