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Abstract A common technique in the theory of stochastic process is to replace a discrete time coordinate
by a continuous randomized time, defined by an independent Poisson or other process. Once the analysis is
complete on this Poissonized process, translating the results back to the original setting may be nontrivial.
It is shown here that, under fairly general conditions, if the process Sn and the time change φn both
converge, when normalized by the same constant αn, to limit processes S̃ and Φ̃, then the combined
process Sn ◦ φn converges to S̃ + Φ̃ · d

dt ES(t) when properly normalized. It is also shown that earlier
results on the fine structure of the maxima are preserved by these time changes.

The remainder of the paper then applies these simple results to processes which arise in a natural way
from sorting procedures, and from random allocations. The first example is a generalization of “sock-
sorting”: Given a pile of n mixed-up pairs of socks, we draw out one at a time, laying it on a table if
its partner has not yet been drawn, and putting completed pairs away. The question is: What is the
distribution of the maximum number of socks ever on the table, for large n? Similarly, when randomly
throwing balls into n (a large number) boxes, we examine the distribution of the maximum over all times
of the number of boxes that have (for example) exactly one ball.
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1. Introduction

The following home-economics problem has reappeared in various guises over the years ([Ber82],
[Lut88], [Ste96], and [LP98]): N pairs of freshly washed socks, each pair having a distinguishing
color or pattern, lie thoroughly mixed in a bin. I draw them out one by one, at random, with
the object of sorting them into pairs. As each new sock is drawn out in turn, I lay it on my
sorting table; if the new sock matches one already on the table, I fold the pair neatly away into
my capacious sock drawer. After n draws, what is the expected number of socks on the table?

Since that question was seen off already in the mid-18th century by Daniel Bernoulli [Ber82], a
more delicate question suggests itself: How much space do I need on the table? In other words,
if sn is the number of unmatched socks after n draws, what can I say about the distribution
of max0≤n≤2N sn? More generally, I will consider the sorting of N types, each with a random
number of elements.

The trick which I will apply here, hardly an uncommon one in probability theory, is a random
time-change. (This approach to the sock-sorting problem first appeared in my dissertation
[Ste96], but it has since been applied to the same problem by W. Li and G. Pritchard [LP98],
apparently independently. For more examples of this sort of embedding, and further references,
see [BH91], [Lan96], and [Kin93, pages 14–17].) Concretely, sn may be represented

sn =
N∑

i=1

si
n ,

where si
n is 1 if precisely one sock of type i is included in the first n draws, and 0 otherwise. For

convenience, rescale the whole process to occur on the time interval [0, 1]:

SN (t) =
1
N

s[2Nt] ;

Si
N (t) = Si

[2Nt] .

Essentially, what this does is to let the n-th draw occur at time n/2N .

This is only mindless rescaling, but it opens the way for an almost magical simplification when
this deterministic time-change is replaced by a random one, where each sock is drawn at an
independent random time, uniform on [0, 1]. This i.i.d. randomization of the time automatically
generates a uniform permutation of the socks. Let φN (t) be the number of socks drawn up to
time t, divided by 2N ; then

FN (t) :=
1
N

s2NφN (t) =
1
N

N∑
i=1

fi(t) ,

where fi(t) is defined to be 1 if precisely one of the socks of type i has been drawn by time t
and 0 otherwise. The advantage of this representation is that, since each sock pair is concerned
only with its own clock, the random functions fi are independent. This opens up the problem to
powerful empirical-process techniques, as described in [Ste96] and [Ste98], to study the limiting
behavior of FN .

It remains, though, to consider how the information that carries over from this earlier analysis
is affected by the time change. One result in [Ste98] says that

F̃N (t) := N1/2
(
FN (t) − EFN (t)

)
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Figure 1. Simulations of the socks process SN (t) with N =
10, 20, 50, 100, 500, 1000. The smooth curve in the picture represents the
expectation, E

[
SN (t)

]
= 2Nt(1 − t).

converges weakly to a Gaussian process. Since φN (t) converges uniformly in probability to the
identity function, a functional central limit theorem for

S̃N (t) = N1/2
(
s[2Nt] − E s[2Nt]

)
3



would imply a similar theorem for

N1/2
(
FN (t) − SN (φN (t))

)
= S̃N

(
φN (t)

)
.

(Here, and occasionally elsewhere, when X(t) is a random function the expectation function
EX(t) is represented as XN (t) in order to allow a distinction between E

[
X(φN (t))

]
and

X(φN (t)); that is, whether or not to integrate over the time change.) The problem here is,
first, to move in the opposite direction, from a limit theorem for F̃N to a corresponding one
for S̃N (where FN and φN are not independent), and second, to replace SN

(
φN (t)

)
by SN (t).

Proposition 3.1 states that, asymptotically, F̃N (t) may be neatly decomposed into a sum of
two independent Gaussian processes, one which is S̃N (t), and the other corresponding to the
fluctuations in the time change itself.

Another result in the earlier paper says that the pair(
N2/3

(
max FN (t) − FN (

1
2
)
)
, N1/3

(
arg maxFN − 1

2
))

(1)

converges to the pair consisting of the maximum and the location of the maximum of Bt − 2t2,
where Bt is a standard Brownian motion.∗ To put it another way, the maximum may be divided
up on three different scales:

max
t

FN (t) =
1
2

+ N−1/2 ·
{

N1/2
(
FN (

1
2
) − 1

2
)}

+ N−2/3 ·
{

N2/3
(
maxFN (t) − FN (

1
2
)
)}

,

(2)

where the terms in braces converge weakly to independent finite-valued random variables.

The distribution of the maximum is unaffected by the time change. Thus, it would certainly be
true that (

N−1/3
(

max
0≤n≤2N

sn − s[2NφN (1/2)]

)
, N1/3

(
φN

(
arg maxS

2N

)
− 1

2
))

.

satisfies the same limit law as (1). It would be pleasant to replace this by(
N−1/3

(
max sn − sN

)
, N1/3

(arg maxS

2N
− 1

2
))

.

Since the empirical process φN (t)− t is uniformly Op(N−1/2), there is no problem in eliminating
φN from the second term. On the other hand, s[2NφN (1/2)] can differ from sN by as much as
2N(φN

(
1
2

)−1
2), which should be on the order of N1/2, swamping the N−1/3 normalization. What

saves the situation, as I show in Proposition 3.2, is that it occurs at a relative extremum of the
expectation. This means that, in these O(N1/2) steps between 1

2 and φN (1
2 ) the process moves

like a symmetric random walk, and on average only fluctuates by about N1/4, not N1/2.

Section 4.1 applies these results to a generalized sorting problem. The procedure is the one
described above for socks, only now instead of pairs I admit classes of arbitrary (random)
numbers of objects. I show there that both limit theorems hold — the functional central limit
theorem as well as the second-order approximation for the maximum (corresponding to (2)) —
as long as the class sizes have bounded fourth moments, and their distributions of the class sizes
converge in L4 when properly normalized.

∗For definiteness, for f a cadlag function defined on a real interval I, define arg max f = inf
�
t : sups≤t f(s) =

sups∈I f(s)
	
.
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In section 4.2 I apply these same methods to a related question about random allocations. Here
balls are being thrown successively at random into a large number N of boxes, and I consider
the behavior of such functions as the total number of boxes which have exactly one ball, after n
have been thrown.

2. Technical lemmas

In what follows, I will be a subinterval of R and D = D(I) will represent the space of cadlag
(right-continuous with limits from the left) functions from I to R. I will have little to say
concretely about the topology, but assume it to be furnished with the Skorokhod topology (cf.
section 14 of [Bil68]), and all measurability questions will be referred to the corresponding Borel
σ-algebra. The modulus of continuity of a function x is denoted by

wx(δ) = sup
|s−t|≤δ

∣∣x(s) − x(t)
∣∣.

For nondecreasing functions ϕ ∈ D(I), a cadlag pseudoinverse function is defined by

ϕ−1(t) =


inf
{
s : ϕ(s) > t

}
if inf Range ϕ ≤ t < supRange ϕ,

inf I if t < inf Range ϕ,

supI if t ≥ supRange ϕ.

(3)

An elementary fact about pseudoinverses is

Lemma 2.1. Let ϕ and φ be monotonically nondecreasing functions in D[0, 1], with φ(0) =
ϕ(0). Then

sup
t∈R

∣∣ϕ−1(t) − φ−1(t)
∣∣ ≤ ωφ−1

(
sup
s∈I

∣∣ϕ(s) − φ(s)
∣∣+ sup

t∈R

∣∣ϕ(ϕ−1(t)
)−t

∣∣) ,(4)

where R = Range φ ∩ Range ϕ.

Proof. The difference
∣∣ϕ−1(t) − φ−1(t)

∣∣ attains its maximum on R. Consider then any t ∈ R.∣∣φ(ϕ−1(t)
)−t

∣∣ ≤ ∣∣φ(ϕ−1(t)
)−ϕ

(
ϕ−1(t)

)∣∣+ ∣∣ϕ(ϕ−1(t)
)−t

∣∣
≤ sup

s∈I

∣∣φ(s) − ϕ(s)
∣∣+ sup

t∈R

∣∣ϕ(ϕ−1(t)
)−t

∣∣ .
Applying φ−1 to the two points on the left side gives the result, by the definition of modulus of
continuity. �

We will also need some facts about uniform tightness which, while not original, do not seem to
be explicitly stated in standard reference works. Let (xn) be a sequence of random functions in
D(I), for some finite interval I. I will say that (xn) is tight in the uniform modulus if for some
t0 ∈ I the random variables xn(t0) are uniformly tight, and for every positive ε,

lim
δ→0

lim sup
n→∞

P
{
wxn(δ) > ε

}
= 0.

Lemma 2.2. Let (xn) and (yn) be two sequences of random functions (on the same probability
space) in D(I).

1. If (xn) converges weakly to a process that is almost surely continuous, then it is tight in
the uniform modulus. Conversely, if (xn) is tight in the uniform modulus, then it is tight
as a sequence of random functions in D, and if it converges weakly the limit law must be
almost surely continuous.
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2. If (xn) is tight in the uniform modulus then the sequence of random variables(
supt∈I |xn(t)|) is tight.

3. If (xn) and (yn) both are tight in the uniform modulus, then (xn + yn) is as well.

4. If ‖xn − yn‖∞
n→∞−−−−−→P 0, then if (xn) is tight in the uniform modulus, (yn) is as well.

Proof. The first assertion in 1 is a consequence of the Continuous Mapping Theorem (cf.
Theorem IV.12 of [Pol84]), and the fact that the modulus of continuity, seen as a functional of
cadlag functions x (with δ fixed), is continuous at continuous x. The second assertion appears
as Theorem 15.5 of [Bil68].

For every positive K,

P
{
sup
t∈I

∣∣xn(t)
∣∣ > K

} ≤ P
{∣∣xn(t0)

∣∣ >
K

2
}

+ P
{
wxn

(2|I|
K

) > 1
}
,

which, by taking appropriate limits, proves assertion 2.

Assertion 3 follows from the subadditivity of the continuity modulus. Assertion 4 follows from
assertion 3, since yn = xn + (yn − xn), and yn − xn is tight in the uniform modulus, since it
converges in probability to 0. �

Lemma 2.3. Let (φn) be a sequence of random elements of D(I), which are each almost surely
nondecreasing. Let αn be an increasing sequence of real numbers that go to ∞ with n, and
φ a continuous real-valued function on I, such that φ−1 is twice differentiable with bounded
second derivative. Suppose that φ̃n = αn(φn − φ) is tight in the unifom modulus. Then φ̃−1

n =
αn(φ−1

n − φ−1) also is tight in the uniform modulus.

Proof. Let Rn represent the range of φn, and let

ρn = sup
t∈Rn

∣∣φn

(
φ−1

n (t)
)−t

∣∣.
It is immediate from the definition of φ−1

n that ρn is bounded by the size of the largest jump by φn.
It follows that for every positive δ, w

eφn
(δ) ≥ αnρn. The tightness condition for φ̃n implies then

that αnρn converges to 0 in probability, as n goes to ∞. Define also σn = supt∈I |φn(t) − φ(t)|.
Since φ̃n is tight in the uniform modulus, the sequence of random variables (αnσn) is tight. By

Lemma 2.1, for any fixed t, (|φ̃−1
n (t)|)∞n=1 is tight as well.

Let L1 and L2 be upper bounds for the absolute values of the first and second derivatives of φ−1

respectively. Let δ > 0 be given, and consider any s, t ∈ Rn with |s − t| < δ. Let u = φ−1
n (t),

v = φ−1
n (s). By successive Taylor expansions of φ−1,∣∣φ̃−1

n (t)−φ̃−1
n (s)

∣∣ = αn

∣∣φ−1
(
φ(u)

)
+φ−1

(
φ(v)

)−(φ−1(t) − φ−1(s)
)∣∣

≤ L1αn

∣∣(t − s) − (φ(u) − φ(v)
)∣∣

+ L2αn ·
[∣∣φ(u) − t

∣∣2 +
∣∣φ(v) − s

∣∣2 +
∣∣s − t

∣∣ · ∣∣φ(u) − t
∣∣]

≤ L1

∣∣φ̃n(u) − φ̃n(v)
∣∣ + 2L1αnρn

+ L2αn

[
2(σn + ρn)2 + δ(σn + ρn)

]
.
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At the same time, using Lemma 2.1 and the fact that wφ−1(δ) ≤ L1δ

|u − v| ≤ ∣∣φ−1(s) − φ−1(t)
∣∣ +

∣∣φ−1(t) − φ−1
n (t)

∣∣ +
∣∣φ−1(s) − φ−1

n (s)
∣∣

≤ L1

(
δ + 2L1(σn + ρn)

)
.

Thus for every positive ε,

lim
δ→0

lim sup
n→∞

P
{
w
g

φ−1
n

(2L1δ) > ε
}

≤ lim
δ→0

lim sup
n→∞

(
P
{
w
eφn

(2δ) >
ε

4L1

}
+ P

{
2L1(σn + ρn) > δ

}
+ P

{
αnρn >

ε

8L1

}
+ P

{
α2

n(σn + ρn)2 >
ε

8L2
αn

}
+ P

{
αn(σn + ρn) >

ε

4L2δ

})
.

Remember that αnρn

n→∞−−−−−→P 0, while the sequence (αnσn) is tight. This implies immediately
that the second, third, and fourth terms on the right go to 0 as n goes to ∞, and the fifth term
goes to zero when at last δ goes to 0. The first term on the right, meanwhile, is 0, because of
the assumption that φ̃n is tight in the uniform modulus. �

Note: Lemma 2.3 would not be true if the condition on the second derivative of φ−1 were
removed. A particularly simple counterexample, with φ−1 only once differentiable, is obtained
for αn = n and I = [−1, 1] by letting φ(t) = t

√|t| deterministically, and φn = φ + 1
n .

I include here also two elementary lemmas which will be needed for negotiating between the
discrete and continuous settings.

Lemma 2.4. Given positive integers k, and c ≥ b ≥ a ≥ 1,(
b
k

)− (ak)(c
k

) ≤ k(b − a)bk−1

ck
,(5)

1(a
k

) − 1(b
k

) ≤ k(b − a)
a
(a
k

)(6) ∣∣∣∣∣
(a
k

)(c
k

) − ak

ck

∣∣∣∣∣ ≤ k2

(
(a + 1)k−1

2ck
+

ak

(c − k)k+1

)
.(7)

Proof. Assume first a ≥ k. Clearly,(b
k

)− (b−1
k

)(
c
k

) =

(
b − (b − k)

)(
(b − 1)(b − 2) · · · (b − k + 1)

c(c − 1) · · · (c − k + 1)

≤ k

c

(
b

c

)k−1

.

Iterating this b − a times proves (5).
If b < k, the left-hand side of (5) is zero, so the statement is trivial. The last case is b ≥ k > a.
Then (b

k

)− (ak)(
c
k

) =

(b
k

)(
c
k

) =
b · · · (b − k + 1)
c · · · (c − k + 1)

≤
(

b

c

)k

≤
(
bk − ka

)
bk−1

ck
,

7



since k > a implies that b(k − 1) ≥ (a + 1)(k − 1) ≥ ka. This completes the proof of (5).

To demonstrate (7), use Taylor’s Theorem for the function x−k to see that∣∣∣∣∣
(a
k

)(c
k

) − ak

ck

∣∣∣∣∣ ≤
∣∣∣∣∣
(a
k

)(c
k

) − ak(c
k

)∣∣∣∣∣+
∣∣∣∣∣ak

ck
− ak(c

k

)∣∣∣∣∣
≤
(k
2

)
a(a − 1) · · · (a − k + 2)

c(c − 1) · · · (c − k + 1)
+ ak

∣∣∣c−k − (c − k)−k
∣∣∣

≤
(

k

2

)
(a + 1)k−1

ck
+ k2 ak

(c − k)k+1
.

Finally,
1(

b−1
k

) − 1(
b
k

) =
1(

b−1
k

) (1 − b − k

b

)
=

k

b
(
b−1
k

) ,
from which iteration yields (6). �

Lemma 2.5. If a, b, and n are positive real numbers with b ≤ n/2 and n > 1,∣∣∣(1 − b

n

)an − e−ab
∣∣∣ ≤ e−ab ab2

2n
≤ 2

ae2
· 1
n

.

Proof. In general, if x and y are positive real numbers, by the Theorem of the Mean∣∣x − y
∣∣ = ∣∣elog x − elog y

∣∣
≤ ∣∣log x − log y

∣∣max
{
x, y
}
.

(8)

Now,

log
(
1 − b

n

)an− log e−ab = an log
(
1 − b

n

)
+ab ≤ −ab2

2n
,

since log(1 + x) ≤ x − x2/2 for all x > −1. This indicates as well that

e−ab >
(
1 − b

n

)an
,

so an application of (8) completes the proof. (Note: I have not been able to find a source for this
elementary argument, but it was brought to my attention — to replace messier computations
— by Brad Mann.) �

3. Theoretical results

The random functions φn : [0, T ] → [0, T ′] and Sn : [0, T ′] → R (1 ≤ n < ∞) are taken
to be in D[0, T ] or D[0, T ′] respectively. These define cadlag processes Fn = Sn ◦ φn. The
process φn is assumed to converge uniformly in probability to a continuous, strictly increasing
nonrandom function φ, with φn(0) = φ(0) = 0. The expectations of all the random functions
exist pointwise, and the expectations ESn(t) converge uniformly in t to a twice continuously

8



differentiable function S(t). Also posit an increasing sequence of positive normalization constants
(αn) which go to infinity with n, and define the normalized processes

φ̃n(t) = αn

(
φn(t) − φ(t)

)
,

S̃n(t) = αn

(
Sn(t) − ESn(t)

)
, and

F̃n(t) = αn

(
Fn(t) − EFn(t)

)
.

Following (fairly) standard nomenclature, I will call the sequences of random variables S̃n and
φ̃n defined on a common probability space asymptotically independent if for every bounded
uniformly continuous f : D[0, T ′] → R and g : D[0, T ] → R,

lim
n→∞

∣∣∣E[f(S̃n)g(φ̃n)
] − E

[
f(S̃n)

]
E
[
g(φ̃n)

]∣∣∣ = 0 .(9)

Proposition 3.1. Suppose that

lim
n→∞αn sup

t∈[0,T ′]

∣∣ESn(t) − S(t)
∣∣ = lim

n→∞αn sup
t∈[0,T ]

∣∣EFn(t) − S(φ(t))
∣∣ = 0.(10)

Suppose also that φ̃n converges uniformly in probability to an almost-surely continuous process
Φ̃, and that S̃n and φ̃n are asymptotically independent.

(i) If S̃n(t) converges weakly to an almost-surely continuous process S̃(t), then F̃n(t) also con-
verges weakly to an almost-surely continuous process F̃ (t), and

F̃ =d S̃ ◦ φ + (S ′ ◦ φ) · Φ̃ ,(11)

where S
′(u) = dS

dt

∣∣
t=u

.

(ii) Suppose that φn and Sn satisfy

sup
{

αn

∣∣Sn(s) − Sn(t)
∣∣ : [s, t] ∩ Range φn = ∅

} n→∞−−−−−→P 0(12)

for all n, and that φ−1 is twice differentiable, with bounded first and second derivatives. If φ̃n

and F̃n converge to continuous Gaussian processes Φ̃ and F̃ respectively, then S̃n converges to
a continuous Gaussian process S̃, and the relation (11) is satisfied.

Note: The condition (12) is required to exclude pathological fluctuations which would destroy
the tightness of Sn, but which would not be reflected in Fn, because they occur within gaps
in the range of φn. It is trivially satisfied in the examples which I am considering, since Sn is
constant between the times that are hit by φn.

Proof. The function F̃n may be decomposed into

F̃n(t) = αn

(
Sn

(
φ(t)

)−Sn

(
φ(t)

))
+ αnS

′(
φ(t)

)(
φn(t) − φ(t)

)
+ αn

(
S
(
φn(t)

)−S
(
φ(t)

)−S
′(

φ(t)
)(

φn(t) − φ(t)
))

+ αn

(
Sn

(
φn(t)

)−Sn

(
φn(t)

)−Sn

(
φ(t)

)
+Sn

(
φ(t)

))
+ αn

(
Sn

(
φn(t)

)−S
(
φn(t)

)
+S
(
φ(t)

)−Sn

(
φ(t)

))
+ αn

(
Sn

(
φ(t)

)−Fn(t)
)

=: An(t) + Bn(t) + Γn(t) + ∆n(t) + En(t) + Zn(t),

9



where An, Bn, Γn, ∆n, En are random functions, and Zn is a deterministic function. By
assumption (10), En and Zn converge uniformly to 0 as n → ∞.

By a Taylor approximation, ∣∣Γn(t)
∣∣ ≤ 1

2

∥∥S′′∥∥
∞αn

(
φn(t) − φ(t)

)2
The tightness of αn(φn − φ), together with the fact that αn goes to infinity, shows that the first
term converges to 0 in probability.

If S̃n is tight in the uniform modulus (cf. page 5), then the term ∆n converges to 0 uniformly
in probability, since for every positive δ

lim sup
n→∞

P
{
sup |∆n(t)| > ε

}
= lim sup

n→∞
P
{

sup
t∈[0,T ]

∣∣S̃n

(
φn(t)

)−S̃n

(
φ(t)

)∣∣ > ε
}

≤ lim sup
n→∞

P
{

sup
t∈[0,T ]

∣∣φn(t) − φ(t)
∣∣ ≥ δ

}
+ lim sup

n→∞
P
{

sup
|s−t|<δ

∣∣S̃n(s) − S̃n(t)
∣∣ > ε

}
.

The first piece is 0 for every δ by the assumption of uniform convergence in probability of φn.
The second piece converges to 0 as δ → 0 by the convergence of S̃n to an almost surely continuous
process. Thus, ∥∥F̃n − S̃n ◦ φ − (S′ ◦ φ) · φ̃n

∥∥
∞ =

∥∥F̃n − An − Bn

∥∥
∞ →P 0.(13)

If assumption (i) holds, then (S̃n) is certainly tight in the uniform modulus, since it converges
weakly to a continuous process. By Theorem 4.5 of [Bil68] (and the ensuing exercise 7), as-
ymptotic independence and the convergence of φ̃n in probability suffice to show that the pair
(φ̃n, S̃n) converges weakly. It follows that any linear combination also converges; that is, that

S̃n ◦ φ + S
′ · φ̃n →w S̃ ◦ φ + (S′ ◦ φ) · Φ̃ .

Now suppose that the assumptions (ii) hold. By Skorokhod’s Theorem (e.g., Theorem 3.2.1 of
[Sko56]), the sequence of random functions must only be tight and have its finite-dimensional
distributions converge. Unfortunately, the proof of the required relation (13) presupposed that
S̃n is tight.

Tightness entered only into the proof that ∆n(t) converges to 0 uniformly in probability. As a
substitute, we may reverse the argument that led to (13). Define

S∗
n(t) := Sn

(
φn(φ−1

n (t))
)
= Fn

(
φ−1

n (t)
)
,

S̃∗
n(t) := αn

(
S∗

n(t) − ES∗
n(t)

)
.

Carrying out the same sort of decomposition yields terms

Γ∗
n(t) = αn

(
S
(
φ−1

n (t)
)−S

(
φ−1(t)

)−S
′(

φ−1(t)
)(

φ−1
n (t) − φ−1(t)

))
∆∗

n(t) = F̃n

(
φ−1

n (t)
)−F̃n

(
φ−1

n (t)
)

E∗
n(t) = αn

(
Fn

(
φn(t)

)−S
(
φn(t)

)
+S
(
φ(t)

)−Fn

(
φ(t)

))
Z∗

n(t) = αn

(
Fn

(
φ−1(t)

)−Sn(t)
)
10



The functions E∗
n and Z∗

n converge to 0 uniformly by assumption (10). The term ∆∗
n converges

uniformly to 0 in probability for essentially the same reason that ∆n does, since F̃n forms a
tight sequence, and by Lemma 2.1,

sup
t∈[0,T ′]

∣∣φ−1
n (t) − φ−1(t)

∣∣ ≤ L1 sup
t∈[0,T ]

∣∣φn(t) − φ(t)
∣∣,(14)

where L1 is the Lipschitz constant for φ−1. This also shows that

αn sup
t

(
φ−1

n (t) − φ−1(t)
)2≤ L2

1αn sup
t

(
φn(t) − φ(t)

)2 n→∞−−−−−→P 0,

which means that Γ∗
n converges uniformly to 0 in probability.

The assumption (12) implies that supt |S̃∗
n(t) − S̃n(t)| → 0 as n goes to ∞. It follows that∥∥S̃n − F̃n ◦ φ − S

′ · φ̃−1
n

∥∥
∞ →P 0.(15)

The sequence (φ̃−1
n ) is tight in the uniform modulus by Lemma 2.3. By Lemma 2.2, this holds

for S̃n as well.

The asymptotic characterization (13) implies the convergence of the characteristic functions. To-
gether with the asymptotic independence and the multiplicativity of the characteristic functions
of Gaussian variables, this establishes the convergence of the finite-dimensional distributions. �

For the second result, the probability space is assumed to admit a σ-algebra Rn, such that Sn

and φn are independent conditioned on Rn, and have regular conditional probabilities. (For an
account of conditional independence, see section 7.3 of [CT78]. In this paper the existence of
regular conditional probabilities will be trivial, since Rn will be generated by a countably-valued
random variable.)

The symbols p, q, r, D, c and C will all represent positive real constants, q ≥ 1
2 . S(t) will

generally represent a smooth approximation to the expectation of Sn(t) such that

sup
t

∣∣S(t) − ESn(t)
∣∣ = o(n−p),(16)

and it will be assumed that S has a local extremum at t0, such that∣∣S(t) − S(t0)
∣∣ ≤ D|t − t0|q.(17)

Proposition 3.2. Suppose that Sn and φn are independent when conditioned on Rn, have reg-
ular conditional distributions, and that the expectation of the fluctuations in Sn satisfies

E
∣∣Sn(t) − ESn(t) − (Sn(t0) − ESn(t0)

)∣∣ ≤ cn−r
√

|t − t0|(18)

for all n positive and 0 ≤ t ≤ 1. Suppose, too, that there is a function S satisfying conditions
(16) and (17), and that

E
[∣∣φn(t′0) − t0

∣∣q ∣∣∣Rn

]
≤ Cn−q/2 almost surely.(19)

Then for α < min
{
r + 1

4 , q
2

}
and α ≤ p,

nα
∣∣Fn(t′0) − Sn(t0)

∣∣→ 0 in L1.

11



Proof. Define τ =
∣∣φn(t′0) − t0

∣∣, and let R∗
n be the σ-algebra generated by Rn and the random

variable φn. Define, too, a random variable

c(ω) = sup
t6=t0

E
[∣∣Sn(t) − ESn(t) − (Sn(t0) − ESn(t0)

)∣∣ ∣∣∣Rn

]
nr|t − t0|−1/2.

By (18), E c(ω) ≤ c. Now

E
∣∣Fn(t′0) − Sn(t0)

∣∣ ≤ E
[∣∣(Sn − Sn)(φn(t′0)) − (Sn − Sn)(t0)

∣∣
+
∣∣S(φn(t′0)) − S(t0)

∣∣+ ∣∣S(t0) − Sn(t0)
∣∣].

Conditional independence tells us that the regular conditional distribution for (Sn, τ) with re-
spect to Rn is the product of the regular conditional distributions for Sn and for τ , which means
that Fubini’s theorem holds for the conditional expectations. That is, if one defines random
functionals

Gn(φ) :=
∣∣(Sn − Sn)(φ(t′0)) − (Sn − Sn)(t0)

∣∣, and

gn(φ) := E
[
G(Sn, φ)

∣∣Rn

]
,

then

E
[
Gn(φn)

∣∣R∗
n

]
= gn(φn) ≤ c(ω)n−r

∣∣φn(t′0) − t0
∣∣1/2

.

Thus

E
[
Gn(φn)

]
= E

[
E
[
E
[
Gn(φn)

∣∣R∗
n

] ∣∣Rn

]]
≤ E

[
E
[
c(ω)n−r

∣∣φn(t′0) − t0
∣∣1/2 ∣∣Rn

]]
≤ cn−r · (Cn−q/2)1/2q

= O
(
n−r−1/4

)
.

Similarly,
E
∣∣S(φn(t′0)) − S(t0)

∣∣ ≤ D E
[∣∣φn(t′0) − t0

∣∣]q ≤ CDn−q/2.

Finally, the last term is o(n−p) by assumption (16). �

4. Applications: socks and boxes

4.1. Sorting problems. Returning to the generalized sock-sorting problem described in the
introduction, let ~k = (k1, . . . , kN ) be an N -tuple of independent random integers, each ki ≥ 2,
and set Ki = k1 + · · · + ki and K = KN . Let

p
(N)
k =

1
N

N∑
i=1

P
{
ki = k

}
.

Consider now the set of permutations of K letters, viewed as bijections

S~k
:=
{

π :
{
(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ ki} → {1, . . . ,K}

}
.

12



Given a map π ∈ S~k
, let

si
n(π) =

ki∑
j=1

1{π(i,j)≤n} − ki

ki∏
j=1

1{π(i,j)≤n} ;

sn(π) =
N∑

i=1

si
n(π).

When there is no risk of confusion, the argument π will be suppressed. Identifying this with the
sequential choice of elements from a set of size K, which is divided up into N classes of the form
{(i, 1), . . . , (i, ki)}, si

n represents the number of elements from class i among π−1(1), . . . , π−1(n),
unless the class is complete (that is, the number is ki), in which case si

n = 0. Similarly, sn

represents the total number of elements from incomplete classes among π−1(1), . . . , π−1(n). The
stipulation that π be chosen uniformly from S~k

defines a stochastic process.

The next step is to embed this in a continuous-time process, by defining

Si(t) = si
[Kt] SN (t) =

1
N

s[Kt] =
1
N

N∑
i=1

Si(t) .

The functions Si(t) are almost independent, as long as N is much larger than any of the ki;
but not quite, because only one jump can occur at a time. They become independent when
the clock which determines the jump times is randomized. For each positive K, let

(
X(K, `) :

` = 1, . . . ,K
)

be an array of i.i.d. random variables uniform on [0, 1]; without further mention,
condition on the almost-sure event that the X(K, `) are distinct. For 1 ≤ i ≤ N and 1 ≤ j ≤ ki

define x(i, j) = X(K,Ki−1 + j). The empirical process

φK(t) =
1
K

K∑
`=1

1[X(K,`),1]

converges in probability to the identity function as K → ∞, and that

φ̃K(t) =
√

K
(
ΦK(t) − t

)
converges weakly to a Brownian bridge Φ̃, with covariance c2(s, t) = s(1 − t) for s ≤ t. The
almost-sure representation theorem (Theorem 1.10.3 of [vdVW96]) then allows the convergence
to occur uniformly almost surely, on a suitably defined common probability space. This cir-
cuitous definition has the advantage of providing an autonomous limit process, independent of
~k. As N increases, φ̃K will simply run through a subsequence of

(
φ̃n

)∞
n=1

, and necessarily will
converge to the same limit.

Since the x(i, j) are i.i.d. and distinct, they define a uniform permutation in S~k
. Define

fi(t) =
ki∑

j=1

1[x(i,j),1](t) − ki

ki∏
j=1

1[x(i,j),1](t) ;

FN (t) =
1
N

N∑
i=1

fi(t) .

13



Then FN (t) =d
1
N SN (φK(t)). Conditioned on the choice of ki = k, the expectation is E fi(t) =

kt − ktk; the covariances Ck(s, t) := Cov
(
fi(s), fi(t)

)
are

Ck(s, t) = k(s − st) + k2(skt + stk − stk−1 − sktk)(20)

for s ≤ t.

Assume now that the distribution of ~k has a limit, in the sense that pk = limN→∞ p
(N)
k exists,

and impose the following conditions:

κ := sup
i

E
[
k4

i

]
< ∞(21)

and

lim
N→∞

N2/3
∞∑

k=1

|pk − p
(N)
k |k4 = 0.(22)

We then also have

S(t) = lim
N→∞

EFN (t) =
∞∑

k=2

pk

(
kt − ktk

)
.

Since this is a convex combination of strictly concave functions, it has a unique maximum at an
internal point t0.

Define

µ :=
∞∑

k=2

pkk ,

S̃N(t) := N−1/2
(
SN (t) − ESN (t)

)
,

MN :=
1
N

max
0≤n≤K

Sn , and

M̃N := N1/2
(
MN − S(t0)

)
.

Proposition 4.1. (i) The random functions S̃N converge weakly to a Gaussian process on [0, 1]
with continuous sample paths and covariance matrix

c(s, t) =
∞∑

k=2

pkCk(s, t) − s(1 − t)
µ

( ∞∑
k=2

pkk(1 − ksk−1)

)( ∞∑
k=2

pkk(1 − ktk−1)

)
for s ≤ t.

(ii) The triple (
N2/3

(
max

t
SN (t) − SN (t0)

)
, N1/3

(
arg max SN − t0

)
, M̃N

)
(23)

converges in distribution to (
sup
u∈R

G(u) , arg maxG , M̃

)
,

where M̃ is a normal random variable with variance 1, independent of G(u). G(u) is distributed
as σBu − Du2, where Bu is a standard two-sided Brownian motion,

σ2 =
∞∑

k=2

pk(k − k2(k − 2)tk−1
0 ) ,(24)
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and

D =
∞∑

k=2

pk
k

2
(1 − k2(k − 1)tk−2

0 ) .(25)

Proof. By Proposition 7.3 of [Ste98], the assumptions (21) and (22) suffice to prove that the
conclusions hold with SN replaced by FN , and with the covariance c(s, t) replaced by

c1(s, t) =
∞∑

k=2

pkCk(s, t) .

(i) We know that F̃N (t) converges weakly to a Gaussian process with covariance c1(s, t), and
wish to extend this result by an application of Proposition 3.1. As I have already mentioned,
the process φ̃K(t) converges almost surely to the Brownian bridge Φ̃(t). By a slight abuse of
indices,

φ̃N (t) = N1/2 · 1
KN

N∑
i=1

ki∑
j=1

(1[x(i,j),1](t) − t)

=
(

KN

N

)−1/2

φ̃KN
(t) .

By (21) the variables ki have a fortiori bounded second moments, and so satisfy the strong law
of large numbers [Fel71, Theorem VII.8.3]. Since every subsequence of a convergent sequence
converges to the same limit, φ̃N converges almost surely, hence also in probability, to µ−1/2Φ̃.

The time change φN takes on precisely the values m/KN , 0 ≤ m ≤ KN , and SN is constant on
[m/KN , (m + 1)/KN ). Thus condition (12) is trivially satisfied.

For any fixed k,

E
[
si
[Kt]

∣∣ ki = k
]

=
k−1∑
j=1

j

([Kt]
j

)(K−[Kt]
k−j

)(
K
k

)
=

[Kt](
K
k

) ((K − 1
k − 1

)
−
(

[Kt] − 1
k − 1

))

=
k[Kt]

K

(
1 −

([Kt]−1
k−1

)(K−1
k−1

) ) .

Since Kt ≥ [Kt] ≥ Kt − 1, an application of Lemma 2.4 gives

∣∣∣E[si
[Kt]

∣∣ ki = k
]− k(t − tk)

∣∣∣ ≤ k

(
1
K

+

∣∣∣∣∣
([Kt]−1

k−1

)(
K−1
k−1

) − tk−1

∣∣∣∣∣
)

≤ k

K
+

k

K − k

(
1 +

k

K − k

)k

.
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Integrating over ~k, and using the trivial facts K − ki ≥ 2N − 2, si
m ≤ ki for all m and i, and

(1 + ε)k ≤ eεk,∣∣E[si
[Kt] − ki(t − tki)

]∣∣ = ∣∣∣E[∣∣si
[Kt] − ki(t − tki)

∣∣(1{ki<
√

N} + 1{ki≥
√

N}
)]∣∣∣

≤ (1 + e)κ
N

+ E
[
ki1{ki≥

√
N}
]

≤ (2 + e)κ
N

.

For the expectation of SN (t) this yields

ESN (t) =
1
N

N∑
i=1

ESi
N (t) =

∞∑
k=2

p
(N)
k

(
t − tk

)
+O
(
N−1

)
.

Thus

sup
t∈[0,1]

∣∣ESN (t) − S(t)
∣∣ =

∣∣∣∣∣
∞∑

k=2

(pk − p
(N)
k )k(t − tk)

∣∣∣∣∣
≤

∞∑
k=2

k|pk − p
(N)
k |

= o
(
N−2/3

)
by (22). Similarly,

sup
t∈[0,1]

∣∣EFN (t) − S(t)
∣∣ = o

(
N−2/3

)
Since the normalization factor is αN = N1/2, this proves (10).

It follows now by Proposition 3.1 that S̃N (t) converges weakly to a Gaussian process whose
covariance is precisely

c(s, t) = c1(s, t) − 1
µ

S
′(s)S′(t)c2(s, t) ,

where c2(s, t) = s(1 − t) is the covariance of the Brownian bridge. In principle it would be
possible to compute this covariance directly, using combinatorics of the discrete process and
passing to the limit as N → ∞. For the case ki identically equal to 2 this has been done in
[Ste96]; for larger k, though, the calculation becomes complicated and tedious.

(ii) By [Ste98], the triple(
N

2
3
(
sup

t
FN (t) − FN (t0)

)
, N

1
3
(
arg max FN − t0

)
, N

1
2
(
sup

t
FN (t) − Fn(t0)

))
converges in distribution to (

sup
u∈R

G(u) , arg max G , M̃
)

.

The limit needs to be unchanged when all the FN are replaced by SN . This will be achieved
if the difference created by this change goes to 0 in probability in the coupled version, where
FN = SN ◦ φN ,
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Since supt FN (t) and supt SN (t) have the same distribution, we know that the convergence of
the third coordinate still holds if FN is replaced by SN . In the coupled version,

arg maxSN = φN

(
arg maxFN

)
.

Since supt∈[0,1] |φN (t) − t| is OP

(
N−1/2

)
, it follows that

N1/3
∣∣arg max FN − arg max SN

∣∣→P 0 ,

which means that the second coordinate’s convergence in distribution is also preserved when FN

is replaced by SN .

The first coordinate only needs

N2/3
∣∣FN (t0) − SN (t0)

∣∣→P 0 ,

since supt FN (t) = supt SN (t). For this apply Proposition 3.2 with q = 2, D and t0 = t′0
as already defined, and Rn the σ-algebra determined by ~k. The condition (17) is obviously
satisfied, and (16) has already been established for p = 2

3 . Conditioned on any ~k, φn is just an
empirical process with K ≥ 2N points; thus

E
[∣∣φN (t0) − t0

∣∣2 ∣∣∣ ~k] ≤ 1
K

≤ 1
2N

,

so (19) holds for q = 2.

To prove that (18) holds, the individual jumps in the process SN (t) need to be very nearly
independent. Define

ξn = Sn − Sn−1,

and let ξ̃n be normalized to have mean 0:

ξ̃n = ξn − E
[
ξn

]
.

For t > t0, define m1 = [t0K] + 1 and m2 = [tK], and apply Lemma 4.2. Then

E
∣∣SN (t) − ESN (t) − (SN (t0) − ESN (t0)

)∣∣
≤ N−1

(
E

∣∣∣∣∣
m2∑

m=m1

m2∑
n=m1

ξ̃mξ̃n

∣∣∣∣∣
)1/2

≤ CN−1
√

N |t − t0|

(26)

for a constant C (depending only on κ). Exactly the same is true if t < t0. This completes the
proof of condition (18) with the bound α < 3

4 . In the present case α is 2
3 . �

It remains only to prove

Lemma 4.2. If k1, k2, . . . are random variables whose distributions satisfy (21) and (22), and
m1 = [t1K] + 1 and m2 = [t2K] for fixed 0 ≤ t1 < t2 ≤ 1,

E

∣∣∣∣∣
m2∑

m=m1

m2∑
n=m1

ξ̃mξ̃n

∣∣∣∣∣ ≤ 10κ3/2|t2 − t1|N(27)

for all N ≥ 3.
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Proof. Begin by conditioning on a particular realization of ~k. Let Am,i be the event that the
draw at time m comes from class number i. By straightforward combinatorics, for i 6= j and
m < n,

E
[
ξm1Am,i

∣∣ ~k] =
ki

K

(
1 − ki

(m−1
ki−1

)(
K−1
ki−1

))

E
[
ξmξn1Am,i∩An,j

∣∣ ~k] =
kikj

K(K − 1)
×[

1 − ki

(m−1
ki−1

)(
K−2
ki−1

) − kj

( n−1
kj−1

)(
K−2
kj−1

) + kikj

(m−1
ki−1

)(
K−2
ki−1

) (n−ki−1
kj−1

)(
K−ki−1

kj−1

)].
An application of Lemma 2.4 then shows that for i 6= j and m 6= n,∣∣∣E[ξmξn1Am,i∩An,j

∣∣ ~k]− E
[
ξm1Am,i

∣∣ ~k]E[ξn1An,j

∣∣ ~k]∣∣∣ ≤ 6k3
i k

3
j

K(K − 1)N
.

This uses the crude approximation K ≥ 2N and K − ki − 1 ≥ 2N − 3 ≥ N when N ≥ 3. For
i = j and m 6= n, it is immediate that∣∣∣E[ξmξn1Am,i∩An,j

∣∣ ~k]− E
[
ξm1Am,i

∣∣ ~k]E[ξn1An,j

∣∣ ~k]∣∣∣
≤ 2k2

i

K(K − 1)
.

This yields (for m 6= n)∣∣∣E[ξ̃mξ̃n

∣∣ ~k]∣∣∣ =
N∑

i,j=1

∣∣∣E[ξmξn1Am,i∩An,j

∣∣ ~k]− E
[
ξm1Am,i

∣∣ ~k]E[ξn1An,j

∣∣ ~k]∣∣∣
≤

N∑
i6=j=1

6k3
i k

3
j

K(K − 1)N
+

N∑
i=1

2k2
i

K(K − 1)

For m = n, direct calculation shows that∣∣∣E[ξ̃2
m

∣∣ ~k]∣∣∣ ≤ N∑
i=1

k3
i

K
+

N∑
i6=j=1

k2
i k

2
j

K2
.

Summing over m and n gives the estimate∣∣∣∣∣
m2∑

m=m1

m2∑
n=m1

ξ̃mξ̃n

∣∣∣∣∣ ≤ (m2 − m1)2

 N∑
i6=j=1

6k3
i k

3
j

K2N
+

N∑
i=1

2k2
i

K(K − 1)


+ (m2 − m1)

 N∑
i6=j=1

k2
i k

2
j

K2
+

N∑
i=1

k3
i

K


≤ 6|t2 − t1|2

N

N∑
i6=j=1

k3
i k

3
j + 2|t2 − t1|2

N∑
i=1

k2
i

+
|t2 − t1|

N

N∑
i6=j=1

k2
i k

2
j + |t2 − t1|

N∑
i=1

k3
i
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Taking the expectation with respect to ~k, and using the crude approximations that κ ≥ 1 and
t2 − t1 < 1, yields (27). �

4.2. Random allocations. Begin with N empty boxes and an unlimited number of balls.
Throw the balls one by one into boxes chosen uniformly at random. For positive integers k, let
ck(n) be the number of boxes which contain exactly k balls, after n balls have been allocated.
What is the distribution of c∗k = maxn ck(n), when N is large?

Let

q(k) = e−k kk

k!
;

SN (t) =
1
N

ck

(
[Nt]

)
;

S̃N (t) =
√

N
(
SN (t) − ESN (t)

)
Proposition 4.3. (i) Let k be a fixed positive integer. For n = [Nt],

ESN (t) =
(

n

k

)(
(N − 1)n−k

Nn

)
,

The restriction of S̃N (t) to any compact interval [0, T ] converges to a Gaussian process with
covariance

C(s, t) := Cov
(
S̃k(s), S̃k(t)

)
=

e−tsk

k!
− e−(t+s)(st)k−1

(k!)2
(
st + s(k − s)(k − t)

)
for s ≤ t.

(ii) For c∗k defined as above, the variables

N−1/2
(
c∗k − Nq(k)

)
converge weakly to a multivariate normal distribution with mean 0 and covariance

c(k1, k2) := Cov
(
c∗k1

, c∗k2

)
= q(k1)

(
q(k2 − k1) − q(k2)

)
for k1 ≤ k2. The quantities

N−1/3
(
c∗k − ck(kN)

)
converge jointly to independent random variables distributed as supu Gk(u), where Gk(u) =√

2q(k)Bu − q(k)
2k u2.

The following lemma will be helpful, corresponding to Lemma 4.2 in the sock-sorting problem:

Lemma 4.4. Define ξ(n) = ck(n)−ck(n−1), and ξ̃(n) = ξ(n)−E ξ(n), the variable ξ normalized
to have mean 0. Then

max
m<n∈Z+

E
[
ξ̃(m)ξ̃(n)

]
= O

(
N−1

)
.

Proof. First,
max

m<n∈Z+

n>N2/2

E
[
ξ̃(m)ξ̃(n)

]≤ max
n>N2/2

E
[∣∣ξ̃(m)

∣∣]
≤ 2 max

n>N2/2
E
[
ξ(n)

]
= O

(
N−1

)
,

so we may restrict our attention to m and n smaller than N2/2.
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Since ξ takes on only the values −1, 0,+1,

E
[
ξ̃(m)ξ̃(n)

]
= E

[
ξ(m)ξ̃(n)

]
=
∑

x=±1
y=±1

(
P
{
ξ(n) = x

∣∣ξ(m) = y
}− P

{
ξ(n) = x

})
P
{
ξ(m) = y

}
xy

Thus
∣∣E[ξ̃(m)ξ̃(n)

]∣∣ is bounded by twice the maximum absolute value of the expressions in
parentheses. Let A be the event that ball number n goes into the same box as ball number m;
let Bm(y) be the event that ξ(m) = y. Since n > m, A is independent of Bm(y). Then∣∣∣P(Bn(x)

∣∣Bm(y)
)−P

(
Bn(x)

)∣∣∣
≤
∣∣∣P(Bn(x) ∩ A{

∣∣ Bm(y)
)−P

(
Bn(x) ∩ A{

)∣∣∣+ P
(
A
∣∣ Bm(y)

)
+ P

(
A
)

=
∣∣∣P(Bn(x) ∩ A{

∣∣ Bm(y)
)−P

(
Bn(x) ∩ A{

)∣∣∣+ 2
N

,

so there will be no loss in restricting all events to A{. This will be done without further comment.
Further, by symmetry, nothing will be changed if one conditions on ball number m going into
box 1 and ball number n going into box 2, just to facilitate the notation.

The conditional probability P
{
ξ(n) = +1

∣∣ ξ(m) = +1
}

is just the chance that there are exactly
k−1 balls in box 2 at time n−1, given that there are k−1 balls in box 1 at time m−1. Letting
r be the number of balls in box 2 at time m − 1 and summing over all possibilities, it follows
that

P
{
ξ(n) = 1

∣∣ ξ(m) = 1
}

=
k−1∑
r=0

(
m − k

r

)(
n − m − 1
k − r − 1

)(
N − 2
N − 1

)m−k−r

(N − 1)−r

×
(

N − 1
N

)n−m−k+r

N−(k−1−r)

=
(
1 − 2

N

)m−k(1 − 1
N

)n−2m
k−1∑
r=0

N−k+1

(
m − k

r

)(
n − m − 1
k − r − 1

)
(1 + ε)r

=
1

(k − 1)!
e−t+ 2k

N
(
1 +

a

N

)k−1∑
r=0

N−k+1

(
m − k

r

)(
n − m − 1
k − r − 1

)
(1 + ε)r

where

t =
n

N
, |a| ≤ t2

2
+

2k
N

, and ε =
1

N − 2
.

Note that the last step used Lemma 2.5, so assumes that t ≤ N/2, which is to say, that n ≤ N2/2.
Meanwhile,

P
{
ξ(n) = 1

}
=

(n−1
k−1

)
(N − 1)n−k

Nn−1

=
(

n − 1
k − 1

)
e−t+ k

N
(
1 +

a′

N

)
N−k+1,

with

|a′| ≤ t2

2
+

2k
N

.
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This yields∣∣∣P{ξ(n) = 1
∣∣ ξ(m) = 1

}− P
{
ξ(n) = 1

}∣∣∣
=

e−t+ k
N

Nk−1

∣∣∣∣(1 +
a′

N

)(n − 1
k − 1

)
− (1 +

a

N

)k−1∑
r=0

(
m − k

r

)(
n − m − 1
k − r − 1

)
(1 + ε)r

∣∣∣∣
≤ N−1e−tG(t)

where G is a polynomial of degree k− 1. Since e−tG(t) is bounded in t, this is a bound of order
N−1 uniform in m,n for the first of the four terms that we want to bound. But the other terms
are bounded in exactly the same way: the condition ξ(n) = −1 simply means that box 1 has
exactly k + 1 balls rather than k, and similarly for ξ(m). �

I recall here a version of Propositions 7.1 and 6.4 of [Ste98]. The context is random functions
fi : I → {0, 1}, where I is an interval, possibly infinite, and for simplicity the fi are taken to
be i.i.d. The total variation of fi restricted to the subinterval I ∩ (−∞, t) (that is, the total
number of jumps on this subinterval) is represented by vi(t), while

c(s, t) = Cov
(
fi(s), fi(t)

)
for s ≤ t.

I will say that E fi has a unique quadratic maximum if there is an interior point t0 ∈ I such
that for any positive ε, sup|t−t0|>ε f̄i(t) < f̄i(t0), and for some positive D

E fi(t) = E fi(t0) − D · (t − t0)2 + o
(|t − t0|2

)
as t → t0.

I will say that “jumps are not clustered” if for every t ∈ [S, T ],

lim
δ→0

δ−1 sup
i

E
[(

vi(t + δ) − vi(t)
)21{vi(t+δ)≥vi(t)+2}

]
= 0.(28)

Lemma 4.5. Suppose that the expectation functions f̄i(t) and v̄i(t) are twice continuously dif-
ferentiable, that f̄i(t) has a unique quadratic maximum, that vi(T ), has a finite fourth moment,
and that jumps are not clustered.

Then F̃N (t) converges weakly on every compact interval to a Gaussian process with covariance
c(s, t); the processes

N2/3
(
FN (t0 + uN−1/3) − FN (t0)

)
converge weakly on every compact interval to the process G(u) = σBu−Du2, where σ =

√
v̄′i(t0)

and D = −f̄ ′′
i (t0)/2; and the triple(

N2/3
(
MN − FN (t0)

)
, N1/3

(
arg max FN − t0

)
, M̃N

)
converges in distribution to (

supG(u) , arg maxG , M̃
)
,

where M̃ is a normal variable independent of G with mean 0 and the same variance as fi(t0).

Furthermore, if f
(j)
i , (j = 1, . . . , k) are random functions satisfying the above conditions sepa-

rately for each j (with tj taking the place of t0), and if, in addition,

lim
γ→0

γ−1 Cov
(
f

(j)
i (tj + γu) − f

(j)
i (tj) , f

(j′)
i (tj′ + γu′) − f

(j′)
i (tj′)

)
= 0 ,

then the processes G
(j)
σj (u) are independent.
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Proof of Theorem 4.3. (i) The time change for the allocations process derives from a Poisson
process. Define

(
Ei,j

)
for 1 ≤ i ≤ N and 1 ≤ j < ∞ to be i.i.d. exponential variables with

expectation 1, and for t ≥ 0 let

fi(t) =

{
1 if Ei,1 + · · · + Ei,k ≤ t < Ei,1 + · · · + Ei,k+1;
0 otherwise.

This is the indicator function of the event that a Poisson process with rate 1 has the value k at
time t, so

f̄i(t) = e−t t
k

k!
.

Similarly,

v̄′i(t) = e−t

(
tk−1

(k − 1)!
+

tk

k!

)
,

so v̄′i(t0) = v̄′i(k) = 2q(k). The maximum of E fi occurs at t0 = k, and

f̄ ′′
i (k) = −kk−1

k!
e−k = −q(k)

k
.

By Stirling’s formula, q(k) ∼ (2πk)−1/2 for large k. Also, for s ≤ t, by the “memorylessness” of
exponential variables,

c(s, t) := Cov
(
fi(s), fi(t)

)
= P

{
Ei,1 + · · · + Ei,k ≤ s ≤ t < Ei,1 + · · · + Ei,k+1

}− f̄i(s)f̄i(t)

= e−s sk

k!
· e−(t−s) − e−s sk

k!
· e−t t

k

k!

= e−t s
k

k!

(
1 − e−s tk

k!

)
.

The time change is φN (t) = (T + 1)∧ 1
N ·#{(i, j) : Ei,j ≤ t

}
. for t ∈ [0, T ]. This is just 1

N times
a Poisson process with rate N , cut off at T ′ = T + 1 in order to match the formal conditions
of Proposition 3.1. In fact, we may and shall ignore the truncation, since the probability of
reaching it is on the order of e−N .

The first step is to show that φ̃N converges uniformly in probability to the identity function.
Since limn→∞ E

∣∣φ̃N (t) − φ̃N (s)
∣∣4 = 3|t − s|2, Billingsley’s moment condition (Theorem 12.3 of

[Bil68]) shows that (φ̃N ) is tight in the uniform modulus. In addition, E φ̃N (t) = 0, E φ̃N (t)2 = t

(for 0 ≤ t ≤ T ), and φ̃N has independent increments, so Theorem 19.2 of [Bil68] implies the
weak convergence of φ̃N to standard Brownian motion.
An application of Proposition 3.1 then implies (i), once the condition (10) has been established.
(Condition (12) is again trivial, since SN is constant on the intervals between points of the
range of φN .) These simply say that the expectations of the time-changed process FN and of
the original process are sufficiently close to one another, and to S = limn→∞ ESN . Since the fi

are i.i.d., the latter condition is trivial.
For any positive integer n, by Lemma 2.5,(

n

k

)
(N − 1)n−k

Nn
=

1
k!

· n

N
· n − 1

N
· · · · · n − k + 1

N
·
(

1 − 1
N

)N−k

=
1
k!

( n

N

)k
e−n/N + O

(
N−1

)
,
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where the big O terms are uniform in n between 0 and TN for any fixed T . It follows that

lim
N→∞

√
N sup

t∈[0,T ]

∣∣∣∣e−t t
k

k!
−
(

n

k

)(
(N − 1)n−k

Nn

)∣∣∣∣ = 0 ,

where n = [Nt] completing the proof of (i).

(ii) The asymptotic second-order behavior goes essentially as in section 4.1. The only condition
in Lemma 4.5 which is not trivial is (28); but this holds as well, since

lim
δ→0

δ−1 sup
i

E
[(

vi(t + δ) − vi(t)
)21{vi(t+δ)≥vi(t)+2}

]
≤ 4 lim

δ→0
δ−1 P

{
2 jumps in (t, t + δ)

}
≤ 4 lim

δ→0
δ−1 P

{
Ei,1 + · · · + Ei,k−1 ≤ t

}
P
{
Ei,k ≤ 2δ

}
P
{
Ei,k+1 < 2δ

}
= 0.

As before, it remains only to show that SN (k) may be substituted for FN (k) in the limit,
which will follow if Proposition 3.2 may be applied to show that in the joint probability space
N1/3

(
SN (k)−FN (k)

)
converges to 0 in probability. In this case, the conditioning σ-algebra Rn

is trivial.

The condition (17) is satisfied for some D with q = 2, because S(t) = e−ttk/k! is smooth and
has vanishing first derivative 0 and negative second derivative at t0 = k, while being bounded
between 0 and S(t0). Condition (19) is simply an elementary statement about the variance of a
Poisson distribution.

To establish condition (18), observe that for t > k

SN (t) − ESN (t) − (SN (t0) − ESN (t0)
)
=

1
N

[tN ]∑
m=kN+1

ξ̃(m) .

The calculation is then the same as (26), with Lemma 4.4 in place of Lemma 4.2; t < k is nearly
identical. It follows that N−1/3

(
ck(kN) − NFN (k)

)→P 0, and so that N−1/3
(
c∗k − ck(kN)

)
converges to the desired distribution.

Let us consider now the joint distribution of the c∗k. Starting from a single sequence of exponential
variables Ei,1, . . . ,Ei,K+1, we define the random functions

(
f

(1)
i (t), . . . , f (K)

i (t)
)

by the above
recipe, with

f
(k)
i (t) =

{
1 if Ei,1 + · · · + Ei,k ≤ t < Ei,1 + · · · + Ei,k+1 ;
0 otherwise.

Since the differences
N−1/2

∣∣sup
t

F
(k)
N (t) − F

(k)
N (k)

∣∣
converge individually in probability to 0 (as N → ∞), any finite collection of them converges
jointly to 0. On the scale of

√
N the c∗k thus have the same joint distribution as the variables

F
(k)
N (k), and as N → ∞, (

N−1/2
(
c∗k − q(k)

))K

k=1

converges in distribution to a multivariate normal distribution with mean 0 and covariance
matrix

c(k1, k2) = q(k1)
(
q(k2 − k1) − q(k2)

)
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for k1 ≤ k2.

Fix a real γ, and define for real u and positive integers k

A(k, u) =
{∣∣f (k)

i (k) − f
(k)
i (k + γu)

∣∣ = 1
}
.

Then for k < k′,∣∣∣Cov
(
f

(k)
i (k + γu) − f

(k)
i (k), f (k′)

i (k′ + γu′) − f
(k′)
i (k′)

)∣∣∣
≤ P

(
A(k, u) ∩ A(k′, u′)

)
+ P

(
A(k, u)

)
P
(
A(k′, u′)

)
.

Each of these terms on the right is bounded above by P
{
E ≤ γ(u ∨ u′)

}2, where E is an
exponential variable with expectation 1. Thus,

lim
γ→0

γ−1
∣∣∣Cov

(
f

(k)
i (k + γu) − f

(k)
i (k), f (k′)

i (k′ + γu′) − f
(k′)
i (k′)

)∣∣∣ = 0 .

By Lemma 4.5, this is precisely the condition required for the corrections to c∗k of order N1/3 to
be asymptotically independent of one another. �

This example may readily be generalized by changing the parameters of the exponential variables.
For instance, if one wishes to have probability pi of throwing the ball into box i, simply assign
the variables Ei,j all to have expectation 1/pi, instead of 1. Another possibility is to change
the probability of picking a given box according to its contents. For instance, letting Ei,j be
exponential with expectation 1/j will distribute the balls to the boxes according to Bose-Einstein
statistics. In most imaginable variations, the nature of the limiting behavior is unchanged.
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