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1 Introduction

Random walks in continuous time are largely employed in several fields of both the-
oretical and applied interest. In this paper we consider a class of continuous-time
Markov chains on integers, called the basic model, which can have transitions to ad-
jacent states only, and with alternating transition rates to their adjacent states; namely
we assume to have the same transition rates for the odd states, and the same transition
rates for the even states. We also consider some independent random time-changes of
the basic model.

Markov chains with alternating rates are useful in the study of chain molecular
diffusions. We recall the paper [31], where a molecule is modeled as a freely-joined
chain of two regularly alternating kinds of atoms, which have alternating jump rates.
Another reference is [6] where a simple birth-death process with alternating rates has
been studied as a model for an infinitely long chain of atoms joined by links which
are subject to random alternating shocks. Recent results on the transient probabilities
of such model, also in the presence of suitable reflecting or absorbing states, are
provided in [32, 33] and [34].

In this paper we also consider independent random time-changes of the basic
model which provide more flexible versions of the chemical models in the references
cited above. More precisely we consider the inverse stable subordinator or, alterna-
tively, the (possibly tempered) stable subordinator. In the first case the particle is
subject to a sort of trapping and delaying effect; on the contrary, in the second case,
we allow positive jumps in the random time-changed argument, which produces a
possible rushing effect.

We start with a more rigorous presentation of the basic model in terms of the
generator. In general we consider a continuous-time Markov chain {X(t) : t ≥ 0} on
Z (where Z is the set of integers), and we consider the state probabilities

pk,n(t) := P(X(t) = n|X(0) = k), (1)

which satisfy the condition pk,n(0) = 1{k=n}; the generator G = (gk,n)k,n∈Z of
{X(t) : t ≥ 0} is defined by

gk,n := lim
t→0

pk,n(t) − pk,n(0)

t
.

Then, for some α1, α2, β1, β2 > 0, we assume to have (see Figure 1)

gk,n :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1 if n = k + 1 and k is even
β1 if n = k + 1 and k is odd
α2 if n = k − 1 and k is even
β2 if n = k − 1 and k is odd
0 otherwise

(for k �= n);

therefore

gn,n =
{ −(α1 + α2) if n is even

−(β1 + β2) if n is odd.
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Fig. 1. Transition rate diagram of {X(t) : t ≥ 0}

We remark that this is a generalization of the model in [10]; in fact we recover
that model by setting ⎧⎪⎪⎨

⎪⎪⎩
α1 = λη + μ(1 − η)

β1 = μη + λ(1 − η)

α2 = λθ + μ(1 − θ)

β2 = μθ + λ(1 − θ)

for λ,μ > 0 and η, θ ∈ [0, 1]; moreover the case (θ, η) = (1, 1) was studied in [8],
whereas the case (θ, η) = (0, 1) identifies the model investigated in [6] and [34].

In particular we extend the results in [10] by giving explicit expressions of the
probability generating function, mean and variance of X(t) (for each fixed t > 0),
and we study the asymptotic behavior (as t → ∞) in the fashion of large deviations.
Here we also give explicit expressions of the state probabilities.

Moreover we consider some random time-changes of the basic model {X(t) : t ≥
0}, with independent processes. This is motivated by the great interest that the theory
of random time-changes (and subordination) is being receiving starting from [5] (see
also [30]). In particular this theory allows to construct non-standard models which
are useful for possible applications in different fields; indeed, in many circumstances,
the process is more realistically assumed to evolve according to a random (so-called
operational) time, instead of the usual deterministic one. For instance, in applications
to finance, the particle jumps usually represent price changes separated by a random
waiting time between trades; then a time-changed version captures the role of infor-
mation flow and activity time in modeling price changes (see e.g. [17]). Similarly,
in applications to hydrology, the velocity irregularities caused by a heterogeneous
porous media can be described by heavy tailed particle jumps, whereas suitable as-
sumptions concerning the distribution of the waiting times allow to model particle
sticking or trapping (see e.g. [4]).

A wide class of random time-changes concerns subordinators, namely nonde-
creasing Lévy processes (see, for example, [29, 19, 22, 24] and [9]); recent works
with different kind of random time-changes are [11, 3] and [12]. The random time-
changes of {X(t) : t ≥ 0} studied in this paper are related to fractional differential
equations and stable processes. More precisely we consider:

1. the inverse of the stable subordinator {T ν(t) : t ≥ 0};
2. the (possibly tempered) stable subordinator {S̃ν,μ(t) : t ≥ 0} for ν ∈ (0, 1) and

μ ≥ 0 (we have the tempered case when μ > 0).
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In both cases, i.e. for both {X(T ν(t)) : t ≥ 0} and {X(S̃ν,μ(t)) : t ≥ 0}, we provide
expressions for the state probabilities in terms of the generalized Fox-Wright func-
tion. We recall [23] among the references with the inverse of the stable subordinator,
and [15, 27] and [28] among the references with the tempered stable subordinator.
Typically these two random time-changes are associated to some generalized deriva-
tive in the literature; namely the Caputo left fractional derivative (see, for example,
(2.4.14) and (2.4.15) in [18]) in the first case, and the shifted fractional derivative
(see (6) in [1]; see also (17) in [1] for the connections with the fractional Riemann-
Liouville derivative) in the second case.

We also try to extend the large deviation results for {X(t) : t ≥ 0} to the cases
with a random time-change considered in this paper. It is useful to remark that all
the large deviation principles in this paper are proved by applications of the Gärtner
Ellis Theorem; moreover these large deviation principles yield the convergence (at
least in probability) to the values at which the large deviation rate functions uniquely
vanish. Thus, motivated by potential applications, when dealing with large deviation
principles with the same speed function, we compare the rate functions to establish
if we have a faster or slower convergence (if they are comparable). In conclusion the
evaluation of the rate function can be an important task, in particular when they are
given in terms of a variational formula (as happens with the application of the Gärtner
Ellis Theorem).

The applications of the Gärtner Ellis Theorem are based on suitable limits of mo-
ment generating functions. So, in view of the applications of this theorem, we study
the probability generating functions of the random variables of the processes; in par-
ticular the formulas obtained for {X(T ν(t)) : t ≥ 0} have some analogies with many
results in the literature for other time-fractional processes (for instance the probabil-
ity generating functions are expressed in terms of the Mittag-Leffler function), with
both continuous and discrete state space (see, for example, [22, 14, 2] and [16]). For
{X(T ν(t)) : t ≥ 0} we can consider large deviations only (the difficulties to obtain
a moderate deviation result are briefly discussed); moreover we compute (and plot)
different large deviation rate functions for various choices of ν ∈ (0, 1) and we con-
clude that, the smaller is ν, the faster is the convergence of Xν(t)

t
to zero (as t → ∞).

For {X(S̃ν,μ(t)) : t ≥ 0} we can obtain large and moderate deviations for the tem-
pered case μ > 0 only; in fact in this case we can apply the Gärtner Ellis Theorem
because we have light-tailed distributed random variables (namely the moment gen-
erating functions of the involved random variables are finite in a neighborhood of the
origin).

There are some references in the literature with applications of the Gärtner Ellis
Theorem to time-changed processes. However there are very few cases where the
random time-change is given by the inverse of the stable subordinator; see e.g. [13]
and [35] where the time-changed processes are fractional Brownian motions (see also
[20] and [25] for other asymptotic results for time-changed Gaussian processes with
inverse stable subordinators). We are not aware of any other references where the
time-changed process takes values on Z.

We conclude with the outline of the paper. Section 2 is devoted to some prelim-
inaries on large deviations. In Section 3 we present the results for the basic model,
i.e. the (non-fractional) process {X(t) : t ≥ 0}. Then we present some results for
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the process {X(t) : t ≥ 0} with random time-changes: the case with the inverse of
the stable subordinator is studied in Section 4, the case with the (possibly tempered)
stable subodinator is studied in Section 5. We conclude with the short final Section 6
devoted to some conclusions. We also present a final appendix (Section A) with the
state probabilities expressions.

2 Preliminaries on large deviations

Some results in this paper concerns the theory of large deviations; so, in this section,
we recall some preliminaries (see e.g. [7], pages 4–5). A family of probability mea-
sures {πt : t > 0} on a topological space Y satisfies the large deviation principle
(LDP for short) with rate function I and speed function vt if: limt→+∞ vt = +∞,
I : Y → [0,+∞] is lower semicontinuous,

lim inf
t→+∞

1

vt

log πt (O) ≥ − inf
y∈O

I (y)

for all open sets O, and

lim sup
t→+∞

1

vt

log πt (C) ≤ − inf
y∈C

I (y)

for all closed sets C. A rate function is said to be good if all its level sets {{y ∈ Y :
I (y) ≤ η} : η ≥ 0} are compact.

We also present moderate deviation results. This terminology is used when, for
each family of positive numbers {at : t > 0} such that at → 0 and vtat → ∞, we
have a family of laws of centered random variables (which depend on at ), which sat-
isfies the LDP with speed function 1/at , and they are governed by the same quadratic
rate function which uniquely vanishes at zero (for every choice of {at : t > 0}). More

precisely we have a rate function J (y) = y2

2σ 2 , for some σ 2 > 0. Typically moderate
deviations fill the gap between a convergence to zero of centered random variables,
and a convergence in distribution to a centered Normal distribution with variance σ 2.

The main large deviation tool used in this paper is the Gärtner Ellis Theorem (see
e.g. Theorem 2.3.6 in [7]).

3 Results for the basic model (non-fractional case)

In this section we present the results for the basic model. Some of them will be used
for the models with random time-changes in the next sections. We start with some
non-asymptotic results, where t is fixed, which concern probability generating func-
tions, means and variances. In the second part we present the asymptotic results,
namely large and (moderate) deviation results as t → ∞.

In particular the probability generating functions {Fk(·, t) : k ∈ Z, t ≥ 0} are
important in both parts; they are defined by

Fk(z, t) := E

[
zX(t)|X(0) = k

]
=

∞∑
n=−∞

znpk,n(t) (for k ∈ Z),

where {pk,n(t) : k, n ∈ Z, t ≥ 0} are the state probabilities in (1).
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We also have to consider the function 
 : R → R defined by


(γ ) := h(eγ )

eγ
− α1 + α2 + β1 + β2

2
, (2)

where

h(z) := 1
2

√
h̃(z; α, β), where we mean h̃(z; α, β) = h̃(z; α1, α2, β1, β2) and

h̃(z; α, β) := (α1 + α2 − (β1 + β2))
2z2 + 4(β1z

2 + β2)(α1z
2 + α2).

(3)

Remark 3.1. The non-asymptotic results presented below depend on k = X(0), and
we have different formulations when k is odd or even. In particular we can reduce
from a case to another by exchanging (α1, α2) and (β1, β2). On the contrary k is
negligible for the asymptotic results; in fact h̃(z; α, β) = h̃(z; β, α), and we have
an analogous property for the function 
, for its first derivative 
′ and its second
derivative 
′′.

The function 
 is the analogue of the function 
 in equation (14) in [10], and
plays a crucial role in the proofs of the large (and moderate) deviation results. How-
ever we refer to this function also for the non-asymptotic results in order to have
simpler expressions; in particular we refer to the derivatives 
′(0) and 
′′(0) and
therefore we present the following lemma.

Lemma 3.1. Let 
 be the function in (2). Then we have


′(0) = 2(α1β1 − α2β2)

α1 + α2 + β1 + β2

and


′′(0) = 4(α1β1 + α2β2)

α1 + α2 + β1 + β2
− 8(α1β1 − α2β2)

2

(α1 + α2 + β1 + β2)3 .

Moreover 
′′(0) > 0; in fact


′′(0) = 4

(α1 + α2 + β1 + β2)3 {(α1β1 + α2β2)

× [(α1 + α2)
2 + (β1 + β2)

2 + 2α1β2 + 2α2β1] + 8α1α2β1β2}.
Proof. The desired equalities can be checked with some cumbersome computations.
Here we only say that it is useful to check the equalities in terms of the function h

and its derivatives. In fact we have


′(γ ) = h′(eγ )e2γ − eγ h(eγ )

e2γ
= h′(eγ ) − e−γ h(eγ ),

which yields 
′(0) = h′(1) − h(1), and


′′(γ ) = h′′(eγ )eγ − (−e−γ h(eγ ) + h′(eγ )) = h′′(eγ )eγ + e−γ h(eγ ) − h′(eγ ),

which yields 
′′(0) = h′′(1) + h(1) − h′(1) = h′′(1) − 
′(0).
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3.1 Non-asymptotic results

In this section we present explicit formulas for probability generating functions (see
Proposition 3.1), means and variances (see Proposition 3.2). In all these proposi-
tions we can check what we said in Remark 3.1 about the exchange of (α1, α2) and
(β1, β2).

In view of this we present some preliminaries. It is known that the state probabil-
ities solve the equations⎧⎨
⎩

ṗk,2n(t) = β1pk,2n−1(t) − (α1 + α2)pk,2n(t) + β2pk,2n+1(t)

ṗk,2n+1(t) = α1pk,2n(t) − (β1 + β2)pk,2n+1(t) + α2pk,2n+2(t)

pk,n(0) = 1{k=n}
(for k ∈ Z).

So, if we consider the decomposition

Fk = Gk + Hk, (4)

where Gk and Hk are the generating functions defined by

Gk(z, t) :=
∞∑

j=−∞
z2jpk,2j (t)

and

Hk(z, t) :=
∞∑

j=−∞
z2j+1pk,2j+1(t) =

∞∑
j=−∞

z2j−1pk,2j−1(t),

we have⎧⎪⎨
⎪⎩

∂Gk(z,t)
∂t

= zβ1Hk(z, t) − (α1 + α2)Gk(z, t) + β2
z

Hk(z, t)
∂Hk(z,t)

∂t
= zα1Gk(z, t) − (β1 + β2)Hk(z, t) + α2

z
Gk(z, t)

Gk(z, 0) = zk · 1{k is even}, Hk(z, 0) = zk · 1{k is odd}
(for k ∈ Z). (5)

We remark that, if we consider the matrix

A :=
( −(α1 + α2) zβ1 + β2

z

zα1 + α2
z

−(β1 + β2)

)
, (6)

the equations (5) can be rewritten as⎧⎨
⎩

∂
∂t

(
Gk(z, t)

Hk(z, t)

)
= A

(
Gk(z, t)

Hk(z, t)

)
Gk(z, 0) = zk · 1{k is even}, Hk(z, 0) = zk · 1{k is odd}

(for k ∈ Z).

Thus(
G2k(z, t)

H2k(z, t)

)
= eAt

(
z2k

0

)
and

(
G2k+1(z, t)

H2k+1(z, t)

)
= eAt

(
0

z2k+1

)
. (7)

We start with the probability generating functions.
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Proposition 3.1. For z > 0 we have

Fk(z, t) = zke− α1+α2+β1+β2
2 t

(
cosh

(
th(z)

z

)
+ ck(z)

h(z)
sinh

(
th(z)

z

))
,

where

ck(z) :=
{

(β1+β2−(α1+α2))z
2 + α1z

2 + α2 if k is even
(α1+α2−(β1+β2))z

2 + β1z
2 + β2 if k is odd.

(8)

Proof. The main part of the proof consists of the computation of the exponential
matrix eAt , where A is the matrix in (6), and finally we easily conclude by taking into
account (4) and (7).

The eigenvalues of A are

ĥ±(z) := −α1 + α2 + β1 + β2

2
± h(z)

z
(9)

(where h is defined by (3)), and it is known that we can find a matrix S such that

S

(
−α1+α2+β1+β2

2 − h(z)
z

0
0 −α1+α2+β1+β2

2 + h(z)
z

)
S−1 = A;

in particular we can consider the matrix

S :=
(

β1+β2−(α1+α2)
2 − h(z)

z
β1+β2−(α1+α2)

2 + h(z)
z

zα1 + α2
z

zα1 + α2
z

)

and its inverse is

S−1 = − z

2h(z)

(
1 −z[β1+β2−(α1+α2)]−2h(z)

2(α1z
2+α2)

−1 z[β1+β2−(α1+α2)]−2h(z)

2(α1z
2+α2)

.

)
.

Then the desired exponential matrix is

eAt = S

(
e(− α1+α2+β1+β2

2 − h(z)
z

)t 0

0 e(− α1+α2+β1+β2
2 + h(z)

z
)t

)
S−1

= − z

2h(z)
S

⎛
⎝ eĥ−(z)t eĥ−(z)t · −z[β1+β2−(α1+α2)]−2h(z)

2(α1z
2+α2)

−eĥ+(z)t eĥ+(z)t · z[β1+β2−(α1+α2)]−2h(z)

2(α2
1z+α2)

⎞
⎠ ;

moreover, after some computations, we have

eAt =
(

u11(z, t) u12(z, t)

u21(z, t) u22(z, t)

)
,

where

u11(z, t) = (β1 + β2 − (α1 + α2))z

2h(z)
· eĥ+(z)t − eĥ−(z)t

2
+ eĥ−(z)t + eĥ+(z)t

2
,
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u21(z, t) = α1z
2 + α2

h(z)
· eĥ+(z)t − eĥ−(z)t

2
,

u12(z, t) = − z

2h(z)
· z

α1z2 + α2

(
eĥ−(z)t − eĥ+(z)t

)
×
(

h2(z)

z2 − (β1 + β2 − (α1 + α2))
2

4

)

= − 1

h(z)(α1z2 + α2)

×
(

h2(z) − (β1 + β2 − (α1 + α2))
2z2

4

)
eĥ−(z)t − eĥ+(z)t

2

= β1z
2 + β2

h(z)
· eĥ+(z)t − eĥ−(z)t

2

and

u22(z, t) = eĥ−(z)t

2

(
(β1 + β2 − (α1 + α2))z

2h(z)
+ 1

)

+ eĥ+(z)t

2

(
− (β1 + β2 − (α1 + α2))z

2h(z)
+ 1

)

= (β1 + β2 − (α1 + α2))z

2h(z)
· eĥ−(z)t − eĥ+(z)t

2
+ eĥ−(z)t + eĥ+(z)t

2
.

We complete the proof noting that, by (4) and (7), we have

F2k(z, t) = z2k(u11(z, t) + u21(z, t))

and
F2k+1(z, t) = z2k+1(u12(z, t) + u22(z, t));

in fact these equalities yield

F2k(z, t) = z2k

(
eĥ−(z)t + eĥ+(z)t

2

+ 1

h(z)

(
β1 + β2 − (α1 + α2)

2
z + α1z

2 + α2

)
eĥ+(z)t − eĥ−(z)t

2

)

= z2ke− α1+α2+β1+β2
2 t

(
cosh

(
th(z)

z

)
+ c2k(z)

h(z)
sinh

(
th(z)

z

))
and

F2k+1(z, t) = z2k+1

(
eĥ−(z)t + eĥ+(z)t

2

+ 1

h(z)

(
α1 + α2 − (β1 + β2)

2
z + β1z

2 + β2

)
eĥ+(z)t − eĥ−(z)t

2

)
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= z2k+1e− α1+α2+β1+β2
2 t

(
cosh

(
th(z)

z

)
+ c2k+1(z)

h(z)
sinh

(
th(z)

z

))
.

In the next proposition we give mean and variance; in particular we refer to 
′(0)

and 
′′(0) given in Lemma 3.1.

Proposition 3.2. We have

E[X(t)|X(0) = k] = k + 
′(0)t + ξ
1 − e−(α1+α2+β1+β2)t

2
,

where

ξ :=
(

ck(z)

h(z)

)′∣∣∣∣
z=1

=
{ 2(α1+α2)(α1−α2−β1+β2)

(α1+α2+β1+β2)
2 if k is even

2(β1+β2)(β1−β2−α1+α2)

(α1+α2+β1+β2)
2 if k is odd.

Moreover, if k is even, we have

Var[X(t)|X(0) = k] = 
′′(0)t + (ρ11t + ρ10)e
−(α1+α2+β1+β2)t

+ ρ2e
−2(α1+α2+β1+β2)t + ρ0,

where:

ρ11 := 8(α1 + α2)(α1 − α2 − β1 + β2)(α1β1 − α2β2)

(α1 + α2 + β1 + β2)3 ,

ρ10 := 1

(α1 + α2 + β1 + β2)3

× {(α1 + α2)(α1 − α2 − β1 + β2)(α1 + α2 − β1 − β2)

− 6(α2 − β1)(α1 − α2 − β1 + β2)(α1 + α2 − β1 − β2)

− 2(7α2 + β1 − 2β2)(β1 + β2)(α1 + α2 − β1 − β2)

− 4(α2 − β2)
2(α1 + α2 − β1 − β2)

+ 8α2(β1 + β2)(α1 + α2) − 8α2(β1 + β2)(α1 − α2 − β1 + β2)

+8β1(β1 + β2)
2 − 16(α2 + β1)

2(β1 + β2)
2

α1 + α2 + β1 + β2

}
,

ρ2 := − (α1 + α2)
2(α1 − α2 − β1 + β2)

2

(α1 + α2 + β1 + β2)4

and

ρ0 := 1

(α1 + α2 + β1 + β2)3

{(−7α1 + 3α2 + 10β1 − 4β2)(β1 + β2)(α1 − α2 − β1 + β2)

+ 4(α2 + α1)(α2 + 2β2)(α1 − α2 − β1 + β2)

+ 4(α2 − β2)
2(α1 − α2 − β1 + β2)
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+ 4(α2 − β2)(α2 + β1)(β1 + β2) − 10(α2 + β1)(β1 + β2)
2

+8(α2 + β1)(α2 − β2)
2
}

+ 20(α2 + β1)
2(β1 + β2)

2

(α1 + α2 + β1 + β2)4 .

Finally, if k is odd, Var[X(t)|X(0) = k] can be obtained by exchanging (α1, α2) and
(β1, β2) in the above expression (we recall that, as pointed out in Remark 3.1, 
′′(0)

does not change).

Proof. The desired expressions of mean and variance can be obtained with suitable

(well-known) formulas in terms of dFk(z,t)
dz

∣∣∣
z=1

and d2Fk(z,t)

dz2

∣∣∣
z=1

; these two values

can be computed by considering the explicit formulas of Fk(z, t) in Proposition 3.1.
The computations are cumbersome and we omit the details.

3.2 Asymptotic results

In this section we present Propositions 3.3 and 3.4, which are the generalization of
Propositions 3.1 and 3.2 in [10]. In both cases we apply the Gärtner Ellis Theorem,
and we use the probability generating function in Proposition 3.1. Actually the proof
of Proposition 3.4 here is slightly different from the proof of Proposition 3.2 in [10].

We also give some brief comments on the interest of these results (whatever we
choose k ∈ Z). Proposition 3.3 allows to say that X(t)

t
converges in probability to


′(0) (as t → ∞); moreover, for every measurable set A such that 
′(0) /∈ Ā,

roughly speaking P
(

X(t)
t

∈ A

∣∣∣X(0) = k
)

decays exponentially fast with a rate given

by infy∈A 
∗(y), where 
∗ is the large deviation rate function. On the other hand
Proposition 3.4 provides a class of LDPs that fill the gap between the convergence
of X(t)

t
to 
′(0) cited above, and the weak convergence of X(t)−E[X(t)|X(0)=k]√

t
to the

centered Normal distribution with variance 
′′(0).

Proposition 3.3. For all k ∈ Z,
{
P
(

X(t)
t

∈ ·
∣∣∣X(0) = k

)
: t > 0

}
satisfies the LDP

with speed function vt = t and good rate function 
∗(y) := supγ∈R{γy − 
(γ )}.
Proof. We can simply adapt the proof of Proposition 3.1 in [10]. The details are
omitted.

Proposition 3.4. Let {at : t > 0} be such that at → 0 and tat → +∞ (as t → +∞).

Then, for all k ∈ Z,
{
P
(√

tat
X(t)−E[X(t)|X(0)=k]

t
∈ ·

∣∣∣X(0) = k
)

: t > 0
}

satisfies

the LDP with speed function vt = 1
at

and good rate function J (y) := y2

2
′′(0)
.

Proof. We apply the Gärtner Ellis Theorem. More precisely we show that

lim
t→∞ at logE

[
exp

(
γ

at

Xk(t; at )

) ∣∣∣X(0) = k

]
= γ 2

2

′′(0) (for all γ ∈ R) (10)

where

Xk(t; at ) := √
tat

X(t) − E[X(t)|X(0) = k]
t

;

in fact we can easily check that J (y) = supγ∈R
{
γy − γ 2

2 
′′(0)
}

(for all y ∈ R).
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We remark that

at logE

[
exp

(
γ

at

√
tat

X(t) − E[X(t)|X(0) = k]
t

) ∣∣∣X(0) = k

]

= at

(
logE

[
exp

(
γ√
tat

X(t)

) ∣∣∣X(0) = k

]
− γ√

tat

E[X(t)|X(0) = k]
)

.

As far as the right hand side is concerned, we take into account Proposition 3.1 for
the moment generating function and Proposition 3.2 for the mean; then we get

lim
t→∞ at logE

[
exp

(
γ

at

√
tat

X(t) − E[X(t)|X(0) = k]
t

) ∣∣∣X(0) = k

]

= lim
t→∞ at

(
k

γ√
tat

− α1 + α2 + β1 + β2

2
t + t

h(eγ/
√

tat )

eγ /
√

tat
− γ√

tat

(k + 
′(0)t)

)

and, by (2), we obtain

lim
t→∞ at logE

[
exp

(
γ

at

√
tat

X(t) − E[X(t)|X(0) = k]
t

) ∣∣∣X(0) = k

]

= lim
t→∞ tat

(



(
γ√
tat

)
− γ√

tat


′(0)

)
.

Finally, if we consider the second order Taylor formula for the function 
, we have

lim
t→∞ tat

(



(
γ√
tat

)
− γ√

tat


′(0)

)
= lim

t→∞ tat

(
γ 2

2tat


′′(0) + o

(
γ 2

tat

))

for a remainder o
(

γ 2

tat

)
such that o

(
γ 2

tat

)
/

γ 2

tat
→ 0, and (10) is checked.

Remark 3.2. The expressions of mean and variance in Proposition 3.2 yield the
following limits:

lim
t→∞

E[X(t)|X(0) = k]
t

= 
′(0); lim
t→∞

Var[X(t)|X(0) = k]
t

= 
′′(0).

These limits give a generalization of the analogue limits in [10].

4 Results with the inverse of the stable subordinator

In this section we consider the process {Xν(t) : t ≥ 0}, for ν ∈ (0, 1), i.e.

Xν(t) := X1(T ν(t)), (11)

where {T ν(t) : t ≥ 0} is the inverse of the stable subordinator, independent of a
version of the non-fractional process {X1(t) : t ≥ 0} studied above. This random
time-change has interest when we study a chain molecular diffusion and, for some
reasons (for instance some environmental conditions), we need to refer to a modifi-
cation of the basic model with a sort of trapping and delaying effect.
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So, in view of what follows, we recall some preliminaries. We start with the defi-
nition of the Mittag-Leffler function (see e.g. [26], page 17):

Eν(x) :=
∑
j≥0

xj

�(νj + 1)
(for all x ∈ R).

Then we have
E[eγT ν(t)] = Eν(γ tν). (12)

In some references this formula is stated assuming that γ ≤ 0 but this restriction is
not needed because we can refer to the analytic continuation of the Laplace transform
with complex argument. We also recall that formula (24) in [21] provides a version
of (12) for t = 1 (in that formula there is −s in place of γ , and s ∈ C).

4.1 Probability generating function

Now we prove Proposition 4.1, which provides an expression for the probability gen-
erating functions {Fν

k (·, t) : k ∈ Z, t ≥ 0} defined by

Fν
k (z, t) := E

[
zXν(t)|Xν(0) = k

]
=

∞∑
n=−∞

znpν
k,n(t) (for k ∈ Z),

where {pν
k,n(t) : k, n ∈ Z, t ≥ 0} are the state probabilities defined by

pν
k,n(t) := P(Xν(t) = n|Xν(0) = k). (13)

Obviously Proposition 4.1 is the analogue of Proposition 3.1 (and we can recover it
by setting ν = 1).

Proposition 4.1. For z > 0 we have

Fν
k (z, t) = zk

(
Eν(ĥ−(z)tν) + Eν(ĥ+(z)tν)

2

+ck(z)

h(z)
· Eν(ĥ+(z)tν) − Eν(ĥ−(z)tν)

2

)
,

where ck(z) is as in (8) and ĥ±(z) are the eigenvalues in (9).

Proof. We recall that T ν(0) = 0. Then, if we refer the expression of the probability
generating functions {Fk(·, t) : k ∈ Z, t ≥ 0} in Proposition 3.1, we have

Fν
k (z, t) = E

[
zX1(T ν(t))|X1(0) = k

]
= E

[
Fk(z, T

ν(t))|X1(0) = k
]

= E

[
zke− α1+α2+β1+β2

2 T ν(t)

(
cosh

(
T ν(t)h(z)

z

)

+ck(z)

h(z)
sinh

(
T ν(t)h(z)

z

)) ∣∣∣X1(0) = k

]
.
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Then, by taking into account the moment generating function in (12), after some
manipulations we get

F̃
ν,μ
k (z, t) = zk

((
1 + ck(z)

h(z)

)
E[eĥ+(z)T ν(t)]

2
+
(

1 − ck(z)

h(z)

)
E[eĥ−(z)T ν(t)]

2

)

= zk

((
1 + ck(z)

h(z)

)
Eν(ĥ+(z)tν)

2
+
(

1 − ck(z)

h(z)

)
Eν(ĥ−(z)tν)

2

)
.

So we can immediately check that this coincides with the expression in the statement
of the proposition.

4.2 Asymptotic results

In this section we present Proposition 4.2, which is the analogue of Proposition
3.3. Unfortunately we cannot present a moderate deviation result, namely we can-
not present the analogue of Proposition 3.4; see the discussion in Remark 4.1.

Finally, in Remark 4.2, we compare the convergence of processes for different
values of ν ∈ (0, 1). In fact, if we consider the framework of Proposition 4.2 below,
the rate function 
∗

ν(y) uniquely vanishes at y = 0, and therefore Xν(t)
t

converges

to 0 as t → ∞ (we recall that, for ν = 1, Xν(t)
t

converges to 
′(0) as t → ∞);

moreover, the more 
∗
ν(y) is larger around y = 0, the more the convergence of Xν(t)

t
is faster. In particular in Remark 4.2 we take 0 < ν1 < ν2 < 1, and we get strict
inequalities between 
∗

ν1
(y) and 
∗

ν2
(y) in a sufficiently small neighborhood of the

origin y = 0 (except the origin itself because we have 
∗
ν1

(0) = 
∗
ν2

(0) = 0).

Proposition 4.2. We set


ν(γ ) :=
{

(
(γ ))1/ν if 
(γ ) ≥ 0
0 if 
(γ ) < 0,

where 
 is the function in (2). Then, for all k ∈ Z,
{
P
(

Xν(t)
t

∈ ·
∣∣∣Xν(0) = k

)
: t > 0

}
satisfies the LDP with speed function vt = t and good rate function 
∗

ν(y) :=
supγ∈R{γy − 
ν(γ )}.
Proof. We want to apply the Gärtner Ellis Theorem and, for all γ ∈ R, we have to
take the limit of 1

t
log Fν

k (eγ , t) (as t → ∞). Obviously we consider the expression
of the function Fν

k (z, t) in Proposition 4.1.
Firstly, if ν ∈ (0, 1), we have

lim
t→∞

1

t
log Fν

k (eγ , t) = 
ν(γ ) (for all γ ∈ R); (14)

this can be checked noting that ĥ−(z) < 0, ĥ+(eγ ) = 
(γ ) (for all γ ∈ R), by taking
into account the limit

lim
t→∞

1

t
log Eν(ct

ν) =
{

0 if c ≤ 0
c1/ν if c > 0
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(this limit can be seen as a consequence of an expansion of Mittag-Leffler function;
see (1.8.27) in [18] with α = ν and β = 1), and by considering a suitable application
of Lemma 1.2.15 in [7].

Moreover the function 
ν in the limit (14) is nonnegative and attains its mini-
mum, equal to zero, at the points of the set {γ ∈ R : 
(γ ) ≤ 0}; we recall that this
set can be reduced to the single point γ = 0 if and only if 
′(0) = 0. Thus we can ap-
ply the Gärtner Ellis Theorem (because the function in the limit is finite everywhere
and differentiable), and the desired LDP holds.

Remark 4.1. We have some difficulties to get the extension of Proposition 3.4 for
the time-fractional case. In fact, if a moderate deviation holds, we expect that it is

governed by the rate function Jν(y) := y2

2
′′(0)
, where 
′′(0) is the second derivative

at the origin γ = 0 of 
ν , and assuming that such value exists and it is finite. On the
contrary 
′′(0) exists only if ν ∈ (0, 1/2], and it is equal to zero. So, in such a case,
we should have

Jν(y) :=
{

0 if y = 0
∞ if y �= 0,

and this rate function is not interesting; in fact it is the largest rate function that we
have for a sequence that converges to zero (for instance this rate function comes up
when we have constant random variables converging to zero).

Remark 4.2. We take 0 < ν1 < ν2 < 1. We recall that:

• for ν ∈ (0, 1) and y ∈ R, the equation 
′
ν(γ ) = y admits a solution; for the

case y = 0 we have

{γ ∈ R : 
′
ν(γ ) = 0} = {γ ∈ R : 
(γ ) ≤ 0},

and therefore we have a unique solution γ = 0 if and only if 
′(0) = 0; on the
contrary, if y �= 0, we have a unique solution γy,ν ∈ R, say;

• there exists δ > 0 such that, if inf{|γ −γ̃ | : 
(γ̃ ) ≤ 0} < δ, then 
(γ ) ∈ (0, 1),
and therefore 0 < 
ν1(γ ) < 
ν2(γ ).

Thus, by combining these two statements, there exists δ′ > 0 such that, for 0 < |y| <

δ′, we have

0 < 
∗
ν2

(y) = γy,ν2y − 
ν2(γy,ν2)

< γy,ν2y − 
ν1(γy,ν2) ≤ sup
γ∈R

{γy − 
ν1(γ )} = 
∗
ν1

(y)

(see Figure 2 where 
′(0) = 0 and we consider some specific values of ν). In con-
clusion we can say that

Xν1(t)

t
converges to zero faster than

Xν2(t)

t
(as t → ∞). (15)

We also remark that the statement (15) is not surprising if we take into account
the time-change representation (11). In fact, if we denote the stable subordinator by
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Fig. 2. The rate function 
∗
ν around y = 0 for 
′(0) = 0 (only in this case 
∗

ν is differen-
tiable everywhere; on the contrary, for y = 0, left and right hand derivatives of 
∗

ν(y) do not
coincide) and some values for ν: ν = 1/4 (dashed line), ν = 1/2 (continuous line) and ν = 1
(dotted line)

{Sν(t) : t ≥ 0}, we have that

E[eγSν(t)] =
{

e−|γ |ν t if γ ≤ 0
∞ otherwise; (16)

thus, as ν ∈ (0, 1) decreases, the increasing trend of {Sν(t) : t ≥ 0} increases, and
therefore the increasing trend of the inverse of the stable subordinator {T ν(t) : t ≥ 0}
decreases. Then, for 0 < ν1 < ν2 < 1, the increasing trend of the random time-
change {T ν1(t) : t ≥ 0} for X(·) is slower than the increasing trend of {T ν2(t) :
t ≥ 0}; so X1(T ν1 (t))

t
converges to zero faster than X1(T ν2 (t))

t
(as t → ∞), and this

statement meets (15).

5 Results with the (possibly tempered) stable subordinator

In this section we consider the process {X̃ν,μ(t) : t ≥ 0}, for ν ∈ (0, 1) and μ ≥ 0,
i.e.

X̃ν,μ(t) := X1(S̃ν,μ(t)),

where {S̃ν,μ(t) : t ≥ 0} is a (possibly tempered) stable subordinator, independent of
a version of the non-fractional process {X1(t) : t ≥ 0} studied above.

So we recall some preliminaries on {S̃ν,μ(t) : t ≥ 0}. Firstly, for t > 0, we have

P(S̃ν,μ(t) ∈ dx) = e−μx+μνtfSν(t)(x)︸ ︷︷ ︸
=:f

S̃ν,μ(t)
(x)

dx,

where
P(Sν(t) ∈ dx) = fSν(t)(x)dx
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and {Sν(t) : t ≥ 0} is the stable subordinator; note that {S̃ν,μ(t) : t ≥ 0} with μ = 0
coincides with {Sν(t) : t ≥ 0}. Moreover we have

E[eγ S̃ν,μ(t)] = eμνt
E[e(γ−μ)Sν(t)] =

{
e−t ((μ−γ )ν−μν) if γ ≤ μ

∞ otherwise,
(17)

where we take into account (16). Moreover, for μ > 0, if we consider the function
�ν,μ defined by

�ν,μ(γ ) :=
{

μν − (μ − γ )ν if γ ≤ μ

∞ otherwise,
(18)

for all t > 0 we have

E[S̃ν,μ(t)]
t

= νμν−1t

t
= νμν−1 = � ′

ν,μ(0) (19)

and
Var[S̃ν,μ(t)]

t
= −ν(ν − 1)μν−2t

t
= −ν(ν − 1)μν−2 = � ′′

ν,μ(0) (20)

(actually, if μ = 0, the above formulas (19) and (20) hold as left derivatives equal to
infinity).

5.1 Probability generating function

Now we prove Proposition 5.1, which provides an expression for the probability gen-
erating functions {F̃ ν,μ

k (·, t) : k ∈ Z, t ≥ 0} defined by

F̃
ν,μ
k (z, t) := E

[
zX̃ν,μ(t)|X̃ν,μ(0) = k

]
=

∞∑
n=−∞

znp̃
ν,μ
k,n (t) (for k ∈ Z),

where {p̃ν,μ
k,n (t) : k, n ∈ Z, t ≥ 0} are the state probabilities defined by

p̃
ν,μ
k,n (t) := P(X̃ν,μ(t) = n|X̃ν,μ(0) = k). (21)

Obviously Proposition 5.1 is the analogue of Propositions 3.1 and 4.1. The condition
ĥ+(z) ≤ μ will be discussed after the proof.

Proposition 5.1. For z > 0 we have

F̃
ν,μ
k (z, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

zk

(
e−t ((μ−ĥ+(z))ν−μν)+e−t ((μ−ĥ−(z))ν−μν )

2

+ ck(z)
h(z)

· e−t ((μ−ĥ+(z))ν−μν )−e−t ((μ−ĥ−(z))ν−μν )

2

)
if ĥ+(z) ≤ μ

∞ otherwise,

where ck(z) is as in (8) and ĥ±(z) are the eigenvalues in (9).
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Proof. We recall that S̃ν,μ(0) = 0. Then, if we refer the expression of the probability
generating functions {Fk(·, t) : k ∈ Z, t ≥ 0} in Proposition 3.1, we have

F̃
ν,μ
k (z, t) = E

[
zX1(S̃ν,μ(t))|X1(0) = k

]
= E

[
Fk(z, S̃

ν,μ(t))|X1(0) = k
]

= E

[
zke− α1+α2+β1+β2

2 S̃ν,μ(t)

(
cosh

(
S̃ν,μ(t)h(z)

z

)

+ck(z)

h(z)
sinh

(
S̃ν,μ(t)h(z)

z

)) ∣∣∣X1(0) = k

]
.

Then, by taking into account the moment generating function in (17), after some
manipulations we get (we recall that ĥ−(z) < 0)

F̃
ν,μ
k (z, t) = zk

((
1 + ck(z)

h(z)

)
E[eĥ+(z)S̃ν,μ(t)]

2

+
(

1 − ck(z)

h(z)

)
E[eĥ−(z)S̃ν,μ(t)]

2

)

= zk

((
1 + ck(z)

h(z)

)
e−t ((μ−ĥ+(z))ν−μν)

2

+
(

1 − ck(z)

h(z)

)
e−t ((μ−ĥ−(z))ν−μν)

2

)

if ĥ+(z) ≤ μ (and infinity otherwise). So we can easily check that this coincides with
the expression in the statement of the proposition.

We conclude this section with a brief discussion on the condition ĥ+(z) ≤ μ for
μ ≥ 0. For z > 0 we have√

(α1 + α2 − (β1 + β2))2z2 + 4(β1z2 + β2)(α1z2 + α2)

z

− α1 + α2 + β1 + β2

2
≤ μ

by (9) and (3). Then, after some easy computations, it is easy to check that this is
equivalent to

α1β1z
4 − (μ2 + μ(α1 + α2 + β1 + β2) + α1β1 + α2β2)z

2 + α2β2 ≤ 0;
in conclusion we have ĥ+(z) ≤ μ if and only if

√
m−(μ) ≤ z ≤ √

m+(μ), where

m±(μ) := 1

2α1β1

{
μ2 + μ(α1 + α2 + β1 + β2) + α1β1 + α2β2
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±
√

(μ2 + μ(α1 + α2 + β1 + β2) + α1β1 + α2β2)2 − 4α1α2β1β2

}
.

In particular, for case μ = 0, we have ĥ+(z) ≤ 0 if and only if√
min

{
1,

α2β2

α1β1

}
≤ z ≤

√
max

{
1,

α2β2

α1β1

}

because

m±(0) = α1β1 + α2β2 ± |α1β1 − α2β2|
2α1β1

;
so we have m−(0) = 1 and/or m+(0) = 1, and they are both equal to 1 if and only if
α1β1 = α2β2 or, equivalently, 
′(0) = 0 by Lemma 3.1.

5.2 Asymptotic results

In this section we present Propositions 5.2 and 5.3. The first one is the analogue of
Propositions 3.3 and 4.2; the second one concerns moderate deviations and it is the
analogue of Proposition 3.4 for the basic model studied in Section 3. Thus the model
{X̃ν,μ(t) : t ≥ 0} in this section has more analogies with the basic model {X(t) :
t ≥ 0} (studied in Section 3) than the process {Xν(t) : t ≥ 0} studied in Section 4.
In the proofs of Propositions 5.2 and 5.3 we apply the Gärtner Ellis Theorem, and
we use the probability generating function in Proposition 5.1; the condition μ > 0 is
required.

Obviously we can repeat the brief comments on the interest of the results pre-
sented just before Propositions 3.3 and 3.4 with some modifications; for instance, for
a suitable function 
̃ν,μ presented below (see Proposition 5.2), we have to consider

̃′

ν,μ(0) and 
̃′′
ν,μ(0) instead of 
′(0) and 
′′(0).

Proposition 5.2. Assume that μ > 0, and set


̃ν,μ(γ ) :=
{

μν − (μ − 
(γ ))ν if 
(γ ) ≤ μ

∞ otherwise,

where 
 is the function in (2). Then, for all k ∈ Z,
{
P
(

X̃ν,μ(t)
t

∈ ·
∣∣∣X̃ν,μ(0) = k

)
:

t > 0
}

satisfies the LDP with speed function vt = t and good rate function 
̃∗
ν,μ(y) :=

supγ∈R{γy − 
̃ν,μ(γ )}.
Proof. We want to apply the Gärtner Ellis Theorem and, for all γ ∈ R, we have to
take the limit of 1

t
log F̃

ν,μ
k (eγ , t) (as t → ∞). Obviously we consider the expression

of the function F̃
ν,μ
k (z, t) in Proposition 5.1.

Firstly we have

lim
t→∞

1

t
log F̃

ν,μ
k (eγ , t) = 
̃ν,μ(γ ) (for all γ ∈ R); (22)

this can be checked noting that ĥ−(z) < 0, ĥ+(eγ ) = 
(γ ) (for all γ ∈ R), and by
considering a suitable application of Lemma 1.2.15 in [7].
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The function 
̃ν,μ in the limit (22) is essentially smooth (see e.g. Definition 2.3.5
in [7]); in fact it is finite in a neighborhood of the origin, differentiable in the interior
of the set D := {γ ∈ R : 
̃ν,μ(γ ) < ∞}, and steep (namely 
̃′

ν,μ(γn) → ∞ for
every sequence {γn : n ≥ 1} in the interior of D which converges to a boundary point
of the interior of D) because, if γ0 is such that 
(γ0) = μ, we have


̃′
ν,μ(γ ) = ν(μ − 
(γ ))ν−1
′(γ ) → ∞ (as γ → γ0).

Then we can apply the Gärtner Ellis Theorem (in fact the function 
̃ν,μ is also lower
semi-continuous), and the desired LDP holds.

In view of the next result on moderate deviations we compute 
̃′′
ν,μ(0). We remark

that, if we consider the function �ν,μ in (18), we have


̃ν,μ(γ ) = �ν,μ(
(γ )) (for all γ ∈ R).

Thus we have


̃′
ν,μ(γ )= � ′

ν,μ(
(γ ))
′(γ ), 
̃′′
ν,μ(γ )= � ′

ν,μ(
(γ ))
′′(γ )+� ′′
ν,μ(
(γ ))(
′(γ ))2

and therefore (for the second equality see (19) and (20))


̃′′
ν,μ(0) = � ′

ν,μ(0)
′′(0)+� ′′
ν,μ(0)(
′(0))2 = νμν−1
′′(0)−ν(ν−1)μν−2(
′(0))2.

We remark that 
̃′′
ν,μ(0) > 0 because 
′′(0) > 0 (see Lemma 3.1) and μ > 0.

Proposition 5.3. Assume that μ > 0. Let {at : t > 0} be such that at → 0 and tat →
+∞ (as t → +∞). Then, for all k ∈ Z,

{
P
(√

tat
X̃ν,μ(t)−E[X̃ν,μ(t)|X̃ν,μ(0)=k]

t
∈ ·

∣∣∣
X̃ν,μ(0) = k

)
: t > 0

}
satisfies the LDP with speed function vt = 1

at
and good rate

function Jν,μ(y) := y2

2
̃′′
ν,μ(0)

.

Proof. We apply the Gärtner Ellis Theorem. More precisely we show that

lim
t→∞ at logE

[
exp

(
γ

at

X̃k(t; at )

) ∣∣∣X̃ν,μ(0) = k

]
= γ 2

2

̃′′

ν,μ(0) (for all γ ∈ R)

(23)
where

X̃k(t; at ) := √
tat

X̃ν,μ(t) − E[X̃ν,μ(t)|X̃ν,μ(0) = k]
t

;

in fact we can easily check that Jν,μ(y) = supγ∈R
{
γy − γ 2

2 
̃′′
ν,μ(0)

}
(for all y ∈ R).

We remark that

at logE

[
exp

(
γ

at

√
tat

X̃ν,μ(t) − E[X̃ν,μ(t)|X̃ν,μ(0) = k]
t

) ∣∣∣X̃ν,μ(0) = k

]

= at

(
logE

[
exp

(
γ√
tat

X̃ν,μ(t)

) ∣∣∣X̃ν,μ(0) = k

]
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− γ√
tat

E[X̃ν,μ(t)|X̃ν,μ(0) = k]
)

= at

(
log F̃

ν,μ
k (eγ/

√
tat , t) − γ√

tat

E[X̃ν,μ(t)|X̃ν,μ(0) = k]
)

,

where F̃
ν,μ
k (z, t) is the probability generating function in Proposition 5.1. Moreover,

by Proposition 3.2 (together with a conditioning with respect to {S̃ν,μ(t) : t ≥ 0} and
some properties of this process) we have

E[X̃ν,μ(t)|X̃ν,μ(0) = k] = k + 
′(0)E[S̃ν,μ(t)] + E[b(S̃ν,μ(t))],

where b(r) =
(

ck(z)
h(z)

)′∣∣∣∣
z=1

1−e−(α1+α2+β1+β2)r

2 is a bounded function of r ≥ 0; thus,

by (19), we have

E[X̃ν,μ(t)|X̃ν,μ(0) = k] = k + 
′(0)� ′
ν,μ(0)t + E[b(S̃ν,μ(t))].

Then, since ĥ−(eγ ) < 0 and ĥ+(eγ ) = 
(γ ) for all γ ∈ R, we get

lim
t→∞ at

(
log F̃

ν,μ
k (eγ/

√
tat , t) − γ√

tat

E[X̃ν,μ(t)|X̃ν,μ(0) = k]
)

= lim
t→∞ at

(
k

γ√
tat

+ t
̃ν,μ

(
γ√
tat

)

− γ√
tat

(
k + 
′(0)� ′

ν,μ(0)t + E[b(S̃ν,μ(t))]
))

= lim
t→∞ tat

(

̃ν,μ

(
γ√
tat

)
− γ√

tat


′(0)� ′
ν,μ(0)

)
;

in fact the term with E[b(S̃ν,μ(t))] is negligible because it is the function b(·) is
bounded. Finally, if we consider the second order Taylor formula for the function

̃ν,μ, we have


̃ν,μ

(
γ√
tat

)
− γ√

tat


′(0)� ′
ν,μ(0)

= γ√
tat


̃′
ν,μ(0) + γ 2

2tat


̃′′
ν,μ(0) + o

(
γ 2

tat

)
− γ√

tat


′(0)� ′
ν,μ(0)

= γ 2

2tat


̃′′
ν,μ(0) + o

(
γ 2

tat

)

for a remainder o
(

γ 2

tat

)
such that o

(
γ 2

tat

)
/

γ 2

tat
→ 0, and (23) can be easily checked.

6 Conclusions

In this paper we study continuous-time Markov chains on integers which allow transi-
tions to adjacent states only, with alternating rates. We present some explicit formulas
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(means, variances, state probabilities), and we also study the asymptotic behaviour in
the fashion of large deviations by applying the Gärtner Ellis Theorem. Moreover we
study independent random time-changes of these Markov chains with the inverse of
the stable subordinator, the stable subordinator and the tempered stable subordina-
tor. We do not have any large deviation results with the stable subordinator (because
we cannot apply the Gärtner Ellis Theorem); on the contrary, when we deal with the
tempered stable subordinator, we can provide a complete analysis as we did for the
basic model. We also give some large deviation results with the inverse of the stable
subordinator but, in this case, we cannot obtain a result on moderate deviations. Some
other (possibly dependent) more general random time-changes could be investigated
in the future.

A Appendix: state probabilities

In this section we present certain formulas for the state probabilities (13) and (21);
some formulas for the state probabilities (1) can be consequently obtained by choos-
ing the values of parameters in a suitable way (see Remark A.1 below).

The formulas presented below can be obtained by extracting suitable coefficients
of the probability generating functions (see Propositions 4.1 and 5.1). Here, as usual,
binomial coefficients with negative arguments are equal to zero.

In view of what follows we introduce some further notation. Firstly, we write α,
β to denote α1, α2, β1, β2. Moreover we set

S(α, β) := α1 + α2 + β1 + β2,

R(α, β) := α1 + α2 − β1 − β2,

and introduce the following auxiliary functions

ηn
r,s(α, β) :=

(
α2

α1

)s−r

(α1β2)
n

n−s+r∑
l=0

(
n

l

)(
n

s − r + l

)(
α2β1

α1β2

)l

,

and, for R(α, β) �= 0,

ϑn
r,s(α, β) :=

(
4α2β2

(R(α, β))2

)s−r n−s+r∑
h=0

(
n

h + s − r

)(
4α1β2

(R(α, β))2

)h

×
h∑

l=0

(
h + s − r

l

)(
h + s − r

h − l

)(
α2β1

α1β2

)l

.

Finally, in view of the results (Propositions A.1 and A.2), we recall the definition
of the generalized Fox-Wright function (see e.g. (1.11.14) in [18])

pψq

⎡
⎣ (al, αl)1,p

; z

(bl, βl)1,q

⎤
⎦ =

+∞∑
n=0

zn

n!

∏p

j=1 �(aj + αjn)∏q

l=1 �(bl + βln)
, (24)

where z, aj , bl ∈ C and αj , βl ∈ R.
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Proposition A.1. Let {pν
k,n(t) : k, n ∈ Z, t ≥ 0} be as in (13) and set

Ak
j,l,m(t) := 2ψ2

⎡
⎢⎣ (2k + j, 2) (1, 1)

; [tνS(α,β)]2

4
(l, 2) ((2k + m)ν + 1, 2ν)

⎤
⎥⎦ .

(i) Assume that R(α, β) �= 0. Then, for all s, r ∈ Z, we have the following four cases:

pν
2r,2s(t) =

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ϑk
r,s(α, β)

(R(α, β)

2

)2k

×
{

t2kνS(α, β)

(2k)!

[
Ak

1,1,0(t)

S(α, β)
− tν

2
Ak

2,2,1(t)

]

+ t2kνR(α, β)

(2k + 1)!

[
Ak

1,0,0(t)

S(α, β)
− tν

2
Ak

2,1,1(t)

]}
;

pν
2r,2s+1(t) = 2α1

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ϑk
r,s(α, β)

(R(α, β)

2

)2k
t2kν

(2k + 1)!

×
[

tν

2
Ak

2,1,1(t) − Ak
1,0,0(t)

S(α, β)

]
+ 2α2

+∞∑
k=|s−r+1|

(
α1β1

α2β2

)s−r+1

×ϑk
r,s+1(α, β)

(R(α, β)

2

)2k
t2kν

(2k + 1)!

[
tν

2
Ak

2,1,1(t) − Ak
1,0,0(t)

S(α, β)

]
;

pν
2r+1,2s(t) = 2β2

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ϑk
r,s(β, α)

(R(α, β)

2

)2k
t2kν

(2k + 1)!

×
[

tν

2
Ak

2,1,1(t) − Ak
1,0,0(t)

S(α, β)

]
+ 2β1

+∞∑
k=|s−r−1|

(
α1β1

α2β2

)s−r−1

×ϑk
r,s−1(β, α)

(R(α, β)

2

)2k
t2kν

(2k + 1)!

[
tν

2
Ak

2,1,1(t) − Ak
1,0,0(t)

S(α, β)

]
;

pν
2r+1,2s+1(t) =

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ϑk
r,s(β, α)

(R(α, β)

2

)2k

×
{

t2kνS(α, β)

(2k)!

[
Ak

1,1,0(t)

S(α, β)
− tν

2
Ak

2,2,1(t)

]

− t2kνR(α, β)

(2k + 1)!

[
Ak

1,0,0(t)

S(α, β)
− tν

2
Ak

2,1,1(t)

]}
.
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(ii) Assume that R(α, β) = 0. Then, for all s, r ∈ Z, we have the following four
cases:

pν
2r,2s(t) =

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ηk
r,s(α, β)

t2kν
[
Ak

1,1,0(t) − (α1 + α2)t
νAk

2,2,1(t)
]

(2k)! ;

pν
2r,2s+1(t) = α1

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ηk
r,s(α, β)

×
t2kν

[
(α1 + α2)t

νAk
2,1,1(t) − Ak

1,0,0(t)
]

(2k + 1)!(α1 + α2)

+ α2

+∞∑
k=|s−r+1|

(
α1β1

α2β2

)s−r+1

ηk
r,s+1(α, β)

×
t2kν

[
(α1 + α2)t

νAk
2,1,1(t) − Ak

1,0,0(t)
]

(2k + 1)!(α1 + α2)
;

pν
2r+1,2s(t) = β2

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ηk
r,s(β, α)

×
t2kν

[
(α1 + α2)t

νAk
2,1,1(t) − Ak

1,0,0(t)
]

(2k + 1)!(α1 + α2)

+ β1

+∞∑
k=|s−r−1|

(
α1β1

α2β2

)s−r−1

ηk
r,s−1(β, α)

×
t2kν

[
(α1 + α2)t

νAk
2,1,1(t) − Ak

1,0,0(t)
]

(2k + 1)!(α1 + α2)
;

pν
2r+1,2s+1(t) =

+∞∑
k=|s−r|

(
α1β1

α2β2

)s−r

ηk
r,s(β, α)

×
t2kν

[
Ak

1,1,0(t) − (α1 + α2)t
νAk

2,2,1(t)
]

(2k)! .

Proposition A.2. Let {p̃ν,μ
k,n (t) : k, n ∈ Z, t ≥ 0} be as in (21).

(i) Assume that R(α, β) �= 0. Let us set

Bn
j,l(t) := 1ψ1

⎡
⎢⎣

(j, ν)

; −t
(S(α,β)

2 + μ
)ν

(l − 2n, ν)

⎤
⎥⎦ .



Random time-changes and asymptotic results for Markov chains on integers 87

Then, for all s, r ∈ Z, we have the following four cases:

p̃
ν,μ
2r,2s(t) = eμνt

+∞∑
n=|s−r|

(
R(α, β)

S(α, β) + 2μ

)2n (
α1β1

α2β2

)s−r

ϑn
r,s(α, β)

×
{

1

(2n)!B
n
1,1(t) + R(α, β)

S(α, β) + 2μ

1

(2n + 1)!B
n
1,0(t)

}
;

p̃
ν,μ
2r,2s+1(t) = 2eμνt

S(α, β) + 2μ

×
⎧⎨
⎩−α1

+∞∑
n=|s−r|

(
R(α, β)

S(α, β) + 2μ

)2n (
α1β1

α2β2

)s−r

ϑn
r,s(α, β)

1

(2n + 1)!B
n
1,0(t)

−α2

+∞∑
n=|s−r+1|

(
R(α, β)

S(α, β) + 2μ

)2n (
α1β1

α2β2

)s−r+1

ϑn
r,s+1(α, β)

1

(2n + 1)!B
n
1,0(t)

⎫⎬
⎭ ;

p̃
ν,μ
2r+1,2s(t) = 2eμνt

S(α, β) + 2μ

×
⎧⎨
⎩−β2

+∞∑
n=|s−r|

(
R(α, β)

S(α, β) + 2μ

)2n (
α1β1

α2β2

)s−r

ϑn
r,s(β, α)

1

(2n + 1)!B
n
1,0(t)

−β1

+∞∑
n=|s−r−1|

(
R(α, β)

S(α, β) + 2μ

)2n (
α1β1

α2β2

)s−r−1

ϑn
r,s−1(β, α)

1

(2n + 1)!B
n
1,0(t)

⎫⎬
⎭ ;

p̃
ν,μ
2r+1,2s+1(t) = eμνt

+∞∑
n=|s−r|

(
R(α, β)

S(α, β) + 2μ

)2n (
α1β1

α2β2

)s−r

ϑn
r,s(β, α)

×
{

1

(2n)!B
n
1,1(t) − R(α, β)

S(α, β) + 2μ

1

(2n + 1)!B
n
1,0(t)

}
.

(ii) Assume that R(α, β) = 0. Moreover, we set

Cn
j,l(t) := 1ψ1

⎡
⎣ (j, ν)

; −t (α1 + α2 + μ)ν

(l − 2n, ν)

⎤
⎦ .

Note that the argument of Cn
j,l(t) identifies with that of Bn

j,l(t) under condition
R(α, β) = 0. For all s, r ∈ Z, we have the following four cases:

p̃
ν,μ
2r,2s(t) = eμνt

+∞∑
n=|s−r|

(
1

α1 + α2 + μ

)2n (
α1β1

α2β2

)s−r

ηn
r,s(α, β)

1

(2n)!C
n
1,1(t);
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p̃
ν,μ
2r,2s+1(t) = eμνt

×
⎧⎨
⎩−α1

+∞∑
n=|s−r|

(
1

α1 + α2 + μ

)2n+1 (
α1β1

α2β2

)s−r

ηn
r,s(α, β)

1

(2n + 1)!C
n
1,0(t)

−α2

+∞∑
n=|s−r+1|

(
1

α1 + α2 + μ

)2n+1 (
α1β1

α2β2

)s−r+1

ηn
r,s+1(α, β)

1

(2n + 1)!C
n
1,0(t)

⎫⎬
⎭ ;

p̃
ν,μ
2r+1,2s(t) = eμνt

×
⎧⎨
⎩−β2

+∞∑
n=|s−r|

(
1

α1 + α2 + μ

)2n+1 (
α1β1

α2β2

)s−r

ηn
r,s(β, α)

1

(2n + 1)!C
n
1,0(t)

−β1

+∞∑
n=|s−r−1|

(
1

α1 + α2 + μ

)2n+1 (
α1β1

α2β2

)s−r−1

ηn
r,s−1(β, α)

1

(2n + 1)!C
n
1,0(t)

⎫⎬
⎭ ;

p̃
ν,μ
2r+1,2s+1(t) = eμνt

×
+∞∑

n=|s−r|

(
1

α1 + α2 + μ

)2n (
α1β1

α2β2

)s−r

ηn
r,s(β, α)

1

(2n)!C
n
1,1(t).

We conclude with some remarks explaining how to obtain the state probabilities
(1) from Propositions A.1 and A.2.

Remark A.1. Proposition A.1 with ν = 1 provides the state probabilities (1). In
particular one has to take into account that

2ψ2

⎡
⎣ (ζ1, 2) (1, 1)

; z

(ω1, 2) (ζ1, 2)

⎤
⎦ =

⎧⎪⎨
⎪⎩

√
z sinh(

√
z) if ω1 = 0

cosh(
√

z) if ω1 = 1
sinh(

√
z)√

z
if ω1 = 2.

Proposition A.2 with ν = μ = 1 provides the formulas for the state probabilities
(1). In particular one has to note that

1ψ1

⎡
⎢⎣

(1, 1)

; −t
(S(α,β)

2 + 1
)

(1 − l, 1)

⎤
⎥⎦ = (−t)l

2l
(2 + S(α, β))le− t

2 (2+S(α,β)).

Note that the formulas for the state probabilities (1) obtained on the ground of
Remark A.1, if evaluated for α1 = α2 = λ and β1 = β2 = μ, allow to recover
Proposition 1 in [8] (thus correcting a misprint in Eq. (18) of [8]).
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