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Abstract

Intelligent and adaptive material systems and structures have become very important in engineering applications. The
basic characteristic of these systems is the ability to adapt to the environmental conditions. A new class of materials with
promising applications in structural and mechanical systems is shape memory alloy (SMA). The mechanical behavior of
shape memory alloys in particular shows a strong dependence on temperature. This property provides opportunities for
the utilization of SMAs in actuators or energy dissipation devices. However, the behavior of systems containing shape
memory components under random excitation has not yet been addressed in the literature. Such a study is important to
verily the feasibility of using SMAs in structural systems. In this work a nondeterministic study of the dynamic behavior
of a single-degree-of-freedom (SDOF) mechanical system, having a Nitinol spring as a restoring force element is
presented. The SMA spring is characterized using a one-dimensional phenomenological constitutive model based on the
classical Devonshire theory. Response statistics for zero mean random vibration of the SDOF under a wide range of
temperature is obtained. Furthermore, nonzero mean analysis of these systems is carried out. © 2000 Elsevier Science

B.V. All rights reserved.
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1. Introduction

Contrary to other metallic materials, which have a
well-defined yield limit, SM As can undergo large amount
of inelastic deformations, without permanent plastic de-
formation, and recover that upon temperature change
and/or loading. The fact behind this extraordinary abil-
ity, known as superelasticity, is the phase transformation
mechanism. A temperature gradient and/or an externally
applied load can provide the required energy for the
phase transformation. These two types of transformation
are referred to as temperature- or stress-induced phase
transformations, respectively. In most cases [or practical
applications either temperature gradient or externally
applied load can be treated as driving force.

The behavior of shape memory alloys and other
‘smart’ materials is governed by a diffusionless phase
transformation between a high-temperature, low-strain
austenite phase and a low-temperature, high-strain mar-
tensite phase [1]. The martensite phase is stable in low-
temperature range while the austenite phase is stable in
high-temperature range. The characteristic transition
temperatures, which are material properties, are M, M.,
A.. A¢: martensite finish, martensite start, austenite start
and, austenite finish, respectively. These transition tem-
peratures depend on the alloy’s composition and its ther-
momechanical processing. Experimental evidence [2]
also shows that, temperatures at which forward and
reverse transformations take place depend on the state of
stress and increase with stress. Austenite start and finish
temperatures are more sensitive than martensite start
and finish temperatures. An in depth analysis of phase
transformation mechanisms and pseudoelasticity can be
found in the literature [3].



The phenomena associated with martensitic trans-
formations are intrinsically nonlinear. As a consequence,
when subjected to dynamic inputs, a mechanical system
that contains a memory element may experience a num-
ber of quite complex behaviors.

The dynamics of mechanical systems with components
that exhibit a shape-memory effect is an interesting and
important topic. The design of such mechanical systems
is certainly made more tractable by the availability of
accurate mathematical models. The purpose of this paper
is to describe some efforts with a numerical simulation
for one such model, and to examine some of the effects of
system parameters on the random response of a mechan-
ical system with a shape memory element. First, we
briefly review the phenomenological theory that de-
scribes thermoelastic martensitic transformations in me-
tallic alloys. This theoretical background is used to build
a model of a helical spring with shape memory. The
random response of an SDOF mechanical system is then
investigated.

2. Polynomial constitutive model

Several constitutive models for SMA are available in
the literature [3]. As a preliminary study, the polynomial
constitutive model is used in this paper. The model is
based on the Devonshire theory proposed in 1982 [4].
This one-dimensional model does not consider dissipa-
tion and represents the shape memory and pseudoelastic-
ity effects considering a polynomial free energy which
only depends on the temperature and one-dimensional
strain, g, i.e. ¥ = P(T, ¢). Also, is assumed that no inter-
nal variables are considered.

The form of the free energy is chosen in such a way that
the minimum and maximum points represent stability
and instability of each phase of the SMA. As is usual on
the one-dimensional models proposed for SMAs, [5,6]
three phases are considered: an austenite and two mar-
tensites (M, , M _). Hence, the free energy is chosen such
that for high temperatures it has only one minimum at
vanishing strain, representing the equilibrium of the aus-
tenite phase. At low-temperatures, martensitic is stable,
and the free energy must have two minimums at non-
vanishing strains. At intermediate temperatures, the free
energy must have equilibrium points corresponding to
both phases. These restrictions are satisfied by the follow-
ing polynomial expression:

pP(e.T) =4[ag + a (T — Ty)le? —3aze* + $aseb, (1)

where ag, a;, a;, a; are positive constants, while Ty is
the temperature below which the martensitic phase is
stable and p is the mass density. If we define T, as the
temperature above which the austenite is stable, and the
free energy has only one minimum at zero strains, it is

possible to write the following condition:
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Hence, the constant a; may be expressed in terms of the
other constants of the material.
By definition [7], we have

av
g= pa—ﬁ. (3)

Therefore, the following stress—strain relation is ob-
tained:

o =[ay +a(T — Ty)le — ase® + az&®. (4)

When an external stress field & is applied, it is convenient
to consider the total free energy, ¥ as follows:

p¥ = py — Ge. (5)

It should be emphasized that this model considers one
free energy. with no extra internal variables, to represent
phase transformations on SMAs with an austenitic phase
and two variants of martensitic. This characteristic
makes the polynomial constitutive model a simple alter-
native to describe SMAs behavior. The absence of experi-
mental tests to determine the material constants is one of
the greatest difficulties in the use of this model.

The original Devonshire model can be obtained by just
taking ay = 0 in the polynomial expression given by Eq.
(4), and recalling that without dissipation the stress is
simply the derivative of the free energy with respect to
strain, we obtain the constitutive law based on the De-
vonshire theory:
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The Devonshire theory can describe shape memory and
pseudoelasticity qualitatively well. However. the slope of
the stress—strain curve at the origin varies linearly with
temperature. This means that on small strain approxima-
tion, the Devonshire theory would predict an elastic
modulus that will vary with temperature.

3. A simple system with shape memory

The constitutive model discussed in the preceding sec-
tion can be used to model helical springs made of shape
memory alloys. In order to model the response of an
SDOF system which includes a helical spring made from
shape memory alloy, we can apply the constitutive model
discussed in the preceding section. In fact, this theory
provides a fairly good qualitative description of the one-
dimensional shape memory and pseudoelastic effects.
The Devonshire’s theory yields the simplest equation for
the nonlinear restoring force.



Let us assume that the longitudinal external force is
resisted by the torsional shear stresses developed on the
circular cross section of a helical shape wire [7.8]. The
relationship between the longitudinal force, F., and the
shear stress distribution, a, is expressed as
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where r is the radial coordinate along the cross section,
while D and d represent, respectively, the mean diameter
and the wire diameter of the spring. We also assume that
the shear strain y is distributed linearly along the wire
cross section. If N is the number of coils and X the
displacement, it can be shown [7] that

. 2r 3 8
= AN (8)
Now, using the polynomial model, and assuming that Eq.
(6) is valid for the pure shear stress-strain behavior, we
obtain the following nondimensional equation for the
nonlinear restoring force
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where f and x are the nondimensional force and the
displacement and are given as

; 8D
=T (108)
d

The other parameters are defined as
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In order to study the behavior system with shape mem-
ory component, an SDOF system is considered. The
system consists of a mass m, a shape memory spring and
a linear damping ¢, the excitation force is P sin(wt). The
equation of motion in a nondimensional form can be
written as
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The dots represent derivatives with respect to the non-
dimensional time 7, and the constants are defined as
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Using a sate-space form and defining y; = xand y, = %,
Eq. (12) can be written as a set of first-order differential
equations:

¥1= a2 (14a)

5 =
Yi—y2

40, —1)
+ o sin(Q1). (14b)

A standard fourth-order Runge-Kutta was used to nu-
merically integrate Eqs. (14a) and (14b). We have ob-
tained good convergence with a step size At = 2m/180.

4. Numerical results

In this section the response of the shape memory
oscillator, subjected to random excitation, is discussed.
The system is governed by Egs. (14a) and (14b), where
x and Q are the nondimensional parameters representing,
respectively, the amplitude and the frequency of the forc-
ing function. Since we are more concerned with the
qualitative response of the shape memory system, 4 = 1
has been chosen for the numerical studies presented
throughout this paper. We also assume 0, = 1.1 which is
a typical value for NiTi alloy [9].

Due to space limitation only the displacement re-
sponses are presented. Nonzero and zero mean analyses
have been performed. In both cases, the behavior of the
system when subjected to a temperature variation has
been obtained by assuming that the temperature of the
system initially #; changes to #;in the following way [7]:
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Temperature variation is induced when the mass of the
system is displaced from its equilibrium position at in-
stant 1 =0 and after an interval of time ;(10s), the
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Fig. 1. Nonzero mean RMS displacement response of an SDOF
nondissipative system ({ = 0) under stationary white noise input
So = 1.0 and p; = 0.8,

temperature begins to change, up to the instant #(20 s),
when it reaches the final temperature. The chosen tem-
perature variation law obeys a simple assumption that
this varies in a sinusoidal fashion in the pre-defined time
interval. Dissipative and non-dissipative system condi-
tions have also been considered in the analysis.
Fig. 1 shows the nonzero mean analysis for nondis-
sipative system ({ = 0) with Sy = 1. py = 0.8 (mean ex-
citation value) and different temperature conditions.
Initially, we observe the statistical response for two dif-
ferent levels of forcing amplitudes (z = 1.0 and 0.5). As
the forcing parameter o increases, the system dynamics
becomes richer and the effect of temperature variation
reduces the displacement system response. The time his-
tory response of the dissipative system ({ = 0.2) for zero
mean excitation (y = 0) analysis is shown in Fig. 2. As
expected the displacement response is reduced due to
both damping effect and temperature variation. This
behavior is of special interest, since it illustrates the
capability of altering the dynamics of the shape memory
system by changing its temperature. This feature has
motivated the use of shape memory actuators for active
vibration control.

5. Conclusions

In this paper we have focused on the qualitative statist-
ical response of a simple dynamical system with shape
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Fig. 2. Zero mean RMS displacement of an SDOF dissipative
system ({ = 0.2) under stationary white noise input §, = 1.0 and
=0,

memory. The constitutive theory that assumes a poly-
nomial expression for the free-energy functional has been
used to model a helical spring with shape memory. This
choice yields the simplest analytical form for the nonlin-
ear restoring force. The statistical response of an SDOF
system containing such a spring has been studied numer-
ically.
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