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1 

Random left truncation is modelled by the conditional distribution of the random 

variable X of interest, given that it is larger than the truncating random variable Y; 

usually X and Y are assumed independent. The present paper is based on a simple 

reparametrization of the left truncation model as a three-state Markov process. The 

derivation of a nonparametric estimator of a distribution function under random 

truncation is then a special case of results on the statistical theory of counting 

processes by Aalen and Johansen. This framework also clarifies the status of the 

estimator as nonparametric maximum likelihood estimator, and consistency, 

asymptotic normality and efficiency may be derived directly as special cases of Aalen 

and Johansen's general theorems and later work. Besides improving the interpretability 

of the results and considerably shortening proofs and derivations, the present 

framework also allows several generalizations. 
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1. Introduction. As has been known since Halley (1693), the construction of a life 

table involves following persons from an entrance age to an exit age and registering 

whether exit is due to death or end of observation for other reasons (censoring, in 

modern terminology). Kaplan and Meier (1958) initiated the modern mathematical­

statistical analysis of the life table in continuous time, or equivalently, the 

nonparametric estimation of a distribution function from right-censored observations. 

Kaplan and Meier also showed that their 'product-limit' estimator was the method of 

choice under delayed entry, or left truncation, even though this portion of their paper 

has escaped the attention of many later authors. Nevertheless the practical use of life 

table and product-limit methods under left truncation has flourished. For recent 

biostatistical applications of the theory of this paper see Keiding, Bayer and 

Watt-Boolsen (1987) and Lagakos, Barraj and De Gruttola (1987). 

A different empirical motivation for the study of non.parametric estimation under 

random truncation comes from astronomy, as recently summarized by W oodroofe 

(1985). In fact, a heuristic maximum likelihood argument for the ·product-limit 

estimator under random truncation was given by Lyn.den-Bell (1971). 

A third apparently independent line of work on this estimator concerns estimation 

of the residual in trunca~ed regression, cf. Bhattacharya, Chernoff and Yang (1983), 

Tsui, Jewell and Wu (1987) and Bickel and Ritov (1987). 

Following Woodroofe (1985) our basic setup is that of n i.i.d. replications of the 

conditional distribution, given Y <X, of a pair of independent random variables Y 

and X with distribution functions G and F, of which non parametric estimators are 

sought. (Obviously, this problem is ill posed unless ess. inf. Y ~ ess. inf. X < ess. sup. 

Y ~ ess. sup. X, which will be assumed throughout). 

The purpose of this paper is to demonstrate how an embedding of the basic 

nonparametric estimation problem into a simple Markov process model not only 

provides a considerably simpler and much more intuitive approach to a number of 

•ssues in the current literature, but also paves the way for several new results. (A 
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practical application of a slightly more general Markov process model, containing 

nonparametric estimation with delayed entry, was given by Aalen, Borgan, Keiding 

and Thormann ( 1980). A rather similar Markov process model for doubly censored 

data was recently suggested by Samuelsen (1988).) 

In the Markov process framework, the product-limit estimators of G and F may 

be derived as a direct consequence of results by Aalen and Johansen (1978), thereby 

placing the form and properties of the estimator in a natural perspective. (A different 

important perspective is that of selection bias models, cf. Vardi (1985)). It should be 

remarked here that another model of delayed entry, obtained without conditioning on 

the event that the entry time is less than the failure time, was studied by Aalen (1975, 

1978), see Andersen, Borgan, Gill and Keiding (1988) for a detailed discussion of 

'filtering'. 

The consistency and asymptotic normality of the estimators were studied by 

Woodroofe (1985, cf. 1987), who did not identify the asymptotic covariance structure, 

and by Wang, Jewell and Tsai (1986). Our results directly derive from those of Aalen 

and Johansen (1978), supplemented by Gill (1983) for the edge effects. (Although the 

latter references as well as the general framework of Aalen (1975, 1978) explicitly 

account for censoring and therefore pave the way for extension of our approach to left 

truncated and right censored data, we do not carry through this program here. Tsai, 

Jewell and Wang (1987) gave some results in this direction, using a classical 

approach). 

As an illustration of the power of the methods, we provide a simple direct 

derivation of the variance of the asymptotic normal distribution of 
A 

a, where 

a=P{Y <X}. Such results (in slight disagreement with ours) were conjectured earlier 

by Chao (1987) based on a complicated influence function approach. 

The maximum likelihood properties of the product-limit estimators were in 

particttlar discussed by Wang et al. (1986) and Wang (1987~, b), using Vardi's results 

on selection bias models as main framework. Wang's discussion of the marginal 
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nonparametric maximum likelihood property of the product limit estimator is long 

and complicated. We can be brief here, because our embedding makes the general 

results by Johansen (1978) on nonparametric estimation in continuous-time, finite­

state Markov processes directy available. Also, our discussion highlights the natural 

existence condition of 'no empty inner risk sets'; in the earlier literature reference was 

made to a general but not very intuitive condition of Vardi (1985). 

Little has been said so far in the literature on efficiency of the product-limit 

estimator, except for some complicated algebra by Huang and Tsai (1986) in the 

restrictive case where ess. inf. Y < ess. inf. X, ess. sup. Y < ess. sup. X. We give 

specific directions as to which paths to follow using functional differentation to derive 

efficiency results directly from the efficiency of the empirical marginals of the 

conditional distributions of X and Y given Y <X (Reeds, 1976; Gill, 1988; van der 

Vaart, 1988). 

In a final section we show how the present framework also covers an estimation 

problem in steady-state renewal processes studied by Winter and FOldes (1986). 

2. Interpretation of random truncation models in a simple Markov process model. 

Woodroofe (1985) surveyed the problem of nonparametric estimation of the distribu­

tions G and F of independent, positive random variables Y and X when sampling 

from the conditional distribution of (X,Y) given Y~X. Define the cumulative hazard 

functions 

y x 

r(y) = I dG(y)/(1 - G(y -)], <P(x) = I dF(x)/[1 - F(x -)] 

0 0 

Let aG < bG be the essential infimum and supremum of G so that (aG,bG) is the 

interior'of the convex support of G; define aF and bF similarly. 
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We assume throughout that Y and X have no common atoms; in particular 

P{Y=X}=O so that 

a= P{Y ~ X} = P{Y < X} 

which is assumed to be positive; this is then equivalent to assuming ac<bF. Towards 

the end of this section we briefly mention the modifications necessary when 
I 

P{Y=X}>O. To force identification we suppose also aG~~ and bG~bF. 

Define a stochastic process U={U(t), tE[O,oo]} by , 

U(t) = 0 when t < XA Y 

U(t) = 1 when Y~t < X 

U(t) = 2 when Y < X~t 

U(t) = 3 when x~ t < Y 

U(t) = 4 when x~ Y ~ t 

It is seen that U is equivalent to (Y,X) and furthermore that the conditional 

distribution of (Y,X) given (Y <X) is equivalent to the conditional distribution of U 

given U(oo)=2. 

PROPOSITION 2.1. U is a Markov process with U(O):::O and intensities given 

by the diagram 



df (t) / 
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d•(t) 

dr(t) 

In the conditional distribution given U(oo)=2 (that is, Y <X), U is again a Markov 

process given by the diagram 

where A
2 

= <P whereas 

P12{t,oo) dr(t) 
dAt{t) = dr(t) p (t- oo) = P{Y<XIX>t Y>t} 02' _, -

where P .. {t,u) are the transition probabilities in the original Markov process. 
. lJ 

Proof. Using product-integral formalism, Johansen (1978, 1987) defined 

finite--tJtate, nonhomogeneous Markov processes from general (not necessarily 

continuous) intensity measures. That the conditional process given U(oo)=2 is Markov 

with the stated intensity measures is well known and easily seen by direct calculation. 

D 
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Consider now the time-reversed conditional Markov process U(t) on (O,oo] with 

time running backwards and U(oo) = 2: 

The following proposition is a standard result in Markov processes and is easily proved 

directly. 

PROPOSITION 2.2. Consider a Markov process with states {0,1,2} defined from 

intensity measures A
1 

and A
2 

as in Proposition 2.1. The intensities of the backwards 

Markov process (the "backwards intensities") are given by 

- p 2 i-1 (oo,t-) 
dA.(t) = dA.(t) p ' ( t) , i=l,2. 

l l 2 . oo, 
,1 

0 

Define the (left-continuous) backwards cumulative hazard 

r(t) = I a?l)) , 
[t,oo) 

then an easy calculation from Proposition 2.2 gives d1\(t) = df(t), which of course 

also follows directly by symmetry of time. 

We now want to ask a converse question informally formulated as follows: given a 

Markov process 
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under which circumstances do there exist distribution functions G and F generating 

this in the above way, that is, such that 

d r ( t) = dA ( t) 

P{Y <X I X~t, Y~t} 1 

dF(t)/[1 - F(t-)] = dA
2
(t) , 

where Y and X are independent with distribution functions G and F. 

As preparation, we consider arbitrary integrated intensity measures A on [O,oo]; 

define the minimal convex support E (which is an open, half-open or closed interval) 

as the smallest convex set such that A(~) = 0. Define c to be a termination point of 

A if either A( { c}) = 1 or A( c-f,c] = oo for all f>O, but not both. 

PROPOSITION 2.3. Let A be an intensity measure on (O,oo) with minimal 

convex support with endpoints a<b. A corresponds to a probability measure if and 

only if A is finite on [a,b-f) for all f>O and it has one and only one termination 

point, which is the essential supremum b. 

0 

PROPOSITION 2.4. Let U=(U(s), O~s~oo) be a Markov process with state space 

{0,1,2}, intensity measures A.: i-1 -+ i, i=l,2, all other transitions having zero 
1 

intensity and P{U(O)=O}=P{U(oo)=2}=1. Define A. (the backwards intensity 
1 

measure from i to i-1) by 
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and assume that A
1

, A.
2 

as well as i\, A
2 

(with time running backwards) correspond 

to probability measures. 

Then there exist distribution functions F and G · given by 

x 
1 - F(x) =II (1 - dA.

2
) , G(y) = II (1 - dA

1
) 

0 ~,oo) 

such that the Markov process corresponds to the left truncation model specified by the 

conditional distribution of independent random variables Y and X on (O,oo) with 

distribution functions G and F, given. Y <X. These are the unique G and F 

subject to a 0 ~aF' b 0 ~bF. 

Proof. The conditions directly imply .that F and G are well defined distribution 

functions. We need to check that the construction in Proposition 2.1 of a Markov 

process from these F and G leads us back to the integrated intensities A
1 

and A
2

. 

Let 

~ = JdF/(1 -F_), r = JdG/(1-G-,..-) . 

Then immediately ~ = A
2 

and it is required only to show that 

d r ( t) = dA ( t) 

P{Y<XIY~t,X>t} 1 

Starting from the left hand side we have 

,. 



- 11 -

dG(t)/[1-G(t-)] 

I ~ 1ggfrl> 
t~y 

dG(t)/G(t) 
-----------I [1-F ( y) ]/ [ 1-F(t)] d§fy~ 

t~y G(t)/G(y) 

di\ ( t) 

dA.
1 
( t) 

-----------

I 
P{U(y+ )=llU(t+)=l} _ 
------ dA

1
(y) 

t< P{U(t+ )=llU(y+)=l} 
_y 

Since A
2 

has its only termination point at its essential supremum, it has no internal 

increments of size 1 so that 

P{U(t+) = l}P{U(y+) = 1} > 0 => P{U(t+) = 1, U(y+) = 1} > 0 

and we may then reduce the integrand to 

P{U(y+) = 1} I P{U(t+) = l} 

and write the expression as 



dA
1
(t)P{U(t+)=l} 

J P { U(y+) = 1 }dA
1 

( y) 

tSy 

dA
1
(t)P{U(t+)=l} 

- = dA (t) 
P{U(t-)=0} 

1 
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D 

2a. The Markov process parametrization (A
1

, A
2

) and the truncation model 

parametrization (G, F). 

Note that while A
2
=<P corresponds to the distribution function F 

2
=F, A

1 

corresponds to the distribution function 

Fl(y) 
y 

=II (1 - dA
1 
(u)) 

0 

y 00 

= J[1 - F(s)]dG(s)/ J[1 - F(s)]dG(s) 

0 0 

y 

= a-
1 

J[1 - F(s)]dG(s) 

0 

(2.1) 

and that G may be recovered from F 
1 

and F 
2
=F by the inverse relation 

y 

G(y) = a J[1 - F 
2
(s)]-

1
dF 

1 
(s) 

0 

since 
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00 00 

a= J[1 - F(s)]dG(s) = 1/ J[1 - F 
2
(s)]-

1
dF 

1 
(s) 

0 0 

The key point of this paper is the interplay between these two alternative 

representations: the 'random truncation model' specified by G and F and the 

Markov process model specified by F 
1 

and F 
2

. 

The second representation of a may be taken as starting point for a further 

discussion of the condition that i\ correspond to a probability measure (in the 

presence of the other conditions); one can prove that this happens if and only if 

00 

J(1-F
2
(s))-

1
dF

1
(s) < oo ; 

0 

i.e. that when we calculate "a", we find a>O. 

Note that if A
1 

and A
2 

are discrete and P{U(O)=O}=P{U(oo)=2}=1, the condition 

that they correspond to probability measures implies that i\ and A
2 

do too. 

2b. A third parametrization by the marginal conditional distributions. 

Woodroofe {1985, Theorem 1) showed that the left truncation model (given by 

distribution function G and F) may be parameterized by the marginal conditional 

* * distributions G and F given by 

* * G (y) = P{Y~ylY<X} , F (x) = P{X~xlY<X} , 
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In fact if F and G are any two distribution functions without common atoms such 

that dF / ( G _ -F _) and dG / ( G-F) are respectively a forwards and backwards 

intensity measure (so F~G!) corresponding to probability distributions F and G, 

then F and G are the marginals of X,YIY <X in the left truncation model with 

parameters F and G. This reparametrization will turn out to be convenient when 

discussing efficiency of the estimators. (A very general discussion of 'order conditioned 

independence' of random variables was recently given by Kellerer {1986) ). 

2c. The possibility of ties between Y and X. 

Much of the preceding and following theory can be quite easily extended to the 

case when F and G have common jumps - i.e. ties between the X's and the Y's 

are possible. The Markov model of Proposition 2.1 has to be extended with a third 

route corresponding to X= Y and the intensities correspondingly modified: 

dr ( t) ( 1--L\~ ( t) ) 

QJ 
d~(t) 

QJ y < x 

/ dl'(t)M(t) 
~ QJ y = x 

~ 
0 [£] y > x 

dt ( t )( 1--L\r ( t) ) dr( t) 

thus U(t) = 5 when 0 ~ X = Y ~ t. 

The theory is now also different according to whether we observe replicates of X,Y 

given X<Y or given X~Y. The first case is much easier to handle since conditional ,, 
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on U{oo)=2, U remains a Markov process; in the second case, when we must condition 

on U{oo)=2 or 5, U is no longer Markov. 

3. Estimation. In this section we assume the distributions G and F to be 

continuous with support (O,oo); then the corresponding integrated intensities r and 

* * ~ are also continuous. By Y , X we denote random variables with the conditional 

* * * * distribution of Y, X given Y <X, and G , F , r , ~ denote distribution functions 

and integrated intensities in this distribution. 

We assume that a sample of n independent identically distributed replications 

** ** ** ** (Y
1
,X

1
), ... ,(Y ,X ) of (Y ,X ) is observed. Corresponding to (Y. ,X. ), i=l, ... ,n, we 

n n l l 

construct (conditional) Markov processes U. as in Proposition 2.1, which yields the 
l 

following interpretation of naturally defined counting processes 

* N
1
(t) =#{Yi~ t} 

=#{jumps by ul, ... ,un from 0 to 1 in [0,t]} 

* N
2
(t) = # {Yi < Xi ~ t} 

=#{jumps by ul' ... ,un from 1 to 2 in (0,t]} . 

With respect to the self-exciting filtration the bivariate counting process 

N(t)=(N
1
(t),N2

(t)) has compensator A(t)= (A
1
(t), A

2
(t)) given by 

t t 

Al(t) = J Vl(t)dAl(t) ' A2(t) = I V2(t)d~(t) 
0 0 

where.we have used the fact (Proposition 2.1) that A 2 =~ and where 
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define also J.(t)=I{V.(t) > O}, i=l,2 . 
l l 

3a. Estimation of the distribution of X. 

According to standard methodology for statistical analysis of counting processes 

(Aalen, 1975, Section 5D, 1978; Aalen and Johansen, 1978) we use as estimator of the 

integrated intensity <P{ t) the Nelson-Aalen estimator 

It is then a basic result in the statistical analysis of counting processes that, defining 

t 

~(t) = J J
2
(u)d<P(u) , 

0 

the process ~(t)~(t) is a mean zero, square integrable martingale with predictable 

variation process given by 

t J (u) 
<~ - ~>(t) = J-2

-d<P(u) . 
0 V2(u) 

(Note that if <P has discrete components, the factor d<P(u) should here be replaced 

by [1-Ll<P(u)]d<P(u)). These properties imply the unbiasedness result 

E( ~(T)) = E( ~(T)) (3.1) 

for any stopping time T (both sides may be oo) and suggest the estimator 
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or a 'Greenwood-formula' - modification, acknowledging the discrete nature of ~: 

of the mean squared error function r(t)=E[<~~>(t)]. 

Let us take a concrete look at the process J
2
(u)=I{V

2
(u)>O}. Since we have 

* * assumed that ess inf X=ess inf Y=O, we will with probability one have Y(l)>O, Y(l) 

* * as usual denoting the smallest Y , so that V
2
(u)=O on a proper interval [O,Y~ 1 )]. It 

may happen that V
2
(u)=O on further intervals (U

1
,Z

1
], ... ,(Uk,Zk]' Zk <X(n)' (it 

* 
certainly becomes 0 for u> X(n)). The serious problem is that in this case of 'empty 

inner risk sets' ~~(U.)=~N 2 (U.)/V 2 (U.)=1, 
11 using up" the probability mass in the 

1 1 1 

middle of the observation interval. 

The interest in the literature has focussed on estimating not the integrated 

intensity of X but rather its distribution function F or (equivalently) its survivor 

function 1-F. The formal Aalen and Johansen (1978, Theorem 3.2) answer is to use 

the product-limit (or generalized Kaplan-Meier) estimator 

1 - F(t) = II [1-d~(u)] 
[o, t] 

where the product integral reduces to the finite product 
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Unbiasedness and mean square error results derive from the fact that defining 

- * 1 - F(t) = II [1 - dq, {u)] 
[o, t] 

we have that 

* t * 1-F (t) J 1-F (u-) A _ 

_ -1 = _ d[q,(u) - q,(u)] 
1-F(t) O 1-F(u) 

is a zero-mean, local square integrable martingale with predictable squared variation 

process given by 

< {1-F(t)}/{1-F(t)}-1 > 

j [1-!(u-ir dd - htui 
O 1-F(u) 

t A 2 J (u) 

I [1-:(u-)] 2 dq,(u) . 

O 1-F(u) v;w 

Hence for any bounded stopping time T we get 

A 2 

E[l-:(T)] = 1 . 
1-F(T) 

Taking into account the discrete nature of the estimator 1-F, the squared variation 
,,, -

of (l-F)/(1-F) may be estimated by 
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t 

J J
2
(u). (V

2
(u) - l)V

2
(u)-

3 
dN

2
(u) , 

0 

and it follows that a natural estimate of the covariance function of 1-F is given by 

Greenwood's formula (cf. Meier (1975)) 

sAt 

cov(l-F(s),1-F(t)) = {1-F(s)}{l-F(t)} J J
2
(u) [V

2
(u){V

2
(u)-1}]-

1
dN

2
(u). 

0 

Note that since d~(Ui)=l, i=l, ... ,k+l, and in particular d~(U 1 )=1, the estimator 

A * 
1-F( t )=0 for t~ U 

1
. This is a serious problem if there exist values of Y j (and hence 

* Xj) larger that U
1 

because the estimator of the distribution of X will then be 

* supported by a proper subset consisting of the smaller observed X .. Woodroofe (1985, 
J 

p. 168) recognized the problem and suggested an ad hoe mending. We shall see in 

Section 4 below that the formal nonparametric maximum likelihood estimator does not 

exist in this case. Perhaps the cumulative hazard is more appropriate than the 

distribution function for communicating the results of the estimation since the hazard 

at any time x is the same for all conditional distributions of X given X>x
0

, x
0 
<x. 

3b. Estimation of the distribution of Y. 

By reversing time it is immediate that the backwards integrated hazard f(t) may 

be estimated by a backwards Nelson-Aalen estimator; similarly G( t) may be 

estimated by a generalized backwards Kaplan-Meier estimator. (Care should be taken 

regarding left or right continuity etc.) 

The various complications are exactly as for the estimation of the distribution of 

X, and moreover, there are complications in estimating both distributions or not at 

all. In particular, there is no information in the sample on the distribution of Y on 

* 
[X(n)' oo). 
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Alternatively one might start from the Markov process representation of Section 

3a, then estimators of the integrated intensity 1\ and the corresponding distribution 

function F 
1 

are immediately given as 

and the corresponding product-limit estimator 1-F 
1 

where F 
1 

is nothing but the 

* A - A -empirical distribution function of the Yi. Since the martingales A
1
-A

1 
and A

2
-A

2 

are orthogonal by the general theory of statistical analysis of counting processes, we 

further have the important property of approximate independence of A
1 

and A
2

; this 

property will be crucial for the asymptotic theory of Section 4. 

Since F 
1 

estimates 

y 

F
1
(y) = a-

1 J (1-F(s)] dG(s) 

0 

one could then apply the inversion 

y__ 

G(y) =a I {1-F(s)}-
1
dF l(s) 

0 

00 

a= I {1-F(s)}-
1
dF l(s) 

0 

(3.2) 

however it is not immediate that G equals the simple product-limit estimator G of 

the time-reversal approach and that G-=Cr= fGdF. This is however a direct conse­

quence of the propositions on Markov processes of Section 2 and the transformation 

invariance of maximum likelihood estimators which we discuss in the next section. 
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4. Nonpa.rametric maximum likelihood estimation of (G,F). The purpose of this 

section is to show that ( G ,F) is the non parametric maximum likelihood estimator 

(NPMLE) of (G,F), and that this fact is a direct consequence of the embedding of 

the left truncation model into the Markov process model, for which results on NPMLE 

were provided by Johansen (1978). First we discuss the easier result that F is a 

* * conditional NPMLE of F given Y 1' ... ,Y n· 

4a. Conditional nonparametric maximum likelihood estimation of F given 

* * y 1, ... ,Y n· 

As an introduction consider the factorisation of the ("full") likelihood 

lik (G,F) = a-n II dG(Y.)dF(X.) 
• l l 
l 

* * into the marginal likelihood of ( G ,F) based on (Y 
1
, ... , Y n) and the conditional 

* * likelihood of F given (Y 
1

, ... ,Yn): 

lik (G,F) = marg.lik *(G,F) cond.lik * *(F), 
Y ~ IY 

where in particular 

* n dF(X.) 
cond.lik * *(F) = II 

1 

x IY i=l 1-F(Y.) 
- - l 

As in the derivations of the NPMLE for censored data by Kaplan and Meier (1958) 

and Johansen (1978), it is seen that the candidates for the maximiser F of the ., 
* * conditional likelihood must have support ~{X 1 , ... ,Xn}, and for such F we have the 

simple combinatorial result 
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* * 
cond.lik(F) 

dF(X(l)) dF(X( 
2

)) 

* * · * v 2 ( x( ))-v2(x( l))+1 
[1-F(X -) ] n n-

(n) 

using dF(X(i))=F(X(i))-F(X(i-l)) and the definition d<P=dF /(1-F _). Recall that a 

discrete intensity measure '11 with support contained in n points a
1 
< ... <an 

corresponds to a probability measure if and only if O~d\ll(ai)<l, i=l, ... ,n-1, 

dw(an)=l. The maximisation problem is then trivial: if and only if V
2
(X(i))>l, 

i=l, ... ,n-1 (no empty inner risk sets), the solution exists and is given by 

d~(X.) = 1/V
2
(X.) 

1 1 

or exactly the Nelson-Aalen estimator ~ of <P. By transformation invariance of 

maximum likelihood estimators (the relevant transformation here being the product 

integral) it follows that the conditional NPMLE of the survivor function 

1-F=II(l-d<P) is the product-limit estimator 

1-F = n(1-d~) 

studied in Section 3. 

This solution as well as the condition of no empty inner risk sets provide explicit 

examples of Theorem 2 and condition (2.10) of Vardi (1985) (as pointed out earlier by 
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Wang et al. (1987) and Wang (1987a)), since the left truncation model may be 

interpreted as a selection bias model. 

4b. F is not always the unconditional MLE. 

Before proceeding to the discussion of (G,F) as NPMLE in the full likelihood, 

let us remark that if G cannot vary freely, it is easily seen that the NPMLE F of F 

may differ from F. Indeed Vardi (1985) showed that if G is known, 

i n 

F(x(;)) = l G(x(;))-
1 
I l G(x(;))-

1 

j=l j=l 

(a 'weighted empirical distribution function'), and Wang (1987b) generalized this 

analysis by noticing that if G varies across a parametric family G= {Go= IJE0}, then 

the NPMLE of F is obtained from F by replacing G by G 0, where 0 is the 

* * 
MLE derived from the conditional distribution of Y given X . (It is a corollary of 

* 
this analysis that when F varies freely, X is "M-ancillary" (Barndorff-Nielsen, 

1980) w.r.t. 0.) 

These results strongly suggest that the NPMLE of F in the full model may be 

similarly obtained by replacing G by G in F. However concrete calculations along 

these lines, as provided by Wang (1987a), are combinatorially involved, and we show 

in the next subsection that the independent parametrisation provided by the Markov 

process representation of the left truncation model furnishes an immediate answer. 

4c. NP MLE in the left truncation model. 

To the original left truncation model given by continuous distribution functions 

G, F varying freely over all distributions with convex support (O,oo) except that . 
dGdF::O we define a conditional Markov process model as specified in Proposition 2.1 

above. 
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NPML estimation in such Markov process models was studied by Johansen (1978) 

who showed that the NPMLE exists if the model is extended to allow for arbitrary 

increasing right-continuous integrated intensity functions with increments < 1. 

Moreover, the likelihood is of the form 

dN.(t) V.(t)-<lN.(t) 

II II dA.(t) 
1 

(1 - dA.(t)) 
1 1 

i t l l 

It follows directly that the NPMLE of A
1 

and A
2 

are given by A
1 

and A
2 

as 

specified in Section 3. 

Now the estimates A
1 

and A
2 

are themselves integrated intensities defining a 

Markov process 

and by the results of Section 2 one may recover distribution functions F
0 

and G
0 

corresponding to a left truncation model, if and only if there is no inner jump of size 

one of Ai (i=l,2) - this could only happen for A
2 

because A
1 

corresponds to an 

ordinary empirical distribution, with jumps of size j-
1
, j=n, ... ,l, in that order. When 

F0 and G
0 

exist, they coincide with F and G by Proposition 2.4 applied to A., 
l 

i=l,2, and it furthermore follows from the transformation invariance of maximum 

likelihood estimators and the definition of backwards intensities that G of Section 3b 

equals G. 

Finally, to show that an NPMLE in the left truncation model does not exist if 

there are inner jumps of size 1 in the NPMLE for the Markov model we now only 

need to remark that one can then make the ("discrete") likelihood function in the left 
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truncation model arbitrarily close to the maximum likelihood in the Markov model, 

without however being able to achieve this value. 

As a corollary of the NPMLE property of 1-F and G we remark that the 

NPMLE of 

00 00 

0t. = P{Y < X} = P{Y ~ X} = J G(u)dF(u) = J [1 - F(u)]dG(u) 

0 0 

is 

00 00 

a= J G(u)dF(u) = 1/ J {1-F(u)}-
1
dF 

1
(u) 

0 0 

5. Asymptotic results. In this section it is assumed throughout that the distributions of 

G and F are continuous with support (O,oo) and integrated hazards r and <P. 

For the asymptotic theory we shall use two alternative parametrizations: that in 

terms of 1-F and G with associated product limit estimators 1-F and G, and 

that from the counting process integrated intensities A
1 

and A
2 

(with corresponding 

d.f.s F
1 

and F
2
=F) with associated estimators A

1
, A

2
, F

1
, F

2
. 

We need both parametrizations in the asymptotic theory. Delicate tightness 

problems near 0 and oo have been handled for product-limit estimators ( cf. Gill, 

1983, Ying 1987) so that here the first approach is preferable, while the second has an 

advantage for computation of covariances because of the orthogonality and hence 

asymptotic independence of the martingales A
1
-1\ and A

2
-A

2
. Thus 1-F,G are 

used for establishing the limit theorems and the parameters of the asymptotic 

distrib,ution of each estimator separately. Calculation of parameters in the joint 

asymptotic distribution of estimators and functionals of these is more conveniently 
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based upon 1\ ,A
2
; this will be illustrated by a derivation of the asymptotic 

distribution of a. 

5a. Convergence on [l,M], 0 < £ < M < oo. 
A A 

As we have seen, in interpreting <I> and 1-F in a practical situation, it is rather 

important to take account of the fact that d<I> can really only be estimated on the 

interval or intervals {t:V
2
(t)>O}. In demonstrating how the counting process 

formulation of the left-truncation problem can be used in a very direct way to derive 

asymptotic distribution theory for our estimators, we shall similarly take care of this 

problem by first only estimating 

on an interval [ £,M] whose endpoints t= £, M satisfy P {Y <t~XIY <X} > 0. 

Let ~€, ~l, Fl and :Fl be defined similarly to <I>l and Fl, and recall our 

notational conventions; Y and X are independent random variables with distribution 

* * functions G and F; (Y. ,X.) for i=l, ... ,n denote independent replicates of (Y,X) 
1 1 

* * conditional on Y <X. Thus P{Y. <X. }=1 while P{Y <X}=a<l. Let us also write 
1 1 

1 * * * * v
2
(t) = E(n-V

2
(t)] = P{Y. < t < X.} = P{Y. < t}-P{X. < t} = C(t), 

1 - 1 1 1 

in Woodroofe's notation. We have 

v
2
(t) = P{Y < t ~ X, Y < X}/P{Y < X} = G(t)[l - F(t)]/ a 

~ G(£)[1 - F(M)]/ a> 0 
' 

for £~t~M by the assumption that Y and X have support (O,oo). 
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Now n -ly 
2 

is the difference between two empirical distribution functions, so by 

the Glivenko-Cantelli theorem 

as n ---+ oo, where II · II ~ denotes the supremum norm over [ t:,M]. Thus by 

boundedness away from zero of v
2 

we also have 

II v;
1 

- nv;
1 II~---+ 0 a.s. 

as n---+ oo, and J
2 
= 1 on [t:,M] for all sufficiently large n a.s. Thus (>f = q;f and 

pf =Ff on { t:,M] for all sufficiently large n almost surely. 

With these preparations made, consistency of cf?l and pf as well as weak 

.l.Af f .l.Af f 
convergence of n 2 (<l> -cl> ) and/or of n 2 (F - F ) follow immediately from standard 

results on the Nelson-Aalen and the product-limit estimators in the counting process 

literature. 

PROPOSITION 5.1. We have 

PROOF. Apply the inequality of Lenglart (1977) exactly as Gill (1980, 1983), cf. 

Andersen and Borgan (1985, Appendix). 

Corollary 5.1 We have 

11 ~ - ~ 11~ ~ o and 11F-F11~ ~ o. 0 
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Corollary 5.1 is obtained easily from Proposition 5.1, using 

by (3.1). 

Corollary 5.2 The event of the existence of s<t<u~M with J
2
(s) = J

2
(u) = 1, 

J
2
(t) = 0, ("empty inner risk sets") is asymptotically negligible. 

D 

it is curious that the probabilistic result of Corollary 5.2 (obtained easily from 

Corollary 5.1, cf. Woodroofe (1985, p. 172)) is derived via the proof of consistency of a 

statistical estimator! 

THEOREM 5.1 Under the stated conditions, 

(5.1) 

as n ~ oo, where Wf. is a Gaussian martingale with zero mean and variance function 

t 

var Wf.(t) = J v
2
ls) d~(s); 

(. 

we also have (in fact, jointly) 

(5.2) 

(·) 
Furthermore, f n V

2
(s)-

2
dN

2
(s) is a consistent estimator (in II · II~) of the 

(. 

variance function of w(.. 

D 
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PROOF. We use Rebolledo's (1980) version of the martingale central limit theorem 

and note that the verification of Rebolledo's conditions is direct in the approach used 

here, establishing Glivenko-Cantelli convergence for V 
2
/n. This approach was used 

earlier by Gill (1980, Section 4.2; 1983) for the product-limit estimator in a model of 

random censorship (though the proof is valid in our situation too (Gill, 1980, Chapter 

6)), and by Andersen and Horgan (1985, Appendix) for the Nelson-Aalen estimator in 

a general model, including the present one. 

0 

Remark. Aalen (1975, Theorem 8.2), cf. Aalen (1978, Theorem 6.4) proved weak 

convergence of the Nelson-Aalen estimator {in a general model containing the present 

one) using martingale central limit theory; Aalen and Johansen {1978, Theorem 4.6) 

treated the product-limit estimator in a general Markov process model (containing 

ours). These early results relied on uniform integrability of the random variables 

nJ
2
(t)/V

2
(t) over n=l,2,... and tE[f,M], which is true but requires some 

calculation, see Aalen {1976, Proof of Lemma 4.2 in Appendix). Indeed, subsequent 

developments in the theory of stochastic integrals also made Aalen and Johansen's 

assumption ( 4.1) unnecessary. 

0 

One should note that the counting process framework allows a direct identification 

from the martingale central limit theorem of the asymptotic covariance structure of 

each of the estimators <i> and Sx which was already suggested by the small sample 

arguments of Section 3a; thus no heavy calculations as used by Wang et al. (1986) are 

necessary. We return below to the study of G and the joint distribution of §x 

and a. 
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5b. Convergence on [ O,oo]. 

Since v
2
(t)>O for all tE(O,oo) one can ask whether or not these results can be 

extended to yield weak convergence in D(O,M] or D[t,oo] or even D[O,oo], cf. 

Woodroofe (1985, Section 6; 1987). The extension of (5.3) at the righthand endpoint of 

the time interval was carried out by Gill (1983) for the random censorship model under 

natural additional conditions, see Ying (1987) for an important supplementary result. 

The analogous conditions in the left truncation model are automatically satisfied. We 

shall use the same techinques in order to study the lefthand endpoint problem, which 

may be of greater practical importance. 

Since Sx and Sx are both close to 1 near t=O, one easily discovers that the 

extension problem for (5.3) is hardly more difficult than that for (5.1), on which we 

will concentrate. Also there is no hope of making an extension unless the limiting 

process can be extended too; for this we need to assume (cf. (5.3)) that 

l 

f d<f>l s~ ds < oo 
v 2 s 

0 

Now 

l l 

I d<f>l sJ ds _ a J dF( s) 

0 
v2 s -

0 
G(s)(l-F(s))2 

Since F(s) --+ 0 as s --+ 0, we have finiteness if and only if 

(5.4) 
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for some {and then all) f>O. From now on we assume (5.4) holds. We will have our 

required result 

in D[O,oo) 

t A D 
n (F-F)-+ (1-F) · W in D[O,oo] 

where W is wt with €=0 of Theorem 5.1 if for all 8>0 

lim limsup P{nt II~-~ II~> 8} = 0 
do n-+oo 

and for all 6>0 

lim limsup P{nt II cl>-~ II~> 6} = 0 
€.1.0 n-+oo 

(5.5) 

{5.6) 

(5.7) 

see Billingsley (1968; Theorem 4.2) for the basic idea here and Gill (1983; Proof of 

Theorem 2.1) for a similar application. We look at the easier term (5.7) first. 

Now since cl> - ~ is a square integrable martingale, Lenglart's {1977) inequality 

gives us 

t 6
2 

P{n ll<i>-~ll~>t5}~7J+P{n<<i>-~>{t) > 'ij} 

But 

• A - Jf. nJ2(s) Jf. n+l 
n < ~ - <I> > ( t) = V (s) d~(s) ~ 2 d<I>(s) 

0 
2 

0 
V

2
(s)+l 
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Now since V 
2 

( s) is binomially distributed, 

So 

f f 

E(n<~--4>( l)) < 2 I d<P(s) 

0 
G(s) ( 1-F(s)) 

< 2a J dF(s) 

(1-F( ~ 0 ))
2 

0 
G(s) 

f 

for all f~f 0 . Thus having assumed f dF(s)/G(s)<oo, we can prove the required result: 
0 

for by Chebyshev's inequality, taking f arbitrarily small, we can bound n<~ - <i>> 
f 

by an arbitrarily small constant with probability arbitrarily close to 1, uniformly in 

n; and this establishes (5. 7). 

As far as (5.6) is concerned, we note that 

with probability - 1 as n - oo by Corollary 5.2. It suffices therefore to show 

.1. * p * 
n 2 <P(Y(

1
)} - 0 as n - oo. Now A

1
(Y(

1
)) is the minimum of n i.i.d. exponential (1) 

random variables, hence 
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Putting t=<P-1(n-tc), it suffices to prove <P(t)
2
/A

1
(t) --+ 0 as dO. One easily 

verifies that 

00 i 

J~<oo{:::} J~!O as t!O. 

0 0 
1 

But then 

00 

<P(t) 2 /A 1 (t)~<P(t)J~--+O as t!O, 

0 1 

as required. 

5c. Joint Weak Convergence. 

By symmetry we can immediately write down weak convergence theorems for 

nt(f;M_fM) and/or nt(GM-GM) and under the condition f~dG/(1-F)<oo drop the 

"M". A joint weak convergence result, e.g. for nt(:Fi-Fi) and nt(GM-GM) is a 

little trickier. What can be argued is the following. 

We certainly do have joint weak convergence of nt[n-
1V

1
(t) - v

1
(t)], 

nt[n-
1
V

2
(t)-v

2
(t:)], nt(A~-A~) and nt(A~-A~) in R

2
x(D[t,M])

2 
to a bivariate 

normal distribution and an independent pair of independent continuous Gaussian 

martingales. 

Consider the Markov process U starting at time t= t in states 0, 1 and 2 

according to the probabilities v
1
(t), v

2
(t), 1-v

1
(t)-v

2
(t) and developing in the time 

interval [t:,M] according to the finite intensity measures A~ and A~. For this 

process we can write 



- 34 -

P{U(t) = O} = v
1
(c) 11 (1-dA1) 

( f' t] 

P{U(t)=l}=v
1
(c) J dA1(s) 11 (1-dA;)+v

2
(c) 11 (1-dA;) 

(c,t] (s,t] (c,t] 

and from this we can calculate 

A~(t) = J P{U(s-) =0} dA1(s) ' 

( t , M) P { U ( s) = 1 } 

GM(t) = II (I -A~) 
(t,M) 

Thus 1-Ff=II(l-dA;) and GM can be constructed from v
1
(£), v

2
(£), A1 and A~ 

by the composition of a sequence of functionals involving nothing more than product 

integration, ordinary integration, and ordinary sums, products and ratios. By the 

transformation invariance of maximum likelihood estimators, 1-Ff and GM are 

exactly the same functionals of V
1
(c)/n, V

2
(c)/n, A1 and A;. Now product 

integration and (sum) integration of one empirical process with respect to another are 

compactly or Hadamard differentiable mappings from (D[ £,M])
2 

to (D[ c,M]) with 

respect to the supremum norm under bounded-variation restrictions; see Gill {1989, 

Lemma 3 and the following Remark) [the mapping (x,y) -+ /·)xdy] and Gill and 

( . ) 
Johansen (1987, Theorem 14) [the mapping (x) -+II (l+dx)]. Sums, products and ra-

tios are also compactly differentiable (in the case of ratios, as long as the denominator 

is bounded away from zero). So by the functional version of the 8-method (see Gill 

(1989, Theorem 3) or Reeds (1976)), weak convergence carries over directly. 

When the extra conditions 

00 "' I (l - F)-
1
dG < oo, 

0 

(5.8) 
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hold, the previously obtained extension results can be again invoked to show that we 

l. • l. • 2 
have joint weak convergence of n 2 (F-F) and n 2 (G-G) in (D[O,oo]) . Another 

compact differentiability calculation leads to asymptotic normality of nt(G--a) where 

a= f (1-F)dG. 

Since G and F will be dependent, the identification of the covariance structure 

is (as already mentioned) more conveniently based upon the orthogonal, and hence 

asymptotically independent martingales 

(·) 

M. = N. - I Y.dA. ' i = 1,2 . 
I I I I 

0 

from the counting process approach. 

Recall that F 
2
=II(l-dA

2
)=F while F 

1
=II(l-dA

1
) is given by (2.1). Also F 

2
=F 

while F 
1 

is the empirical distribution of the Yi. By the simultaneous representations 

of F.-F. (i=l,2) in terms of M. and the same martingale central limit theorem and 
I I I 

extension results as before we can prove joint weak convergence in (D[O,oo])
2 

of 

nt(F.-F.), u=l,2, to two independent processes (1-F.) · W. where W. is a zero mean 
I I I I 1 

t 1 
Gaussian martingale with var W.(t)= f (v.(s))- dA.(s). In fact (1-F

1
) • W

1 
has the 

I O I I 

same distribution as B
0 

oF 
1
, where B

0 
is a Brownian bridge on [O,l]. By the 

invariance properties of maximum likelihood estimators (see Section 4c) the simple 

relations quoted at the end of Section 2 between F, G, F 
1

, F 
2 

and a hold between 

the corresponding estimators. These rather simple expressions together with the simple 

form of the asymptotic covariance structure of F 
1 

and F 
2 

enable one to write down 

the asymptotic covariance structure of F, G and a rather easily. 
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5d. Asymptotic distribution of a. 

As an example of these calculations we shall here derive the variance of the 

asymptotic normal distribution of a. 

THEOREM 5.2. Suppose F and G are continuous with common interval of support 

(O,oo). Then frl( fr-a) ~ fi N(O,u
2
) with 

2 
,<T 

<oo 

00 00 

a3 J dG _ a2 + a3 J [1-GJ
2 

dF 
1 F 1 F ti 

0 0 

00 00 

a3 J dF _ a2 + a3 J [FJ
2 

dG 
ti G 1 F' 

0 0 

if and only if (5.8) holds. 

Proof. We use the representation 

00 

a-1 = J (1 - F 2)-ldF 1; 

0 

a is given by the same relation for the estimators. We already know by the 

00 

representation a= f GdF and the generalized 0--method (Gill, 1988, Theoremp and 
0 

Lemmap and Remark) that frl( i:t-a) is asymptotically normal with finite variance 

under condition (5.8). (We later check that this is equivalent to finiteness of a2is 

unbounded and frl [(F 2-F 2)/(1-F 
2

)] only converges in distribution on D[O,M] for 
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each M <oo, we split the integral in the new representation for a -l into an integral 

over D[O,M], to which the generalized S-method can again be applied, and a 

remainder term, integrating over (M,oo). For the remainder term, we have 

00 00 1 

J (1-F 2)-ldF 1 = J (1-F)-)1-F)dG = a-1(1-G(M)) 

M M 

and similarly for the estimators. Thus 

'"(A-1 -1) 
1 .u.a -a 

ZM +RM ' ,n ,n 
say. 

Since frl(ik-a) converges in distribution, 1-G(M)--+O as M--+oo, and frl(G-G) con­

verges in distribution to a tied down (Gaussian) process (the limiting process converges 

almost surely to 0 as M--+ oo), we have easily 

lim li msup P(IRM l>f) = 0 
Mtoo n--+oo ,n 

for all f>O. By the generalized S-method 

(5.9) 
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as n----+ oo, for each M<oo. So ZM converges in distribution to a zero mean normal 
i ,n 

variate whose variance can be calculated by replacing .[Il(F 
1
-F 

1
) and 

[Ii [(F
2
-F 

2
)/(1-F 

2
)] in (5.9) by the limiting independent Gaussian processes described 

above. After that we can simply let M ----+ oo to obtain the asymptotic variance of 

fri(i~- 1 -a- 1 ). Combining these two steps, we find that this variance is a sum of two 

variances O'~ and O"; coming from the asymptotically independent terms in (5.9), 

namely 

and 

00 00 

u; = J J as cov 

s=O t=O 

which must be finite under (5.8). The double integral is more conveniently evaluated 

as twice that over {O~t<s<oo}; also use (1-F 
2
)-

1
dF 

1
=a-

1
dG. Thus 

00 

J (1-F)-la-1dG - a-2
, 

0 

sAt 

G(ds)G(dt)F(du) 

G(u) [ 1-F(u)] 2 



Hence 

-1 
a 
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2(1-G(t)]G( dt)F(du) 

G ( u)[l-F( u)] 
2 

00 

J 
fl-G(u)]2F( du) 

[1-F(u)fG(u) 
u=O 

2 4 2 2 3 dG 2 3 1-G 
2 
dF 

[ 

00 l 00 

" = a ( "1 + "2) = a I 1 F - a + a ! [i F] U- . 

Note that the first term is positive by e.g. Jensen's inequality applied to the 

G-expectation of (l-F)-
1

. Also note that u
2

<oo implies f (O,oo)(l-F)-
1
dG < oo, 

trivially, and f (O,oo)G-
1
dF < oo too, since (l-G)/(1-F) is close to 1 near zero where 

G-1 
-+ oo. The converse has already been established but is easy to check explicitly. 

The alternative expression for o-
2

, under the assumed conditions, follows from 

symmetry or by a (rather tedious) exercise in integration by parts. 

D 

5e. Chao's asymptotic results. 

As mentioned in the Introduction, Chao (1987), cf. Chao and Lo (1988), obtained 

asymptotic results for F' G and a using an influence function approach. By similar 

techniques as just demonstrated, it is easily seen that the asymptotic covariance of 

.{Il(G-G) and .{Il(F-F) is indeed as given by Chao {1987, formula (3.2)), except that 

a-1 should be replaced by a in that formula (twice). Chao obtained as expression for 

the asymptotic variance of .Jil( fr-a) 
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2 
(J 

00 I/ ]2 
dF*(s) 

00 [s }2 
dG*(s) I I {1 - F(t)}dG(t) 2 +I I G(t)dF(t) -2-

0 s C (s) o o C (s) 

+ 2 [i -"+ ,,-1 J G(t)Iog{G(t)}dF(t)-J F*(s){l -G*cs)} d~·(s)l 
o 

0 
C (s) 

where C (Woodroofe's notation) was defined in Section 2 above. Chao's result differs 

from ours as shall be seen below. 

5f. Numerical examples. 

To illustrate some of the asymptotic results above, a number of Monte Carlo 

simulations were performed. A simple example of distributions G and F on (O,oo) 

and satisfying conditions (5.8): 

00 00 

I (l - F)-
1
dG < 00 ' I G-

1
dF < 00 

0 0 

is G exponential, F gamma (3), that is 1-G(y)=e-Y, 1-F(x)=[l+x+(x2 /2)]e-x 

from which one may derive 

00 

a= J G(x)dF(x) = 0.875 

0 

and the integrals in the representation of u
2 

in Theorem 5.2 are 
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00 

1
11 

= J (1 - F)-
1
dG = 7r/2 = 1.5708 , 

0 

00 

1
12 

= J ((1 - G)/(1 - F)]
2
G-

1
dF = 0.0946 

0 

with sum 1.6654, and 

00 00 

J G-
1
dF = 1.2021 , J (F/G)

2
(1 - F)-

1
dG = 0.4633 

0 0 

with the same sum. It follows that the variance of the approximate distribution of a 

is u
2 
/n with u

2 
= a

2
(1.6654a - 1) = a

2 
• 0.4572 = 0.3500. (This result is at 

variance with that conjectured by Chao (1987), whose formula for this example yields 

u
2
=0.31). 

Table 5.1 contains summary data from 10,000 Monte Carlo simulations of n 

independent samples from the conditional distribution of (Y,X) given Y <X for 

n=5,10,20,50,100 and 800. (The random number generator RAN3 of Press et al. 

(1986) was used on an Olivetti M24 personal computer.) Replications with empty inner 

risk sets were recorded but could not be included in the averages, which thus represent 

conditional values, given that there was no empty inner risk set. 

-Table 5.1 about here -

Note first that empty inner risk sets occur also for rather large sample size n. 

The,, approximation of Var( a) is rather poor, indicating a very slow approach to 

the limiting distribution in this particular example. We show below that the problem is 

primarily in the (right hand) tail of the distribution. Closer scrutiny (not documented 
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here) of the distributional form of a shows that it is heavily skewed to the left, as was 

to be expected from the restriction a ~ 1. It is interesting that by calculating the 

estimator of a
2 

suggested by Theorem 5.2 (just replacing F,G and a by their 

estimates), a strong negative correlation between a and &- is revealed: the intuitive 

explanation being that the closer a is to 1, the closer we are to full separation 

between the Y. and the X., in which case a=P {Y <X} becomes much easier to 
1 1 

estimate. The estimator u2 
overcompensates for that feature to the extent that the 

distribution of .[ri.( Cr-a)/u becomes skewed to the right, but now with about the 

correct variance. It may finally be noticed that &-
2 

is strongly (positively) correlated 

with max Y., but slightly negatively correlated with max X.; both of these facts are 
1 1 

again intuitively satisfactory, at least after a little reflection. 

A further documentation of the above assertion that the problems are primarily in 

the tails derives from the following supplementary study in close accordance with the 

techniques of proof used here. First note that Theorem 5.2 is primarily about 

asymptotic distribution of the stochastic integral 

00 

a-1 = J (1 -F2)-1dF i 

0 

A A A 

where F 
1 

is the empirical distribution of the Yi and 1-F 
2
=1-F. An investigation 

of the dependence of the asymptotic results on the behaviour in the tails may therefore 

be ,performed by considering the functional 

in the notation of Section 5a. This is estimated by 
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M 

e = J 1 -~( t:) dF /x) 
t: 1-F(x) 

and using the line of argument of the proof of Theorem 5.2 it is seen that 

M [ ]2 M 2 J 1-F(t:) dF (x)- ~2 + a-l[l-F(t:)]2 J [G(M)-G(u)] dF(u). 

t: 1-F(x) 
1 

t: [ 1-F(u)]
2 

G(u) 

Table 5.2 contains the results of a number of Monte Carlo simulations, all with sample 

size n=500, and never yielding empty inner risk sets, from G=exp., F=f(3). 

-Table 5.2 about here -

The results show that u2 is a good approximation to the empirical variance for M~5 

and many different choices of t:, but that it overestimates the empirical variance 

considerably for M=lO, 100 or oo. Note that 1-F(5)=.125, G(5)=.993. 

Note further that the theory of Section 5a did not require the integrability 

conditions (5.8); hence the modifications of these results for ( M' t:>O, M<oo, also 
{, 

hold true without (5.8). An obvious example where (5.8) fails is F=G; we study in 

Table 5.3 below F=G=exponential(l). As for the results of Table 5.1, these results 

are conditional on no empty inner risk set. 

- Table 5.3 about here -
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The approximation using <J
2 

is seen to be useful (actually: quite good!) for M~5, 

whereas for larger M the empirical variation of e is much smaller than that 

expected from <J
2

. 

Finally, the extremely slow approach to normality in our example may not be 

typical; after all if G is exponential and F is gamma(k), k has to be at least 3 for 

(5.8) to hold. For the case G=exp., F=r(5), one has a=.968706, <J
2
(appr.)=.03255; 

8000 replications of sample size 500 gave no empty inner risk sets and an average a of 

.968710, empirical a
2
=.03049. This indicates faster approach to the limit in Theorem 

5.2 for this example. 

6. Remarks on Efficiency. In this section we discuss some general theory of 

asymptotically efficient estimation of possibly infinite dimensional parameters in i.i.d. 

models due to van der Vaart (1988a,b,c), in order to indicate how efficiency results for 

the NPMLE in the random truncation model can now be quite easily obtained. The 

A* A* 
idea is first to show that the empirical marginals G , F are jointly asymptotically 

* * AM At efficient for G , F , and then transfer this property to G , F on [ t,M] by the 

compact differentiability of the corresponding mapping. What follows is only a sketch. 

Van der Vaart's framework, deriving from Koshevnik & Levit (1976) and Pfanzagl 

(1982) is based on the notion of a tangent cone and the estimation of differentiable 

functionals of the probability distribution of one observation. A tangent cone at a 

particular point in a model (in our case: at a particular probability distribution 

P=P F,G of X,Y given X> Y generated by a particular F and G) can be thought 

of as a collection of score functions of one-dimensional, one-sided submodels starting 

at that point, and evaluated at that point. Thus with P=P F,G fixed, 1(P)cL 
2
(P) is 

called a tangent cone if for every gE1(P) there exists a submodel 

{Pt=P"F G :tE[0,1]}, with P 
0
=P, such that 

t' t 



- 4,5 -

I 
1 .I. .I. .I. 

[ t - ( dP ~ - dP 2 ) - t g dP 2
] -+ 0 as t 1 0 . (6.1) 

Under further regularity conditions the function g appearing here is exactly the score 

function fJ/Ot log(dP/dP
0

)1t=O' A parameter "' taking values in a topological vector 

space B is considered as a functional of P rather than of F and G (which is 

possible, provided it is identifiable) and one only considers the estimation of such 

quantities which are smooth enough that they are differentiable (at t=O) with respect 

to the parameter t of each submodel considered in (6.1): 

(6.2) 

where KP is a continuous linear map from the closed linear span r{P) of 1(P) to B. 

It turns out that under some standard conditions on B which are met in many 

applications, (see van der Vaart, 1988a, Section 4.2.1) and if 1(P) is convex, a nice 

asymptotic efficiency theory can be worked out for the estimation of differentiable 

parameters "'· Thus one needs to establish regularity properties of both the model 

under consideration and of the parameter to be estimated before one can consider 

estimation of the parameter. 

Van der Vaart's definition (Definition 4.5) of an asymptotically efficient estimator 

is that it is regular in Hajek's sense and converges in distribution to the best limiting 

distribution indicated by (his version of) the Hajek convolution theorem. An efficient 

estimator is then also locally asymptotic minimax in a certain sense (and a converse 

exists). Some important theorems characterize efficiency in terms of tightness plus 

component-wise or co-ordinatewise efficiency, and in terms of asymptotic linearity 

with a particular ('optimal') influence function. In particular a regular, asymptotically 

linear es!imator (n t times estimation error is asymptotically equivalent to n-ttimes 

a sum of a function - the influence function- of each observation) is efficient if and 

only if its influence function lies in r(PJ. The (optimal) influence function is then the 
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projection of the derivative of the functional, KP' into T{P}. Finally, efficiency of an 

estimator and differentiability of the estimand are preserved under compactly 

differentiable transformations. 

Before we describe the application of these theorems in our situation, we make one 

further remark on the technical aspects of this theory: when the parameter K we are 

estimating is F or G (or both) we will naturally consider these objects as elements of 

the space D[O,oo]. Equipped with the usual Skorohod metric and topology, this is not a 

topological vector space (addition is not continuous). Both for the efficiency theory and 

for compact differentiability we give D[O,oo] the supremum norm and the a-algebra 

generated by the open balls (smaller than the Borel a-algebra) and use Dudley's 

(1966) weak convergence theory as expounded in Gaenssler (1983) and Pollard (1984); 

see van der Vaart, 1988a, Section 4.1.1). The weak convergence results we already have 

are equivalent to weak convergence in this alternative set-up by continuity of the 

sample paths of the limiting processes. 

* * To start with we consider estimation of the marginals G and F by the 

A* A* A* * 
marginal empiricals G and F . By Donsker's theorem (frl (G - G ), 

A* * 2 frl (F - F )) converges in distribution in (D[O,oo]) . One easily verifies that the 

* * parameters G (x) and F (x), separately, for any fixed x, are differentiable 

functions of P G,F with derivatives (6.2) which can be represented as ~he elements of 

2 * * L (P) l{Y~y}-G (y) and l{X~x}-F (x) respectively. More generally, 

(G*,F*)E(D(O,oo])
2 

is a differentiable function of P G,F' cf. van der Vaart (1988a, 

* * Section 3.6.1). Since G and F (separately) each vary freely as G and F vary, we 

find that T(P) contains all square integrable, zero mean functions of X and similarly 

of Y. In fact a careful analysis of the score function at t=O for a submodel 

{PG F : tE[O,l)} shows that T(P) is convex and contains precisely all sums of such a 
t' t 

function of X and another of Y. Now by the discussion after Lemma 4.6 of van der 

A* A* 
Vaart (1988a), it follows that G (x) and F (x) are each asymptotically efficient for 

A* * A* * 
each x. By tightness of (frl (G - G ), frl (F - F )), Theorem 4.9, and Example 
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A* A* 
3.6.1 of van der Vaart (1988a), we have efficiency of (G ,F ) as an element of 

2 AM A(_ 

(D[O,oo]) . Finally, for any given [t,M], G and F are compactly differentiable 

A* A* 
functions of G ,F (cf. Section 5c). Therefore by Theorem 4.11 of van der Vaart 

(1988a) they are efficient estimators of (GM,Ft)E(D(t,M])
2

. 

A final extension procedure waskused by van der Vaart (1988c) to derive from 

this efficiency of (G,F) in (D[O,oo])
2 

under the previously introduced integrability 

conditions. The only serious complication here is that it is not clear now that G,F is a 

differentiable parameter in the sense of (6.2), and this has to be established first. Van 

der Vaart (1988b) has shown that the answer to this question is yes, without any 

further conditions, and that furthermore this question is intimately connected to the 

question of whether or not the tangent cone 1(P) described earlier is closed: in fact 

1(P)=f(P) if and only if J G-
1
dF<oo and f (1-F)-

1
dG<oo and then (G,F) is effici­

ent for (G,F). 

7. An estimation problem of Winter and FOldes. Recently Winter and FOldes 

(1986) studied the following estimation problem. Consider n independent renewal 

processes in equilibrium with underlying distribution function H, which we shall 

assume absolutely continuous with density h and support (O,oo). Corresponding to a 

fixed time, say 0, the forward and backward recurrence times S. and R. are 
1 l 

observed; then Q.=R.+S. is a length-biased observation corresponding to the 
1 l 1 

distribution function H. We quote the following distributional results: let x be the 

expectation of H, 

00 

x = J [1 - H(u)]du , 

0 

then the joint distribution of (R,S) has density x-1
h(r+s), the marginal distribu­

tions of R and S are equal with density x-1
(1-H(r)], and the marginal distribution 
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of Q=R+S has density x-1
qh(q), the length-biased density corresponding to h. 

Winter and FOldes considered (a slight modification of) the ordinary product-limit 

estimator based on the forward recurrence times S
1
, ... ,Sn and showed that it is 

strongly consistent for the underlying survivor function 1-H. We shall demonstrate 

how the derivation of this estimator follows immediately from the Markov process 

framework considered here. First notice that the conditional distribution of Q=R+S 

given that R=r has density 

that is, intensity (hazard) h(q)/[1-H(q)], which is just the hazard corresponding to 

the underlying distribution H. Now define for each i (the i is suppressed in the 

notation) a stochastic process U on [O,oo] with state space {0,1,2} by 

0, 0 5 t < R 

U(t) = 1, R5t<R+S 

2, R + S ~ t 

We have 

P{U(t+h) = 2IU(u), O 5 u 5 t} = o(h) 

for U(t)=O, and for U(t)=l (that is, R~t<R+S) this is 

P{R + S 5 t + hlR, R + S > t} = 1 ~~(1) h + o(h) 
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by the above result on the hazard of R+SIR. That this depends only on t but not on 

R proves that U is a Markov process 

a 

with intensities 

00 

a(t) = (1 - H(t)]/ J [1 - H(r)]dr 

t 

fJ 

(the marginal hazard of R, equal to the residual mean lifetime function of the 

underlying distribution H) and 

,B(t) = h(t)/[1 - H(t)] . 

The Markov process framework of Section 2 indicates that the Nelson-Aalen and 

product limit estimators based on Sl' ... ,Sn are natural estimators of the integrated 

t 

intensity B(t)=J ,B(q)dq respectively the survivor function 1-H of the underlying 
0 

distribution, and consistency and asymptotic normality may be obtained as shown in 

Section 5. 

Note that the backwards intensity 

( ) 
P{R> t} 

- a t P{R5 t <R+S} 
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00 

-1 
x J [1-H( r )]dr 

a(t) 
t 

t 00 

-1 
x I J h ( r+s)dsdr 

0 t-r 

00 

1-H ( t) 
J [1-H(r)]dr 

t 

00 t 

J [1-H(r)]dr J [1-H(t)]dr 

t 0 

1 
- t' 

the intensity of a uniform distribution on some interval [O,A]. Since it has been 

assumed that R has support (O,oo), this shows that the present model may not be 

interpreted as a left truncation model, which would require that a( t) corresponded to 

a probability distribution on (O,oo). 

The fact that a(t) is uniform corresponds to Winter and Foldes' statement that 

(R,S) contain no more information than R+S about H. This might already have 

been gleaned from the likelihood function based on observation of (R
1
,S

1
), ... ,{Rn,Sn), 

which is 

n 

x-n II h(r. + s.) 
i=l 1 l 

from which the NPMLE of H is readily derived as 

~ ~ I{Ri+si~t} / ~ 1 
H(t) = l R.+S. l ITTs:- ' 

i=l 1 1 i=l l 1 

that is the Cox-Vardi estimator in the terminology of Winter and FOldes {Cox 1969, 

Vardi 1985). 
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It follows that the estimators based on the forward recurrence times Sl' ... ,Sn are 

not NPMLE. The difference between the situation here and that of Section 3 is that 

not only the intensity /)(t), but also a(t) depends only on the estimand H. In 

Section 3 ·\ depended on both parameters / and ~ in such a way that even when 

~ was fixed, .A
1 

could vary freely by varying /. 

Weak convergence of the Winter-Foldes estimator is immediate from our results 

in Section 5. In particular, in order to achieve the extension to convergence on [O,M] 

it should be required that 

i 

J d~{s)/v 2 (s) < oo 

0 

in the terminology of Section 5c, and using d~(t)=/3(t)dt and 

t 

v
2
(t) = P{U(t) = 1} = J l-~(s) ~ ~f !~ ds = ~ [1- H(t)] , 

0 

the integrability condition translates into 

i 

I t-1
h(t)dt < 00 , 

0 

or finiteness of E(X-
1
) where X has the underlying {"length-unbiased") interarrival 

time distribution H. It may easily be seen from Gill, Vardi and Wellner (1988) that 

the same condition is needed to ensure weak convergence of the Cox-Vardi estimator. 
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Table 5.1. Results from 10,000 Monte Carlo replications of samples of size n from the 

conditional distribution (Y,XIY <X) with Y exponential, X gamma (3) and Y and 

X independent. 

Sample Frequency of replications n Var(a) 

size n with empty inner risk set Mean a (obs.) 

5 0.0364 0.9014 0.0988 

10 0.0091 0.8770 0.1646 

20 0.0030 0.8743 0.1869 

50 0.0003 0.8744 0.1985 

100 0.0003 0.8742 0.2127 

800 0.0000 0.8748 0.2400 

oo (Theoretical 
value) 0 0.875 0.3500 
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Table 5.2. Results of Monte Carlo simulations of finite integrals e M" Sample size 
t:, 

n=500, 500 replications except t:=2, M=5 (2500 repl.) G=exp., F=r(3). 

M average e emp.0'
2 

.001 .2 .2060 .2050 .170 .131 

.5 2 .5308 .5297 .330 .306 

.05 5 1.0794 1.0806 .272 .306 

.2 5 .9269 .9256 .444 .432 

.5 5 .6756 .6772 .521 .588 

2 5 .09945 .09969 .154 .166 

.01 10 1.1314 1.1306 1.901 .361 

.001 100 1.1417 1.1447 3.37 1.59 

0 00 1.1429 1.1448 .597 .375 
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Table 5.3. Results of Monte Carlo simulation of finite integrals e M. Sample size 
{, 

n=500, 500 replications except c=.2, M=5 (10,000 repl.). G=F=exp. 

freq. of empty 

M inner risk sets avg. ~ 
2 emp. q 2 

(/ 

.01 1 0 1.232 1.238 2.963 3.053 

.5 2 .002 .572 .574 1.009 1.034 

.2 5 .0017 1.330 1.340 6.84 7.83 

2 5 .002 .0348 .0357 .1232 .1306 

.1 10 .008 1.637 1.644 17.38 12.15 

.5 10 .002 .736 .749 7.13 5.88 

.01 100 .004 1.960 1.980 201.2 23.2 

.001 1000 .002 1.996 2.027 2006 34 
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