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This article deals with the dynamic response of simply supported, symmetric cross-ply 
laminates to stationary random load. The theory of laminated plates used here takes into 
account transverse shear flexibility, transverse normal stress, and rotary inertia effects for 
orthotropic and transversely isotropic laminates. Two cases of random pressure fields are 
considered in this analysis. In the first case, the random pressure field is modeled as a point 
load, random in time, with constant spectral density (ideal white noise), while in the second 
case, it is modeled as a turbulent boundary layer pressure fluctuation. The analysis presented 
herein, as well as the obtained response characteristics expressed in terms of mean squares, 
may be useful in the reliability computation of composite structures subjected to random 
pressure fields. 

PACS numbers: 43.40.Dx, 43.40.At 

INTRODUCTION 

A great deal of interest in the substantiation of the theo- 
ry of laminated composite plates and shells has been mani- 
fested in the literature. This interest was stimulated by the 
advent of new composite materials and by their increased use 
in plate and shell construction systems. The special proper- 
ties exhibited by these new materials, such as, e.g., high de- 
grees of anisotropy and weak rigidities in transverse shear, 
require new methods of analysis for the associated plate and 
shell-type structures that should be based upon discarding 
the classical Kirchhoff assumptions. 

Such refined high-order shear deformation theories 
(HSDT) incorporating transverse shear deformation and 
transverse normal effects accounting for the higher-order 
effects and fulfilling the static conditions on the external 
bounding planes (surfaces) of the plate (shells) will contrib- 
ute to a better description of their static and dynamic re- 
sponse characteristics. One of the aims of this article is to 
model the bending theory of composite plates by incorporat- 
ing the previously mentioned effects. This theory could be 
viewed as the laminated counterpart of the one developed in 
Refs. 1 and 2 for the case of a single-layered plate. The dy- 
namic response to low-velocity impact of single-layered 
plates using the above theory was discussed in Ref. 3. The 
random response of laminated composite plates by taking 
into account the transverse shear deformation effect was in- 

vestigated in very few works 4-6 that are based on the first- 
order transverse shear deformation theory (FSDT).7.8 

This article deals with the response of simply supported 
rectangular laminated plates to random loads. The plate is 

a) On leave from the Tel-Aviv University, Ramat-Aviv, Israel. 

considered composed of orthotropic layers, symmetrically 
disposed with respect to its midplane. Two cases of station- 
ary timewise random loads are considered in this study: (a) 
the case of a point load, random in time, characterized by a 
constant spectral density (ideal white noise); and (b) the 
case of pressure fluctuations in a turbulent boundary layer. 

The structural response characteristics obtained in this 
framework are compared with their counterparts obtained 
within the classical plate theory (CPT) and within the 
FSDT. 

I. REFINED HIGHER-ORDER THEORY 

In the following analysis, the distribution of the dis- 
placement field across the plate thickness is considered as 

U 1 = z•b x -- (4/3h 2)z 3 (•b• + W,• ), 
(1) 

U2 = z•by - ( 4/3h 2 )z3 ( •by + W.y ), U3 = W, 
where U•, U2, and U3 are the components of the 3-D dis- 
placement vector in the directions x, y, and z, respectively; 
•b• and •by denote the rotations of the normals to the mid- 
plane about the y and x axes, respectively; and ( ).• denotes 
the partial derivative with respect to the indicated coordi- 
nate. This displacement field was used by Ambartsumian 9 
and Reddy. iv 

The representation ( 1 ) of the displacement field results 
in a parabolic distribution of transverse shear strains 
throughout the plate thickness and in the fulfillment of the 
condition of zero in-plane loads on the bounding planes of 
the plate. In such a way the necessity of introducing a trans- 
verse shear correction factor, like in the framework of 
FSDT, is removed. The distribution of the strain compo- 
nents, following from Eq. ( 1 ), is 
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61----611----Zlpx, x -- (4/3h 2)z3(•b•.• q- W.•), 
62=622 - z•by.y - (4/3h 2)z3(•by.y q- W. yy), 
64 • 2623 -- •y + W,,y -- (4/h 2 ) z 2 ( •y + W..y ), 
65•2613 • •/•x -[- W,x--(4/h 2)z2(•/• x -[- W,x), 
66•2612 = 2(t•x,y q- •y,x ) -- (4/3h2) 

+ + 

63 • 633 -• O, 

(2) 

For an orthotropic material, in which the elastic axes of 
the layer coincide with the geometrical ones, the pertinent 
constitutive equations may be expressed as 

where 

Ql2 Q22 0 62 

[;2J= Q44 64 Q66 66 

o [, (3) 

Q•l = EI/•, Q22 = E21•, 

Q12: ¾12E2/•, •'•----_ 1 -- ¾12'V21, 

Q44: G23, Q55: W13, Q66: W12, (4) 

E1 v31 + v21'v32 R22 E2 V32 -3- V12'V31 Rll • , • , 
E3 n E3 

with R l• and R22 the reduced elastic constants. 
The distribution of the transverse normal stress a3 can 

be obtained by integration across the segment [0,z) of the 

equation of motion of the 3-D elasticity theory, written in the 
absence of body forces as 

O'i3,i -• tO '03, i = 1,2,3, ( 5 ) 
where p denotes the mass density and the dots denote tlie 
time derivative. This yields 

o•3 -- g[ p 'O3 - Q55( •x,x q- W, xx ) - Q44( •y,y q- w,,yy ) ] 
-- (4/3H2)z3(Q55W.,,,, + Q44W,,yy). (6) 

The definitions of the stress resultants Lii and the stress 
couples Li3 (i,j = 1,2), intervening in the bending equations 
of motion of the theory of plates, are given by 

, -- •oij dg, Li3 • •oi3 
k=l k =1 K 

(7) 

where N denotes the total number of layers. 
The equations of motion, necessary for the solution of 

this problem and expressed in terms of the 2-D quantities 
defined by Eq. (7), are 

L W -- L13 =f•, L2•,, -- L23 =A, Li3,i + P3 =f3, 
(8) 

where P3 denotes the transverse external lead, while 

-- hi2 -- hi2 

denote rotatory and transversal inertia terms, respectively. 
Equations (8) may be obtained through integration 

across the plate thickness of the equations of motion of the 3- 
D elasticity theory. Finally, the governing equations asso- 
ciated with the bending theory are obtained by replacing in 
Eqs. (8) the stress resultants and stress couples expressed in 
terms of the unknowns •p•, •py, and W. Using in addition the 
proportional damping model (C is the damping factor), the 
governing equations are written as follows: 

4 3h 2 F66 .xy 

)tPx,yx q- (D66 -- 4 F66)tPx,yx 3h 2 

4 .F22 W 4 3 h 2 'YYY 3h 2 (m21 q- F66) W,y xx -- 

•44 - 4 Y44)( •/ryyy q- lpy,yy)--(D55 __4 •5•)( Wy,,,, + 3h 2 , 3h 2 , 

= 13-- 3h215 (•y + C•y) - 3h215 -•-•32 ('W,x q- CW, y), 

(•55 L•-•2D55)(W, xx q- •x,x) -•-(A44--½-•2D44)(W, yy q- •y,y) q-P3--11( 'Wq- C[•?)' 

(9) 
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In (9) the rigidities and inertia terms are defined as 

h/2 (Dij,F•j) = Qij(j2,j4)d2 (i•- 1,2), 
-- h/2 

h/2 (Dii,Fii): Qii (J2,j4)dj (i = 6), 
J - h/2 

h/2 (Aii,Oii ) = Qii(1,z2)dz (i=4,5), 
-- h/2 

fh/•/2044R ( 344,•44 ) = 11 (22,g4)dg, 

Q.R(z2.z 4)dz. 

h/2 ( I1,I3,Is ) = p ( 1 ,z 2,z 4 ) dz, 
J -- h/2 

h/2 73i = pRn z2 dz ( i = 1,2). 
J -- h/2 

(lO) 

II. DYNAMIC RESPONSE 

Equations (9) constitute a system of partial differential 
equations of the sixth order. For the case of simply support- 
ed rectangular panels (a X b), we write the boundary condi- 
tions as 

W=lpy =Lll =0, at x=0,a, 
(11) 

W = lpx •-• L22 = 0, at y = 0,b. 

The solution functions are then represented in a form 
that fulfills exactly the boundary conditions: 

A 

•Px (x,y,t) = •Xm, cos ax sin ]•yTm, (t) = • Xm, Tm,, 
A 

½y(x,y,t) = • Ym• sin axcosl•yTm,(t)----• Ym•Tm•, 
m,n m,n 

A 

W(x,y,t) ---- • Wm• sin ax sin ]•yTm• (t) = • Wm, Tmn, 
m,n m,n 

(12) 

A A A 

where a = m•r/a, /3 = mr/b, Xmn , Ymn, Wmn are the coeffi- 
cients of the natural mode shapes associated with the free 
vibration problem, while Tm• (t) denote the generalized co- 
ordinates. The transverse loading function is given by 

P3 = P3 ( x,y,t ) = • qmn sin ax sin ]•YFmn ( t ) , ( 13 ) 

where qm• are the Fourier coefficients. For the free un- 
damped vibration problem, Fmn ( t) =0, C----O, and 
Tm, (t) = e i•m"t (i = x/-- 1 ); and using (12) in the govern- 
ing equations (9), we obtain the eigenvalue problem in the 
form 

[K ]ran •- [M ]mn (A}mn {0}, (14) 

where 

{A)mT n : (Xmn,Ymn,Wmn). 
The elements of the 3 X 3 [K] and [M] matrices are 

(15) 

Both [K] and [M] are real and nonsymmetric matrices and since [M] is also nonsingular, we can multiply Eq. (14) by 
[M] -• from the left to obtain, for each ran, 

[M ]-'[K ]{A} = c02[M ]-I[M ]{A} = c0211 ] {A}; 

by writing [A] = [M]-I[K] the eigenvalue problem is obtained in the form 

]{a} = ]{a}, 

(16) 

(17) 

where [A ] is real and nonsymmetric as well. Consider now the eigenvalue problem associated with [A ] r. Its eigenvalues •2 
are the same as those of. [A], so we can write 
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For this case the biorthogonality condition (see Ref. 11 ) should be applied: 

O)rn n -- O)pq ] { A )rnn {X}pq dy dx = O, 

where the barred quantities are associated with the eigenvalue problem of the adjoint operator [,4 ] r. 
The de½oupled differential equation for Tmn (t) is obtained by using the modal analysis technique: 

2 Tmn(t) (1/Jmn)Fmn(t), '•/"mn (t) + C•/"mn (t) -•- (_Omn = 
where 

C = 2•rnnO)mn , Frn n (t) = W'mnP3(x,y,t)dy dx, 

and the norm is 

Jmn = Jrl W'mn W'mn -•- I3(SmnSmn -Jr- Ymn Ymn ) - 3h 2 Jr5( SmnSmn -•- Ymn Ymn -•- Smn W'mn,x -•- Ymn [•Zmn,y ) 

--(16/9h4)I7[(Smn•mn -Jr- Ymn'•mn -Jr- 2Xmn •rmn,x -Jr- Ymn •/rmn,y ) -Jr- W'mn,x •mn,x -Jr- W'mn,y •mn,y ] dy dx. 

(18) 

(19) 

(20) 

(21) 

The solution of Eq. (20) in the case of homogeneous 
initial conditions reads 

lfot Wren (t) = Jm•- mmn (7-)hmn (t- r)dr (22) 
and by the use of Eq. (12), the transverse displacement is 
expressed as 12 

t m•n Wrnn Finn ( •') hmn ( t -- r)dr W(x,y,t)=, Jmn --oo 
Wren Finn ( W) Hmn ( W)e iø•r do, 

(23) 

where 

- 1 ;• Fmn(t)e_iO•tdt ' Fmn ( W) = -•--• oo 
while Hmn (W) is the complex frequency response function 
associated with the mn mode, 

Hmn (co) = [ 1/(co•mn -- co2 + i2•mncomnco) ] = L m--hi(co). 
(24) 

III. RANDOM VIBRATIONS 

The autocorrelation function of the transverse displace- 
ment is 12 

R n/(xl,yl,tl;x:,y:,t:) = E [ W(xl,yl,tl ) W(x:,y2, t2) ] ß 
(25) 

For stationary excitation with zero mean we obtain 

Rw(xl,Yl,X2,Y2,7' ) = ZZWmn (xI,Yl) Wpq(X2,Y2) 
m,n p, q 

XHmn (co)H•'q (co)e iø'• dco , (26) 
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, 

where 

JmnJpq SF ( X l•Yl'X2•Y2'CO ) 
X Wren (xl•Yl) Wpq (x2,Y2)dy2 dx 2 dyl dXl, 

(27) 

while 

SF(Xl•Yl;X2•Y2,CO ) = RF(Xl,yl;x2,Y2,•.)e- io•r d•' 

denotes the cross-spectral density function of the applied 
load. In the following, two cases of random excitation will be 
considered. 

In the case of random excitation the plate is considered 
to be driven by a point load at (•,y), random in time and 
characterized by an ideal white-noise correlation function. 
The counterparts of Eqs. (26) and (27) then read 

RF(Xl,X2,Yl,Y2,•' ) = R•(x 1 -- •)•(x 2 -- •) 

(28) 

and 

SF(Xl,X2•Yl•Y2,co ) = • RF(Xl,X2,Yl,Y2,•')e -iø"r d•' 
= (R/2/r)6(X 1 -- •)6(X 2 -- •) 

(29) 

6(yl Y)6(y 2 •) sin mrr • • X 1 

sin •-y 1 sin prr x2 sin 2 d,4 2 d,41 a 

1 mrr_ . nrr_. prr_ qrr_ 
jm,Jvq So sin x sln•y sin x sin b y' a b a 

(30) 
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where So = R/2rr and dA i =dx i dy•(i - 1,2). 
For the case when the load is applied at the center of the 

plate, i.e., when • = a/2, y = b/2, we obtain 

SQmnQpq((l.)) = (1/JrnnJ•,q )So[ ( - 1)(m--1)/2(_ 1)(n-- 1)/2 
X ( -- 1)(P-1)/2( __ 1){q-1)/2], 

m,n,p,q = 1,3,5,... (31) 

and the mean square of the displacement function at the 
driven point is 

aba Rw 2 2 2 
ab ab 

2 rn, np, q 

X f oo Sem.e,• (co) - Zmn (co)Z * (co) oo pq 

dw. 

(32) 

The natural frequencies were found to be well separated 
(see Table I) and for the case of light damping, the autocor- 
relation terms only are taken into account, 12 so that 

a b a b,,0) Rw 2'2'2'2 

=So• 1 m,nJ 2 mn 
• sin2 mrr sin2 nrr ;_' dco 2 2 oo IZ.n (co) 12 

=SoZ 1 rr 
(-Oran 

(m,n = 1,3,5 .... ). (33) 

In the second case, the excitation field is due to a turbu- 
lent boundary layer pressure fluctuation. Assuming that in 
the y direction the plate is infinitely long, we obtain the state 
of cylindrical bending, for which the 2 X 2 counterparts of 
the matrices [K] and [M] are 

kll- [D11- (4/3h 2)Fll]o? q- A55- (4/h 2)D55 

-- [•ss- (4/3h 2)•55]a2, 
k12 = [A55- (4/h 2)D5516t- (4/3h 2)Flla3 

-- [•55- (4/3h 2)•5516t3, 
k22 = [Ass- (4/h 2)D551o?, 

k21 = [A55 -- (4/h 2)D55]t;t, 

mll = 13 -- (4/3h 2)15, 

m12 = --[•31 + (4/3h 2)I5]a, 
m22 = I1, m21 = 0, 

TABLE I. Frequencies of cross-ply laminate (0ø,90ø,90ø,0ø), a = b = 50 h. 

m n Frequencies (rad/s) 

1 1 4859.0675 
3 1 2O 788.342 
5 1 53 872.430 
1 3 33 884.710 
3 3 42 018.487 
5 3 67 897.037 

while the associated norm is given by 

foa( -- __ 3h 2 Is(XiXi + Xi Wi.,, ) 

q- 9h 4 I?(XiXi q- 2Xi Wi,,, q- Wi.,, Wo, ) dx . (34) 

The mathematical model for the pressure statistics is based 
on that of Corcos, 13 with Wilby's approximation TM 

S(v,a) = S(co)f(v,co)cos(cov/Uc ), (35) 

where 

fv(r/,co) = exp( --•' I1> = exp[ -- (O. lco/Uc 
(36) 

Uc denotes the mean convection velocity in the flow direc- 
tion, and r/= x2 - x 1. The spectral density Sv (co) is given 
by 15 

/So, St(co) = [2So/(co6./Uo)3, 
co< 1.932 (0.65 uof6* ), 
co > 1.932(0.65uof6*), 

(37) 

where 

So -- a 2 0.75 X 10 -5 U3o6*p•, 
a is the fluid dimensionless constant, 6* denotes the bound- 
ary layer displacement thickness, and Po is the fluid density. 

For the low-frequency range, namely co6*/Uc < 0.2, we 
also use Crocker's modificationS6: 

A = 0.1 (co/Uc) + 0.265/60, (38) 

where 6o is the thickness of the boundary layer. 
In order to calculate the mean square of the displace- 

12 

ment function, Eq. (26) may equivalently be expressed as 

a. ,T,o 

x IL, (co) dw. (39) 

Here A o,o, (co) denotes the joint acceptance, which is evalu- 
ated here by using Laplace's asymptotic method. 12 This 
yields 

4di Ei 

A QiQi = •i R i 
32 diei 

+ (8/rr2i2R •2)[El -- 4e,2. ( 1 + 2d, =) ] 

X[1-(- 1)ie-• cos B,] , 
where 

d• = A/ire, ei = Bi/irc, B• = (co•/Uc )a, 

Ei= 1 +d•2+e• 2, R,--E•2--4e•2; 
hence, 

(a a O'•_$oa2,,__,_•_12AQ, Q, 2•.7co/• ) i Si ' 

(40) 

A =Aa, 

i = 1,3,5 ..... 

(41) 
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5 

4 l HSDT, FSDT 
$ 

I0 3o 40 5o 2o 

o/h 

FIG. 1. Relative (to CPT) mean-square transverse displacement versus 
a/h. 

CPT 

0(• i0 20 30 40 50 
o/h 

FIG. 3. Relative (to CPT) mean-square transverse displacement versus 
a/h. 

IV. NUMERICAL RESULTS AND DISCUSSION 

Two instances will be considered in the numerical illus- 

tration. The first is associated with a symmetric cross-ply 
laminated plate (0ø,90ø,90ø,0ø), while the second is associat- 
ed with a transversely isotropic plate. For the case of the 
laminated plate, the constituent materials are orthotropic, 
with the characteristics belonging to a woven graphite fabric 
and carbon matrix •7 (material 1 )- 

El=25.1MSI, G•2=1.36MSI, v•2=0.031, 
E: = 4.8 MSI, G•3 = 1.2 MSI, v•3 = 0.25, 
E3 = 0.75 MSI, G:3 = 0.47 MSI, v:3 = 0.171, 

and p = 0.075 PCI. 
For the transversely isotropic plate, the material (mate- 

rial 2) is characterized by 

E = 20 MSI, v = 0.1, p = 0.075 PCI, 
E' = 0.75 MSI, v'=0.25, G' = O.5 MSI, 

where the primed quantities belong to the planes normal to 
the midplane of the plate (i.e., normal to the plane of iso- 
tropy). The turbulent boundary layer pressure field will be 
modeled by assuming the following properties•8: 

Uo = 1888.5 ft/s, 

the fluid media is air: 

•5o = 11 in., •5' = 4.6 in.; 

a = 3, Po = 0.00037 slug/ft 3. 
For comparison, Figs. 1-3 display the results obtained 

as per the HSDT, FSDT (k = 5/6), and CPT, where those 
of the latter are normalized to unity. Figure 1 shows the 
relative mean square of the transverse displacement for the 
first load and when material 1 is taken into consideration. 

Figure 2 exhibits the variation of the relative mean square of 
the transverse displacement versus E/G' ratios for the first 
load case and where the material of the plate is transversely 
isotropic (material 2). Figure 3 represents the counterpart 
of Fig. 1 obtained for the second load case and material 2. 

FIG. 2. Relative (to CPT) mean-square transverse displacement versus 
E,•/Gr. 

665 J. A½oust. So½. Am., Vol. 84, No. 2, August 1988 

QIO 

002 

/ FSDT, HSDT 

/ 
//• CPT 

I I i i 
i0 20 30 40 50 

log o/h 

FIG. 4. Variation of the mean-square transverse displacement versus a/h. 
, 
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-0.5 

-I.0 

-2.5 - 

-$.0 - 

-:5.5 0 

FSDT ,HSDT 
/ CPT 

I 
0.5 1.0 1.5 

to9 a/h 

FIG. 5. Variation of the mean-square transverse displacement versus a/h in 
a logarithmic scale. 

Figure 4 shows the variation of the mean-square transverse 
displacement versus the a/h ratio. Figure 5 shows the same 
but in a logarithmic scale. It can be seen that the curve asso- 
ciated with the CPT is linear, with a slope of 2. This indicates 
that the mean square for this problem can be computed by 
the relation: mean square = Ka 2, where K is a constant. The 
curves of the higher-order theories are asymptotic to the 
CPT. The slope of the CPT line will change as a result of the 
load distribution function (point, line, or area) and the re- 
sponse problem (static, dynamic, or random vibration). 

The numerical results allow us to infer that the trans- 

verse shear deformation effect has a great influence on the 
mean square of the transverse displacement whenever the 
plate is not a thin one or when the anisotropicity ratios are 
high enough. 

Another conclusion arising from this numerical analy- 
sis concerns the similarity of the results provided by the 
FSDT and HSDT. However, in the present treatment, the 
need for an arbitrary transverse shear correction factor is 
eliminated. 
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