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Abstract

We consider stochastic differential equations driven by a general Lévy processes

(SDEs) with infinite activity and the related, via the Feynman–Kac formula, Dirichlet

problem for parabolic integro-differential equation (PIDE). We approximate the solu-

tion of PIDE using a numerical method for the SDEs. The method is based on three

ingredients: (1) we approximate small jumps by a diffusion; (2) we use restricted

jump-adaptive time-stepping; and (3) between the jumps we exploit a weak Euler

approximation. We prove weak convergence of the considered algorithm and present

an in-depth analysis of how its error and computational cost depend on the jump activ-

ity level. Results of some numerical experiments, including pricing of barrier basket

currency options, are presented.

Keywords SDEs driven by Lévy processes · Jump processes · Integro-differential

equations · Feynman–Kac formula · Weak approximation of stochastic differential

equations

Mathematics Subject Classification 65C30 · 60H10 · 35R09 · 60H35 · 60J75

1 Introduction

Stochastic differential equations driven by Lévy processes (SDEs) have become a

very important modelling tool in finance, physics, and biology (see e.g. [1,4,6,24]).

Successful use of SDEs relies on effective numerical methods. In this paper, we are

interested in weak-sense approximation of SDEs driven by general Lévy processes
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1224 G. Deligiannidis et al.

in which the noise has both the Wiener process and Poisson processes components

including the case of infinite jump activity.

Let G be a bounded domain in Rd , Q = [t0, T ) × G be a cylinder in Rd+1,

Ŵ = Q̄ \ Q be the part of the cylinder’s boundary consisting of the upper base and

lateral surface, Gc = Rd\Q be the complement of G and Qc := (t0, T ]×Gc∪{T }×Ḡ.

Consider the Dirichlet problem for the parabolic integro-differential equation (PIDE):

∂u

∂t
+ Lu + c(t, x)u + g(t, x) = 0, (t, x) ∈ Q,

u(t, x) = ϕ(t, x), (t, x) ∈ Qc,

(1.1)

where the integro-differential operator L is of the form

Lu(t, x) := 1

2

d∑

i, j=1

ai j (t, x)
∂2u

∂x i ∂x j
(t, x) +

d∑

i=1

bi (t, x)
∂u

∂x i
(t, x)

+
∫

Rm

{
u
(
t, x + F(t, x)z

)
− u(t, x) − 〈F(t, x)z, ∇u(t, x)〉I(|z| ≤ 1)

}
ν(dz);

(1.2)

a(t, x) =
(
ai j (t, x)

)
is a d × d-matrix; b(t, x) = (b1(t, x), . . . , bd(t, x))⊤ is a

d-dimensional vector; c(t, x), g(t, x), and ϕ(t, x) are scalar functions; F(t, x) =(
F i j (t, x)

)
is a d×m-matrix; and ν(z), z ∈ Rm, is a Lévy measure such that

∫
Rm (|z|2∧

1)ν(dz) < ∞. We allow ν to be of infinite intensity, i.e. we may have ν
(
B(0, r)

)
= ∞

for some r > 0, where as usual for x ∈ Rd and s > 0 we write B(x, s) for the open

ball of radius s centred at x .

The Feynman–Kac formula provides a probabilistic representations of the solution

u(t, x) to (1.1) in terms of a system of Lévy-driven SDEs (see Sect. 2), which can be

viewed as a system of characteristics for this PIDE. A weak-sense approximation of

the SDEs together with the Monte Carlo technique gives us a numerical approach to

evaluating u(t, x), which is especially effective in higher dimensions.

There has been a considerable amount of research on weak-sense numerical meth-

ods for Lévy-type SDEs of finite and infinite activity (see e.g. [10–12,14,15,17,20–23]

and references therein). Our approach is most closely related to [12]. As in [3,11,12],

we replace small jumps with an appropriate Brownian motion, which makes the numer-

ical solution of SDEs with infinite activity of the Lévy measure feasible in practice.

There are three main differences between our approach and that of [12]. First, we use

restricted jump-adapted time-stepping while in [12] jump-adapted time-stepping was

used. Here by jump-adapted we mean that time discretization points are located at

jump times τk and between the jumps the remaining diffusion process is effectively

approximated [11,12]. By restricted jump-adapted time-stepping, we understand the

following. We fix a time-discretization step h > 0. If the jump time increment δ for the

next time step is less than h, we set the time increment θ = δ, otherwise θ = h, i.e.,

our time steps are defined as θ = δ ∧ h. We note that this is a different time-stepping

strategy to commonly used ones in the literature including the finite-activity case (i.e.,

jump-diffusion). For example, in the finite activity case it is common [14,20,21] to
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Randomwalk algorithm for the Dirichlet problem for… 1225

simulate τk before the start of simulations and then superimpose those random times

on a grid with some constant or variable finite, small time-step h. Our time-stepping

approach is more natural for the problem under consideration than both commonly

used strategies; its benefits are discussed in Sect. 3, with the infinite activity case

considered in more detail in Sects. 3.5 and 4.2. Restricting δ by h is beneficial for

accuracy when jumps are rare (e.g. in the jump-diffusion case) and it is also beneficial

for convergence rates (measured in the average number of steps) in the case of α-stable

Lévy measure with α ∈ (1, 2) (see Sects. 3 and 4). Second, in comparison with [12]

we explicitly show (singular) dependence of the numerical integration error of our

algorithm on the parameter ǫ which is the cut-off for small jumps replaced by the

Brownian motion. Third, in comparison with the literature we consider the Dirichlet

problem for PIDEs, though we also comment on the Cauchy case in Sect. 3.4, which

is novel with respect to the use of restricted time-stepping and dependence of the

algorithm’s error on ǫ.

The paper is organised as follows. In Sect. 2, we write down a probabilistic repre-

sentation for the solution u(t, x) of (1.1), we state assumptions used throughout the

paper, and we consider the approximation uǫ(t, x) that solves an auxiliary Dirichlet

problem corresponding to the system of characteristics with jumps cut-off by ǫ. In

Sect. 3, we introduce the numerical algorithm which approximates uǫ(t, x). The algo-

rithm uses the restricted jump-adapted time-stepping and approximates the diffusion

by a weak Euler scheme. In this section we also obtain and discuss the weak-sense

error estimate for the algorithm. In Sect. 4, we illustrate our theoretical findings by

three numerical examples, including an application of our algorithm to pricing an FX

barrier basket option whose underlyings follow an exponential Lévy model.

2 Preliminaries

Let (�,F , {Ft }t0≤t≤T , P) be a filtered probability space satisfying the usual hypothe-

ses. The operator L defined in (1.2), on an appropriate domain, is the generator of the

d-dimensional process X t0,x (t) given by

X t0,x (t) = x +
∫ t

t0

b(s, X(s−))ds +
∫ t

t0

σ(s, X(s−))dw(s)

+
∫ t

t0

∫

Rd

F(s, X(s−))z N̂ (dz, ds), (2.1)

where the d ×d matrix σ(s, x) is defined through σ(s, x)σ⊤(s, x) = a(s, x); w(t) =
(w1(t), . . . , wd(t))⊤ is a standard d-dimensional Wiener process; and N̂ is a Poisson

random measure on [0,∞) × Rm with intensity measure ν(dz) × ds,
∫

Rm (|z|2 ∧
1)ν(dz) < ∞, and compensated small jumps, i.e.,

N̂ ([0, t] × B) =
∫

[0,t]×B
N (dz, ds) − tν(B ∩ {|z| ≤ 1}), for all t ≥ 0 and B ∈ B

(
Rm

)
.
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1226 G. Deligiannidis et al.

Remark 2.1 Often [2,22] a simpler model of the form

X(t) = x +
∫ t

t0

F(s, X(s−))dZ(s), (2.2)

where Z(t), t ≥ t0, is an m-dimensional Lévy process with the characteristic exponent

ψ(ξ) = i(μ, ξ) − 1

2
(ξ, σξ) +

∫

|z|≤1

[
ei(ξ,z) − 1 − i(ξ, z)

]
ν(dz)

+
∫

|z|>1

[
ei(ξ,z) − 1

]
ν(dz),

is considered instead of the general SDEs (2.1). The Eq. (2.2) is obtained as a special

case of (2.1) by setting b(t, x) = μF(t, x) and σ(t, x) = σ F(t, x).

When the solution u of (1.1) is regular enough, for example u ∈ C1,2
(
[t0, T ] × Rd

)
,

it can be shown that u has the following probabilistic representation

u(t, x) = E
[
ϕ
(
τt,x , X t,x (τt,x )

)
Yt,x,1(τt,x ) + Z t,x,1,0(τt,x )

]
, (t, x) ∈ Q, (2.3)

where (X t,x (s), Yt,x,y(s), Z t,x,y,z(s)) for s ≥ t , solves the system of SDEs consisting

of (2.1) and

dY = c(s, X(s−))Y ds, Yt,x,y(t) = y, (2.4)

d Z = g(s, X(s−))Y ds, Z t,x,y,z(t) = z, (2.5)

and τt,x = inf{s ≥ t : (s, X t,x (s)) /∈ Q} is the fist exit-time of the space-time Lévy

process (s, X t,x (s)) from the space-time cylinder Q. To see why this holds, one may

apply Ito’s lemma, see e.g. [2, Theorem 4.4.7], and the fact that u solves (1.1) to prove

that the process

u
(
t ∧ τt,x , X t,x (t ∧ τt,x )

)
Yt,x,1(t ∧ τt,x ) + Z t,x,1,0(t ∧ τt,x ),

is a martingale. The claimed formula follows by letting t → ∞.

If one can simulate trajectories of {(s, X t,x (s), Yt,x,1(s), Z t,x,1,0(s)); s ≥ 0} then

the solution of the Dirichlet problem for PIDE (1.1) can be estimated by applying the

Monte Carlo technique to (2.3). This approach however is not generally implementable

for Lévy measures of infinite intensity, that is when ν
(
B(0, r)

)
= ∞ for some r >

0. The difficulty arises from the presence of an infinite number of small jumps in

any finite time interval, and can be overcome by replacing these small jumps by an

appropriate diffusion exploiting the idea of the method developed in [3,11], which we

apply here. Alternatively, the issue can be overcome if one can simulate directly from

the increments of Lévy process. We will not discuss this case in this paper as we only

assume that one has access to the Lévy measure.
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2.1 Approximation of small jumps by diffusion

We will now consider the approximation of (2.1) discussed above, where small jumps

are replaced by an appropriate diffusion. In the case of the whole space (the Cauchy

problem for a PIDE) such an approximation was considered in [3,11], see also Sect. 3.4

here.

Let γǫ be an m-dimensional vector with the components

γ i
ǫ =

∫

ǫ≤|z|≤1

ziν(dz); (2.6)

and Bǫ is an m × m matrix with the components

Bi j
ǫ =

∫

|z|<ǫ

zi z jν(dz), (2.7)

while βǫ be obtained from the formula βǫβ
⊤
ǫ = Bǫ . Note that |Bi j

ǫ | (and hence also

the elements of βǫ) are bounded by a constant independent of ǫ thanks to the Lévy

measure definition.

Remark 2.2 In many practical situations (see e.g. [6]), where the dependence among

the components of X(t) introduced through the structure of the SDEs is enough, we

can allow the components of the driving Poisson measure to be independent. This

amounts to saying that ν is concentrated on the axes, and as a result Bǫ will be a

diagonal matrix.

We shall consider the modified jump-diffusion X̃ t0,x (t) = X̃ ǫ
t0,x (t) defined as

X̃ t0,x (t) = x +
∫ t

t0

[
b(s, X̃(s−)) − F(s, X̃(s−))γǫ

]
ds +

∫ t

t0

σ(s, X̃(s−))dw(s)

+
∫ t

t0

F(s, X̃(s−))βǫdW (s) +
∫ t

t0

∫

|z|≥ǫ

F(s, X̃(s−))zN (dz, ds), (2.8)

where W (t) is a standard m-dimensional Wiener process, independent of N and w.

We observe that, in comparison with (2.1), in (2.8) jumps less than ǫ in magnitude are

replaced by the additional diffusion part. In this way, the new Lévy measure has finite

activity allowing us to simulate its events exactly, i.e. in a practical way.

Consequently, we can approximate the solution of u(t, x) the PIDE (1.1) by

u(t, x)≈uǫ(t, x) :=E
[
ϕ
(
τ̃t,x , X̃ t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x )+ Z̃ t,x,1,0 (̃τt,x )

]
, (t, x) ∈ Q,

(2.9)

where τ̃t,x = inf{s ≥ t : (s, X̃ t,x (s)) /∈ Q} is the fist exit time of the space-time

Lévy process (s, X̃ t,x (s)) from the space-time cylinder Q and
(
X̃ t,x (s), Ỹt,x,y(s),
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Z̃ t,x,y,z(s)
)

s≥0
solves the system of SDEs consisting of (2.8) along with

dỸ = c(s, X̃(s−))Ỹ ds, Ỹt,x,y(t) = y, (2.10)

d Z̃ = g(s, X̃(s−))Ỹ ds, Z̃ t,x,y,z(t) = z. (2.11)

Since the new Lévy measure has finite activity, we can derive a constructive weak

scheme for (2.8), (2.10)–(2.11) (see Sect. 3). By using this method together with the

Monte Carlo technique, we will arrive at an implementable approximation of uǫ(t, x)

and hence of u(t, x).

We will next show that indeed uǫ defined in (2.9) is a good approximation to the

solution of (1.1). Before proceeding, we need to formulate appropriate assumptions.

2.2 Assumptions

First, we make the following assumptions on the coefficients of the problem (1.1)

which will guarantee, see e.g. [2], that the SDEs (2.1), (2.4)–(2.5) and (2.8), (2.10)–

(2.11) have unique adapted, càdlàg solutions with finite moments.

Assumption 2.1 (Lipschitz condition) There exists a constant K > 0 such that for all

x1, x2 ∈ Rd and all t ∈ [t0, T ],
∣∣b(t, x1) − b(t, x2)

∣∣2 +
∥∥σ(t, x1) − σ(t, x2)

∥∥2

+ |c(t, x1) − c(t, x2)|2 + |g(t, x1) − g(t, x2)|2

+
∫

Rd

‖F(t, x1) − F(t, x2)‖2|z|2ν(dz) ≤ K |x1 − x2|2. (2.12)

Assumption 2.2 (Growth condition) There exists a constant K > 0 such that for all

x ∈ Rd and all t ∈ [t0, T ],

∣∣b(t, x)
∣∣2 +

∥∥σ(t, x)
∥∥2 + |g(t, x)|2 +

∫

Rd

‖F(t, x)‖2|z|2ν(dz) ≤ K (1 + |x |)2,

(2.13)

|c(t, x)| ≤ K . (2.14)

Remark 2.3 Since G is bounded, in practice the above assumptions in the space variable

are only required in Ḡ. We chose to impose them in Rd to simplify the presentation

as it allows us to construct a global solution to the SDEs (2.8), rather than having to

deal with local solutions built up to the exit time from the domain. In practice the

assumption can be bypassed by multiplying the coefficients with a bump function that

vanishes outside G, without affecting the value of (2.3).

In order to streamline the presentation and avoid lengthy technical discussions (see

Remarks 2.4 and 2.5), we will make the following assumption regarding the regularity

of solutions to (1.1).
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Assumption 2.3 The Dirichlet problem (1.1) admits a classical solution u(·, ·) ∈
C l,n([t0, T ] × Rd) with some l ≥ 1 and n ≥ 2.

In addition to the PIDE problem (1.1), we also consider the PIDE problem for uǫ

from (2.9):

∂uǫ

∂t
+ Lǫuǫ + c(t, x)uǫ + g(t, x) = 0, (t, x) ∈ Q,

uǫ(t, x) = ϕ(t, x), (t, x) ∈ Qc, (2.15)

where

Lǫv(t, x) := 1

2

d∑

i, j=1

[
ai j (t, x) +

(
F(t, x)Bǫ(t, x)F⊤(t, x)

)i j
]

∂2v

∂x i∂x j
(t, x)

+
d∑

i=1

(
bi (t, x) −

m∑

j=1

F i j (t, x)γ j
ǫ

) ∂v

∂x i
(t, x)

+
∫

|z|≥ǫ

{
v
(
t, x + F(t, x)z

)
− v(t, x)

}
ν(dz). (2.16)

Again, for simplicity (but see Remark 2.4), we impose the following conditions on

the solution uǫ of the above Dirichlet problem.

Assumption 2.4 The auxiliary Dirichlet problem (2.15) admits a classical solution

uǫ(·, ·) ∈ C l,n([t0, T ] × Rd) with some l ≥ 1 and n ≥ 2.

Finally, we also require that uǫ and its derivatives do not grow faster than a poly-

nomial function at infinity.

Assumption 2.5 (Smoothness and growth) There exist constants K > 0 and q ≥ 1

such that for all x ∈ Rd , all t ∈ [t0, T ] and ǫ > 0, the solution uǫ of the PIDE problem

(2.15) and its derivatives satisfy

∣∣∣ ∂ l+ j

∂t l∂x i1 · · · ∂x i j
uǫ(t, x)

∣∣∣ ≤ K (1 + |x |q), (2.17)

where 0 ≤ 2l + j ≤ 4,
∑ j

k=1 ik = j, and ik are integers from 0 to d.

Remark 2.4 Sufficient conditions guaranteeing Assumptions 2.3, 2.4 and 2.5 consist

in sufficient smoothness of the coefficients, the boundary ∂G, and the function ϕ and

in appropriate compatibility of ϕ and g and also of the integral operator (see e.g.

[8,9,16]).

Remark 2.5 The main goal of the paper is to present the numerical method and study

its convergence under ‘good’ conditions when its convergence rates are optimal (i.e.,

highest possible). As usual, in these circumstances, the conditions (here Assump-

tions 2.3, 2.4, and 2.5) are somewhat restrictive. See Theorem 3.3 in [8, p. 93], which
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1230 G. Deligiannidis et al.

indicates sufficient conditions for Assumption 2.3 to hold. If one drops the compat-

ibility condition (3.11) in Theorem 3.3 of [8, p. 93], then, as in the diffusion case,

the smoothness of the solution will be lost through the boundary of Q at the terminal

time T . This affects only the last step of the method and the proof can be modified

(see such a recipe in the case of the Neumann problem and diffusion in e.g. [13]), but

we do not include such complications here for transparency of the proofs. Further,

in the case of an α-stable Lévy process with α ∈ (1, 2) spatial derivatives of u(t, x)

may blow up near the boundary ∂G, the blow up is polynomial with the power depen-

dent on α if the integral operator does not satisfy some compatibility conditions (see

the discussion in [8, p. 96]). This situation requires further analysis of the proposed

method, which is beyond the scope of the present paper. At the same time, the method

can be successfully used when the assumptions stated in this section are not satisfied

as demonstrated in our numerical experiments (see Sect. 4.3).

2.3 Closeness of u�(t, x) and u(t, x)

We now state and prove the theorem on closeness of uǫ(t, x) and u(t, x). In what

follows we use the same letters K and C for various positive constants independent

of x, t, and ǫ.

Theorem 2.1 Let Assumptions 2.1, 2.2 and 2.3 hold, the latter with l = 1 and m = 3.

Then for 0 ≤ ǫ < 1

|uǫ(t, x) − u(t, x)| ≤ K

∫

|z|≤ǫ

|z|3ν(dz), (t, x) ∈ Q, (2.18)

where K > 0 does not depend on t, x, ǫ.

Proof We have
(
τ̃t,x , X̃ t,x (̃τt,x )

)
∈ Qc and ϕ

(
τ̃t,x , X̃ t,x (̃τt,x )

)
= u

(
τ̃t,x , X̃ t,x (̃τt,x )

)
,

and

uǫ(t, x) − u(t, x) = E
[
u
(
τ̃t,x , X̃ t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃ t,x,1,0(̃τt,x )

]
− u(t, x).

(2.19)

By Ito’s formula, we get

u(s, X̃ t,x (s))Ỹt,x,1(s) + Z̃ t,x,1,0(s)

= u(t, x) +
∫ s

t

Ỹt,x,1(s
′)

[
∂

∂t
u(s′, X̃ t,x (s

′−))

+ 1

2

d∑

i, j=1

ai j (s′, X̃ t,x (s
′−))

∂2u

∂x i∂x j
(s′, X̃ t,x (s

′−))

+ 〈b(s′, X̃ t,x (s
′−)),∇u(s′, X̃ t,x (s

′−))〉
− 〈F(s, X̃(s−))γǫ,∇u(s′, X̃ t,x (s

′−))〉
+ c(s, X̃ t,x (s

′−))u(s′, X̃ t,x (s
′−))
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+ g(s′, X̃ t,x (s
′−))

]
ds′ + 1

2

∫ s

t

Ỹt,x,1(s
′)

d∑

i, j=1

(
F(s′, X̃ t,x (s

′−))Bǫ F⊤(s′, X̃ t,x (s
′−))

)i j

∂2u

∂x i∂x j
(s′, X̃ t,x (s

′−))ds′

+
∫ s

t

Ỹt,x,1(s
′)
[
σ(s′, X̃(s′−))∇u(s′, X̃(s′−))

]⊤
dw(s′)

+
∫ s

t

Ỹt,x,1(s
′)
[
F(s′, X̃(s′−))βǫ∇u(s′, X̃(s′−))

]⊤
dW (s′)

+
∫ s

t

∫

|z|≥ǫ

Ỹt,x,1(s
′)
[
u(s′, X̃(s−) + F(s′, X̃(s′−))z)

−u(s′, X̃(s′))
]

N (dz, ds′). (2.20)

Since u(t, x) solves (1.1) and recalling (2.6), we obtain from (2.20):

u
(
s, X̃ t,x (s)

)
Ỹt,x,1(s) + Z̃ t,x,1,0(s) − u(t, x)

= −
∫ s

t

Ỹt,x,1(s
′)[〈F(s, X̃(s−))γǫ,∇u(s′, X̃ t,x (s

′−))〉

+
∫

Rm

{u(s′, X̃ t,x (s
′−) + F(s′, X̃ t,x (s

′−))z) − u(s′, X̃ t,x (s
′−))

− 〈F(s′, X̃ t,x (s
′−))z,∇u(s′, X̃ t,x (s

′−))〉I(|z| ≤ 1)}ν(dz)]ds′

+ 1

2

∫ s

t

Ỹt,x,1(s
′)

d∑

i, j=1

(
F(s′, X̃ t,x (s

′−))Bǫ F⊤(s′, X̃ t,x (s
′−))

)i j

∂2u

∂x i∂x j
(s′, X̃ t,x (s

′−))ds′

+
∫ s

t

Ỹt,x,y(s
′)
[
σ(s′, X̃(s′−))∇u(s′, X̃(s′−))

]⊤
dw(s′)

+
∫ s

t

Ỹt,x,y(s
′)
[
F(s′, X̃(s′−))βǫ∇u(s′, X̃(s′−))

]⊤
dW (s′)

+
∫ s

t

∫

|z|≥ǫ

Ỹt,x,1(s
′)[u(s′, X̃(s−) + F(s′, X̃(s′−))z) − u(s′, X̃(s′))]N (dz, ds′)

= 1

2

∫ s

t

Ỹt,x,1(s
′)

d∑

i, j=1

(
F(s′, X̃ t,x (s

′−))Bǫ F⊤(s′, X̃ t,x (s
′−))

)i j

∂2u

∂x i∂x j
(s′, X̃ t,x (s

′−))ds′

−
∫ s

t

∫

|z|<ǫ

Ỹt,x,1(s
′)[u(s′, X̃ t,x (s

′−) + F(s′, X̃ t,x (s
′−))z) − u(s′, X̃ t,x (s

′−))
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− 〈F(s′, X̃ t,x (s
′−))z,∇u(′, X̃ t,x (s

′−))〉]ν(dz)ds′

+
∫ s

t

Ỹt,x,1(s
′)
[
σ(s′, X̃(s′−))∇u(s′, X̃(s′−))

]⊤
dw(s′)

+
∫ s

t

Ỹt,x,1(s
′)
[
F(s′, X̃(s′−))βǫ∇u(s′, X̃(s′−))

]⊤
dW (s′)

+
∫ s

t

∫

|z|≥ǫ

Ỹt,x,1(s
′)
[
u(s′, X̃(s−) + F(s′, X̃(s′−))z) − u(s′, X̃(s′))

]

× (N (dz, ds′) − ν(dz)ds′). (2.21)

Replacing s with the stopping time τ̃t,x in (2.21) (cf. (2.19)), taking expectations

of the resulting left- and right-hand sides of (2.21) and using the martingale property

and (2.7), we arrive at

E
[
u
(
τ̃t,x , X̃ t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃ t,x,1,0(̃τt,x )

]
− u(t, x)

= E

[ ∫ τ̃t,x

t

Ỹt,x,1(s)

[ ∫

|z|<ǫ

1

2

d∑

i, j=1

(
F(s, X̃ t,x (s−))z)i (F(s, X̃ t,x (s−))z

) j ∂2u

∂x i∂x j
(s, X̃ t,x (s−))ν(dz)

−
∫

|z|<ǫ

(
u(s, X̃ t,x (s−) + F(s, X̃ t,x (s−))z) − u(s, X̃ t,x (s−))

− 〈F(s, X̃ t,x (s−))z,∇u(s, X̃ t,x (s−))〉
)
ν(dz)

]
ds

]
. (2.22)

By Taylor’s expansion, we get for some θ ∈ [0, 1] which may depend on the random-

ness,

∣∣∣∣u(s, X̃ t,x (s−) + F(s, X̃ t,x (s−))z) − u(s, X̃ t,x (s−))

− 〈F(s, X̃ t,x (s−))z,∇u(s, X̃ t,x (s−))〉

− 1

2

d∑

i, j=1

(
F(s, X̃ t,x (s−))z)i (F(s, X̃ t,x (s−))z

) j ∂2u

∂x i∂x j
(s, X̃ t,x (s−))

∣∣∣∣

=
∣∣∣∣
1

6

d∑

i, j,k=1

(
F(s, X̃ t,x (s−))z)i (F(s, X̃ t,x (s−))z

) j

(F(s, X̃ t,x (s−))z)k
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× ∂3u

∂x i∂x j∂xk
(s, X̃ t,x (s−) + θ F(s, X̃ t,x (s−))z)

∣∣∣∣ (2.23)

≤ K |z|3, (2.24)

where to obtain inequality (2.24) we used the fact that by definition of τ̃t,x , X̃ t,x (s−) ∈
G for s ≤ τ̃t,x , and therefore we have for some K > 0 that does not depend on ǫ, t, x, s,

∣∣F(s, X̃ t,x (s−))
∣∣ ≤ max

t0≤s≤T , x∈Ḡ
|F(s, x)| ≤ K ,

∣∣X̃ t,x (s−) + θ F(s, X̃ t,x (s−))z
∣∣ ≤ max

x∈Ḡ
|x | + ǫ max

t0≤s≤T , x∈Ḡ
|F(s, x)| ≤ K ,

(2.25)

after noting that |z| < ǫ. Using Assumption 2.3 and combining (2.22)–(2.24) and

since Ỹt,x,1(·) ≥ 0, we arrive at

∣∣E
[
u
(
τ̃t,x , X̃ t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃ t,x,1,0(̃τt,x )

]
− u(s, x)

∣∣

≤ K

∫ T

t0

E
[
Ỹt,x,1(s)I(̃τt,x > s)

]
ds ·

∫

|z|<ǫ

|z|3ν(dz). (2.26)

Since c
(
s, X̃ t,x (s)

)
is bounded on the set {̃τt,x > s}, E

[
Ỹt,x,1(s)I(̃τt,x > s)

]
is

bounded which together with (2.26) implies (2.18). ⊓⊔

Example 2.1 (Tempered α-stable Process) For α ∈ (0, 2) and m = 1, consider an

α-stable process with Lévy measure given by ν(dz) = |z|−1−αdz. Then

∫

|z|≤ǫ

|z|3ν(dz) = 2
ǫ3−α

3 − α
.

Similarly, for a tempered stable distribution which has Lévy measure given by

ν(dz) =
(C+e−λ+z

z1+α
I(z > 0) + C−e−λ−|z|

|z|1+α
I(z < 0)

)
dz,

for α ∈ (0, 2) and C+, C−, λ+, λ− > 0 we find that the error from approximating

the small jumps by diffusion as in Theorem 2.1 is of the order O(ǫ3−α).

3 Weak approximation of jump-diffusions in bounded domains

In this section we propose and study a numerical algorithm which weakly approximates

the solutions of the jump-diffusion (2.8), (2.10)–(2.11) with finite intensity of jumps

in a bounded domain, i.e., approximates uǫ(t, x) from (2.9). In Sect. 3.1 we formulate

the algorithm based on a simplest random walk. We analyse the one-step error of the

algorithm in Sect. 3.2 and the global error in Sect. 3.3. In Sect. 3.4 we comment on
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how the global error can be estimated in the Cauchy case. In Sect. 3.5 we combine the

convergence result of Sect. 3.3 with Theorem 2.1 to get error estimates in the case of

infinite activity of jumps.

3.1 Algorithm

In what follows we also require the following to hold.

Assumption 3.1 (Lévy measure) There exists a constant K > 0

∫

Rm

|z|pν(dz) ≤ K

for up to a sufficiently large p ≥ 2.

This is a natural assumption since Lévy measures of practical interest (see e.g. [6]

and also examples here of Example 2.1 and Sect. 4) have this property.

Let us describe an algorithm for simulating a Markov chain that approximates a

trajectory of (2.8), (2.10)–(2.11). In what follows we assume that we can exactly

sample the intervals δ between consecutive jump times with the intensity

λǫ :=
∫

|z|>ǫ

ν(dz) (3.1)

and jump sizes Jǫ distributed according to the density

ρǫ(z) := ν(z)I(|z| > ǫ)

λǫ

. (3.2)

Remark 3.1 There are known methods for simulating jump times and sizes for many

standard distributions. In general, if there exists an explicit expression for the jump

size density, one can construct a rejection method to sample jump sizes. An overview

with regard to simulation of jump times and sizes can be found in [6,7].

Thanks to Assumption 3.1, we have

E
[
|Jǫ |p

]
≡ 1

λǫ

∫

|z|>ǫ

|z|pν(dz) ≤ K

λǫ

(3.3)

with K > 0 being independent of ǫ and p ≥ 2. We also note that

|γǫ |2
λǫ

≤ K , (3.4)

where K > 0 is a constant independent of ε, since by the Cauchy-Schwarz inequality

|γǫ |2
λǫ

≤
(∫

ǫ<|z|<1

|z|√
λǫ

ν(dz)

)2

≤
∫

ǫ<|z|<1

|z|2
λǫ

ν(dz) × λǫ ≤
∫

0<|z|<1

|z|2ν(dz) < ∞
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thanks to the Lévy measure definition.

We now describe the algorithm. Fix a time-discretization step h > 0 and suppose

the current position of the chain is (t, x, y, z). If the jump time increment δ < h, we

set θ = δ, otherwise θ = h, i.e. θ = δ ∧ h.

In the case θ = h, we apply the weak explicit Euler approximation with the simplest

simulation of noise to the system (2.8), (2.10)–(2.11) with no jumps:

X̃ t,x (t + θ) ≈ X = x + θ · (b(t, x) − F(t, x)γǫ) +
√

θ · (σ (t, x) ξ

+F(t, x)βǫ η) , (3.5)

Ỹt,x,y(t + θ) ≈ Y = y + θ · c(t, x) y , (3.6)

Z̃ t,x,y,z(t + θ) ≈ Z = z + θ · g(t, x) y , (3.7)

where ξ = (ξ1, . . . , ξd)⊺, η = (η1, . . . , ηm)⊺, with ξ1, . . . , ξd and η1, . . . , ηm mutu-

ally independent random variables, taking the values ±1 with equal probability. In the

case of θ < h, we replace (3.5) by the following explicit Euler approximation

X̃ t,x (t + θ) ≈ X = x + θ · (b(t, x) − F(t, x)γǫ) +
√

θ · (σ (t, x) ξ

+F(t, x)βǫ η) + F(t, x)Jǫ . (3.8)

Let (t0, x0) ∈ Q. We aim to find the value uǫ(t0, x0), where uǫ(t, x) solves the

problem (2.15). Introduce a discretization of the interval [t0, T ], for example the

equidistant one:

h := (T − t0)/L.

To approximate the solution of the system (2.8), we construct a Markov chain

(ϑk, Xk, Yk, Zk) which stops at a random step κ when (ϑk, Xk) exits the domain Q.

The algorithm is formulated as Algorithm 1 below.

Remark 3.2 If λǫ is large so that 1 − e−λǫh is close to 1, then Ik = 1 (i.e., jump

happens) is almost on every time step. In this situation it is computationally beneficial

to modify Algorithm 1 in the following way: instead of sampling both Ik and θk , sample

δk according to the exponential distribution with parameter λǫ and set θk = δk ∧h and

Ik = 1 if θk < h, else Ik = 0.

Remark 3.3 We note [18,19] that in the diffusion case (i.e., when there is no jump

component in the noise which drives SDEs) solving Dirichlet problems for parabolic

or elliptic PDEs requires to complement a random walk inside the domain G with

a special approximation near the boundary ∂G. In contrast, in the case of Dirichlet

problems for PIDEs we do not need a special construction near the boundary since

the boundary condition is defined on the whole complement Gc. Here, when the chain

Xk exits G, we know the exact value of the solution uǫ(ϑ̄κ, Xκ) = ϕ(ϑ̄κ, Xκ) at

the exit point (ϑ̄κ, Xκ), while in the diffusion case when a chain exits G, we do not

know the exact value of the solution at the exit point and need an approximation. Due

to this fact, Algorithm 1 is somewhat simpler than algorithms for Dirichlet problems

for parabolic or elliptic PDEs (cf. [18,19] and references therein).
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Algorithm 1 Algorithm for (2.8), (2.10)–(2.11).

Output: ϑ̄κ , Xκ , Yκ , Zκ

1: Initialize: ϑ0 = t0, X0 = x0, Y0 = 1, Z0 = 0, k = 0.

2: while ϑk < T or Xk ∈ G do

3: Simulate: ξk and ηk with i.i.d. components taking values ±1 with probability 1/2 and independently

Ik ∼ Bernoulli
(
1 − e−λǫh

)
.

4: if Ik = 0, then

5: Set: θk = h

6: Evaluate: Xk+1, Yk+1, Zk+1 according to (3.5)–(3.7) with t = ϑk , θ = θk , ξ = ξk , η = ηk ,

x = Xk , y = Yk , z = Zk .

7: else

8: Sample: θk according to the density
λǫe−λǫ x

1 − e−λǫh
with finite support [0, h].

9: Sample: jump size Jǫ,k according to the density (3.2).

10: Evaluate: Xk+1, Yk+1 and Zk+1 according to (3.8), (3.6), (3.7) with t = ϑk , θ = θk , ξ = ξk ,

η = ηk , Jǫ = Jǫ,k , x = Xk , y = Yk , z = Zk .

11: end if

12: Set: ϑk+1 = ϑk + θk and k = k + 1.

13: end while

14: Set: Xκ = Xk , Yκ = Yk , Zκ = Zk , κ = k, ϑκ = ϑk .

15: if ϑκ < T then Set: ϑ̄κ = ϑκ

16: else Set: ϑ̄κ = T

17: end if

3.2 One-step error

In this section we consider the one-step error of Algorithm 1. The one step of this

algorithm takes the form for (t, x) ∈ Q:

X = x + θ (b(t, x) − F(t, x)γǫ) +
√

θ (σ (t, x)ξ + F(t, x)βǫη)

+ I(θ < h)F(t, x)Jǫ, (3.9)

Y = y + θc(t, x)y, (3.10)

Z = z + θg(t, x)y. (3.11)

Before we state and prove an error estimate for the one-step of Algorithm 1, we

need to introduce some additional notation. For brevity let us write b = b(t, x),

σ = σ(t, x), F = F(t, x), g = g(t, x), c = c(t, x), J = Jǫ . Let us define the

intermediate points Qi and their differences �i , for i = 1, . . . , 4:

�1 = θ1/2 [σξ + Fβǫη] ,

�2 = θ
[
b − Fγǫ

]
,

�3 = I(θ < h)F J ,

Q1 = x + �1 + �2 + �3 = X ,

Q2 = x + �2 + �3,

Q3 = x + �3,

Q4 = x, (3.12)
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where x ∈ G. Note that Qi , i = 1, . . . , 3, can be outside G.

Lemma 3.1 (Moments of intermediate points Qi ) Under Assumptions 2.1 and 3.1,

there is K > 0 independent of ǫ and h such that for p ≥ 1:

E
[
|Qi |2p

∣∣θ, t, x
]

≤ K (1 + θ2p|γǫ |2p), i = 1, 2, (3.13)

E
[
|Qi |2p

∣∣θ, t, x
]

≤ K , i = 3, 4, (3.14)

where Qi are defined in (3.12).

Proof It is not difficult to see that the points Qi , i = 1, 2, are of the following form

Qi = x + c1θ
1/2 [σξ + F(t, x)βǫη] + θ

[
b(t, x) − F(t, x)γǫ

]
+ I(θ < h)F(t, x)Jǫ,

where c1 is either 0 or 1. It is obvious that ξ and η and their moments are all bounded.

The functions b(t, x), σ (t, x) and F(t, x) are bounded as (t, x) ∈ Q, and for x ∈ G,

|x |2p is also bounded. Recall that sufficiently high moments of Jǫ are bounded as in

(3.3). Then, using the Cauchy-Schwarz inequality, we can show that

E
[
|Qi |2p

∣∣θ, t, x
]

≤ |x |2p + K θ p + K θ2p
[
1 + |γǫ |2p

]

+K I(θ < h)E
[
|Jǫ |2p

]
≤ K (1 + θ2p|γǫ |2p).

Hence, we obtained (3.13). The bound (3.14) is shown analogously. ⊓⊔

We will need the following technical lemma.

Lemma 3.2 (Moments of θ ) For integer p ≥ 2, we have

E
[
θ p
]

≤ K
1 − e−λǫh(1 + λǫh)

λ
p
ǫ

, (3.15)

where K > 0 depends on p but is independent of λǫ and h.

Proof The proof is by induction. By straightforward calculations, we get

E
[
θ2
]

= 2
1 − e−λǫh(1 + λǫh)

λ2
ǫ

.

Then assuming that (3.15) is true for all integer p ≥ 2, we obtain

E
[
θ p+1

]
= λǫ

∫ h

0

t p+1e−λǫ t dt + h p+1λǫ

∫ ∞

h

e−λǫ t dt

= (p+1)

∫ h

0

t pe−λǫ t dt ≤ p + 1

λǫ

[
λǫ

∫ h

0

t pe−λǫ t dt + h pλǫ

∫ ∞

h

e−λǫ t dt

]
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= p + 1

λǫ

E
[
θ p
]
≤ K (p + 1)

1 − e−λǫh(1+λǫh)

λ
p+1
ǫ

.

⊓⊔

Now we prove an estimate for the one-step error.

Theorem 3.1 (One–step error of Algorithm 1) Under Assumption 2.4 with l = 2,

n = 4 and Assumptions 2.1, 2.5 and 3.1 the one–step error of Algorithm 1 given by

R(t, x, y, z) := uǫ(t + θ, X)Y + Z − uǫ(t, x)y − z

satisfies the bound

∣∣E[R(t, x, y, z)]
∣∣ ≤ K (1 + |γǫ |2)

1 − e−λǫh(1 + λǫh)

λ2
ǫ

y, (3.16)

where K > 0 is a constant independent of h and ǫ.

Proof For any smooth function v(t, x), we write Dlvn = (Dlv)(t, Qn) for the l-th

time derivative and (Dk
l v)(t, x)[ f1, . . . , fk] for the l-th time derivative of the k-th

spatial derivative evaluated in the directions f j . For example, if k = 2 and l = 1,

D2
1v[ f1, f2] =

d∑

i=1

d∑

j=1

f1,i f2, j

∂3v

∂t∂xi∂x j

.

We will also use the following short notation

Dk
l vi [ f1, . . . , fk] := (Dk

l v)(t, Qi )[ f1, . . . , fk].

The final aim of this theorem is to achieve an error estimate explicitly capturing the

(singular) dependence of the one-step error on ǫ. To this end, we split the error into

several parts according to the intermediate points Qi defined in (3.12).

Using (3.9) and (3.12), we have

uǫ(t + θ, X) = uǫ(t + θ, Q1)

= uǫ
(

t + θ, x + I(θ < h)F J + θ(b − Fγǫ) + θ1/2(σξ + Fβǫη)
)

= uǫ
(

t + θ, x + �1 + �2 + �3

)
.

To precisely account for the factor γǫ and powers of θ in the analysis of the one-step

error, we use multiple Taylor expansions of uǫ(t + θ, X). We obtain

uǫ(t + θ, X) = uǫ(t, Q1) + θ D1uǫ
1 + R11

= uǫ(t, Q2) + D1uǫ
2[�1] + 1

2
D2uǫ

2[�1,�1]
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+ 1

6
D3uǫ

2[�1,�1,�1] + θ D1uǫ
2 + θ D1

1uǫ
2[�1]

+ R11 + R12 + R13

= uǫ(t, Q3) + D1uǫ
3[�2] + D1uǫ

2[�1]

+ 1

2
D2uǫ

3[�1,�1] + 1

6
D3uǫ

2[�1,�1,�1]

+ θ D1uǫ
3 + θ D1

1uǫ
2[�1] + R11 + R12 + R13 + R14 + R15 + R16

= uǫ(t, Q3) + D1uǫ
4[�2] + D1uǫ

2[�1] + 1

2
D2uǫ

4[�1,�1]

+ 1

6
D3uǫ

2[�1,�1,�1] + θ D1uǫ
4 + θ D1

1uǫ
2[�1] + R1, (3.17)

where the remainders are as follows

R11 = 1

2
θ2

∫ 1

0

s D2uǫ
(

t + (1 − s)θ, Q1

)
ds,

R12 = 1

24

∫ 1

0

s3 D4uǫ(t, s Q2 + (1 − s)Q1)[�1,�1,�1,�1]ds,

R13 = 1

2
θ

∫ 1

0

s2 D2
1uǫ(t, s Q2 + (1 − s)Q1)[�1,�1]ds,

R14 = 1

2

∫ 1

0

s D2uǫ(t, s(Q3 + (1 − s)Q2)[�2,�2]ds,

R15 = 1

2

∫ 1

0

s2 D3uǫ(t, s(Q3) + (1 − s)Q2)[�1,�1,�2]ds,

R16 = θ

∫ 1

0

s D1
1uǫ(t, s(Q3) + (1 − s)Q2)[�2]ds,

R17 =
∫ 1

0

s D2uǫ(t, s(Q4) + (1 − s)Q3)[�2,�3]ds,

R18 = 1

2

∫ 1

0

s D3uǫ(t, s(Q4) + (1 − s)Q3)[�1,�1,�3]ds,

R19 = θ

∫ 1

0

s D1
1uǫ(t, s(Q4) + (1 − s)Q3)[�3]ds,

R1 = R11 + R12 + R13 + R14 + R15 + R16 + R17 + R18 + R19.

Using (3.17), (3.10)–(3.11), and the fact that ξ and η have mean zero and that com-

ponents of ξ, η, θ, J are mutually independent, we obtain

E[uǫ(t + θ, X)Y + Z ]

= E
[(

uǫ(t, Q3) + D1uǫ
4[�2] + 1

2
D2uǫ

4[�1,�1] + θ D1uǫ
4

)
(y + θcy)

+ z + θgy + y(1 + θc)R1

]
. (3.18)
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The following elementary formulas are needed for future calculations:

E
[

D2uǫ[�1,�1]|θ
]

= θ

d∑

i, j=1

[
ai j (t, x) +

(
F(t, x)Bǫ(t, x)F⊤(t, x)

)i j
]

∂2uǫ

∂x i∂x j

=: θ(a + F Bǫ FT ) : ∇∇uǫ,

uǫ(t, Q3) − uǫ(t, x) = uǫ(t, x + I(θ < h)F J ) − uǫ(t, x)

= I(θ < h)[uǫ(t, x + F J ) − uǫ(t, x)],

E[θ ] = 1 − e−λǫh

λǫ

,

E[θ2] = 2
1 − e−λǫh(1 + λǫh)

λ2
ǫ

,

E[I(θ < h)] = 1 − e−λǫh,

E[I(θ < h)θ ] = 1 − e−λǫh(1 + λǫh)

λǫ

. (3.19)

Also, Ev(J ) for some v(z) will mean

E[v(J )] = E[v(Jǫ)] = 1

λǫ

∫

|s|>ǫ

v(s)ν(ds).

Noting that uǫ
4 = uǫ(t, x) = uǫ and using ( 3.18), (3.12), (3.19) and (2.15), we obtain

E [R] := E
[
uǫ(t + θ, X)Y + Z − uǫ y − z

]

= E[θ
(

D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) : ∇∇uǫ

)
(y + θcy) + θgy

+ uǫ(t, x + I(θ < h)F J )(y + θcy) − uǫ y
]
+ yE[(1 + θc)R1]

= E[θ
(

D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) : ∇∇uǫ + cuǫ + g

)
y

+ [uǫ(t, x + I(θ < h)F J ) − uǫ)]y

+ θ2
(

D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) : ∇∇uǫ

)
cy

+ θ
[
uǫ(t, x + I(θ < h)F J ) − uǫ

]
cy
]

+ yE[(1 + θc)R1]

= E[θ
(

D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) : ∇∇uǫ + cuǫ + g

)
y

+ I(θ < h)[uǫ(t, x + F J ) − uǫ)]y

+ θ2
(

D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) : ∇∇uǫ

)
cy

+ θI(θ < h)[uǫ(t, x + F J ) − uǫ]cy] + yE[(1 + θc)R1]
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= E[θ
(

D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) : ∇∇uǫ + cuǫ + g

)
y]

+ E
[
I(θ < h)[uǫ(t, x + F J ) − uǫ(t, x)]y

]
+ yE[R1(1 + θc) + R2]

= 1 − e−λǫh

λǫ

(
D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) :

∇∇uǫ + cuǫ(t, x) + g
)

y

+
(

1 − e−λǫh
)

E
[
uǫ(t, x + F J ) − uǫ(t, x)

]
y + yE[R0]

= 1 − e−λǫh

λǫ

(
D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) :

∇∇uǫ + cuǫ(t, x) + g
)

y

+ 1 − e−λǫh

λǫ

∫

|s|≥ǫ

{uǫ(t, x + Fs) − uǫ(t, x)}ν(ds)y + yE[R0]

= yE[R0],

where

R0 = R1(1 + θc) + R2,

R2 = R21 + R22,

and

R21 = θ2
(

D1uǫ + D1uǫ[b − Fγǫ] + 1

2
(a + F Bǫ FT ) : ∇∇uǫ

)
c,

R22 = θI(θ < h)[uǫ(t, x + F J ) − uǫ(t, x)]c.

It is clear that many of the terms in R are only non–zero in the case θ < h, i.e.

when a jump occurs. We rearrange the terms in R0 according to their degree in θ :

R0 = R17 + R18 + R19 + R22︸ ︷︷ ︸
I(θ<h)θ-terms

+ R11 + R12 + R13 + R14 + R15 + R16 + R21︸ ︷︷ ︸
θ2−terms

+ θc(R17 + R18 + R19)︸ ︷︷ ︸
(I(θ<h)θ2-terms

+ θc(R11 + R12 + R13 + R14 + R15 + R16)︸ ︷︷ ︸
θ3−terms

Now to estimate the terms in the error R0, we observe that (i)
∫
|s|>ǫ

sν(ds) =
γǫ +

∫
|s|>1 sν(ds) with the latter integral bounded and, in particular, |E[J ]| ≤ K (1 +

|γǫ |)/λǫ; (ii) E
[
|J |2p

]
, p ≥ 1, are bounded by K/λǫ (see (3.3)); (iii) the terms R17,

R18, R19, R21 and R22 contain derivatives of uǫ evaluated at or between the points Q3

and Q4 and in their estimation Assumption 2.5 and (3.14) from Lemma 3.1 are used;

(iv) the terms R11, R12 , R13, R14, R15 and R16 contain derivatives of uǫ evaluated at

or between the points Q1 and Q2 and in their estimation Assumption 2.5, (3.13) from
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Lemma 3.1, and Lemma 3.2 are used; (v) γ 2
ǫ /λǫ is bounded by a constant independent

of ǫ. As a result, we obtain

∣∣∣E
[
R17 + R18 + R19 + R22

]∣∣∣ ≤ K1
(1 + |γǫ |2)

λǫ

E [I(θ < h)θ ] ,

∣∣∣E
[
θ(R17 + R18 + R19)

]∣∣∣ ≤ K2
(1 + |γǫ |2)

λǫ

E
[
I(θ < h)θ2

]

≤ K3
(1 + |γǫ |2)

λǫ

E [I(θ < h)θ ] ,

∣∣∣E
[
(R11 + R12 + R13 + R14 + R15 + R16 + R21)

]∣∣∣

≤ K4(1 + |γǫ |2)(E
[
θ2
]

+ |γǫ |qE
[
θq+2

]
))

≤ K5(1 + |γǫ |2)
1 − e−λǫh(1 + λǫh)

λ2
ǫ

,

and

∣∣∣E
[
θ(R11 + R12 + R13 + R14 + R15 + R16)

]∣∣∣

≤ K6(1 + |γǫ |2)(E
[
θ3
]

+ |γǫ |qE
[
θq+3

]
))

≤ K7(1 + |γǫ |2)
1 − e−λǫh(1 + λǫh)

λ3
ǫ

≤ K8(1 + |γǫ |2)
1 − e−λǫh(1 + λǫh)

λ2
ǫ

,

where all constants Ki > 0 are independent of h and ǫ and q ≥ 1.

Overall we obtain

∣∣∣E[R]
∣∣∣ ≤ (K1 + K3)

(1 + |γǫ |2)
λǫ

yE [I(θ < h)θ ]

+ (K5 + K8)(1 + |γǫ |2)y
1 − e−λǫh(1 + λǫh)

λ2
ǫ

≤ K

{
1

λǫ

E [I(θ < h)θ ] + 1 − e−λǫh(1 + λǫh)

λ2
ǫ

}
(1 + |γǫ |2)y

= 2K (1 + |γǫ |2)
1 − e−λǫh(1 + λǫh)

λ2
ǫ

y.

⊓⊔

Remark 3.4 We note the following two asymptotic regimes for the one-step error

(3.16). For λǫh < 1 (in practice, this occurs only when λǫ is small or moderate

like it is in jump-diffusions), we can expand the exponent in (3.16) and obtain that the

one-step error is of order O(h2) :
∣∣E[R(t, x, y, z)]

∣∣ ≤ K (1 + |γǫ |2)h2 y.
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When λǫ is very large (e.g., for small ǫ in the infinite activity case) then the term

with e−λǫh can be neglected and we get

∣∣E[R(t, x, y, z)]
∣∣ ≤ K

1 + |γǫ |2
λ2

ǫ

y.

The usefulness of a more precise estimate (3.16) is that it includes situations in between

these two asymptotic regimes and also allows to consider an interplay between h and

ǫ (see Sect. 3.5).

3.3 Global error

In this section we obtain an estimate for the global weak-sense error of Algorithm 1.

We first estimate average number of steps E [κ] of Algorithm 1.

Lemma 3.3 (Number of steps) The average number of steps κ for the chain Xk from

Algorithm 1 satisfies the following bound

E [κ] ≤ (T − t0)λǫ

1 − e−λǫh
+ 1.

Proof It is obvious that if we replace the bounded domain G in Algorithm 1 with

the whole space Rd (i.e., replace the Dirichlet problem by the Cauchy one), then

the corresponding number of steps κ′ of Algorithm 1 is not less than κ. Hence it is

sufficient to get an estimate for E
[
κ′] . Let δ1, δ2, . . . be the interarrival times of the

jumps, θi = δi ∧ h for i ≥ 0, and Sk =
∑k−1

i=0 θi for k ≥ 0. Then

κ ≤ κ′ := inf{l : Sl ≥ T − t0}.

Introduce the martingale: S̃0 = 0 and S̃k := Sk − kE [θ ] for k ≥ 1. Since θi ≤ h we

have that S̃κ′−1 ≤ Sκ′−1 < T − t0 almost surely and thus by the optional stopping

theorem we obtain

E
[
S̃κ′−1

]
= E

[
S̃0

]
= 0.

Therefore

E
[
Sκ′−1

]
= E[κ′ − 1] · E[θ ]

and we conclude

E [κ] ≤ E
[
κ′] = E[κ′ − 1] + 1

=
E
[
Sκ′−1

]

E [θ ]
+ 1 ≤ (T − t0)λǫ

1 − e−λǫh
+ 1.

⊓⊔
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We also need the following auxiliary lemma.

Lemma 3.4 (Boundedness of Yk in Algorithm 1) The chain Yk defined in (3.6) is

uniformly bounded by a deterministic constant:

Yk ≤ ec̄(T −t0+h),

where c̄ = max(t,x)∈Q̄ c(t, x).

Proof From (3.6), we can express Yk via previous Yk−1 and get the required estimate

as follows:

Yk = Yk−1(1 + θkc(tk−1, xk−1) ≤ Yk−1(1 + θk c̄)

≤ Yk−1ec̄θk ≤ Yk−2ec̄(θk+θk−1) ≤ Y0ec̄(ϑk−t0) ≤ ec̄(T −t0+h).

⊓⊔

Now we prove the convergence theorem for Algorithm 1.

Theorem 3.2 (Global error of Algorithm 1) Under Assumption 2.4 with l = 2, m = 4

and Assumptions 2.1, 2.5 and 3.1, the global error of Algorithm 1 satisfies the following

bound

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − uǫ(t0, x0)
∣∣

≤ K (1 + |γǫ |2)
(

1

λǫ

− h
e−λǫh

1 − e−λǫh

)
+ K

1 − e−λǫh

λǫ

, (3.20)

where K > 0 is a constant independent of h and ǫ.

Proof Recall (see (2.9)):

uǫ(t, x) = E
[
ϕ
(
τ̃t,x , X̃ t,x (̃τt,x )

)
Ỹt,x,1(̃τt,x ) + Z̃ t,x,1,0(̃τt,x )

]
.

The global error

R :=
∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − uǫ(t0, x0)

∣∣

can be written as

R =
∣∣E[I(ϑκ ≥ T )

(
ϕ(ϑ̄κ, Xκ)Yκ

−uǫ(ϑκ, Xκ)Yκ

)
+ uǫ(ϑκ, Xκ)Yκ + Zκ − uǫ(t0, x0)]

∣∣
≤
∣∣E[I(ϑκ ≥ T )

(
ϕ(ϑ̄κ, Xκ)Yκ − uǫ(ϑκ, Xκ)Yκ

)
]
∣∣+

∣∣E[uǫ(ϑκ, Xκ)Yκ

+ Zκ − uǫ(t0, x0)]
∣∣. (3.21)
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Using Lemma 3.4, Assumption 2.5 and Lemmas 3.1 and 3.2 as well as that ϑ̄κ −ϑκ ≤
θκ , we have for the first term in (3.21):

E[I(ϑκ ≥ T )
(
ϕ(ϑ̄κ, Xκ)Yκ − uǫ(ϑκ, Xκ)Yκ

)
] ≤ K E

[
θκ(1 + |γǫ |qθq

κ
)
]

≤ K
1 − e−λǫh

λǫ

, (3.22)

where K > 0 does not depend on h or ε.

For the second term in (3.21), we exploit ideas from [19] to re-express the global

error. We get using Theorem 3.1 and Lemmas 3.4 and 3.3:

∣∣E[uǫ(ϑκ, Xκ)Yκ + Zκ − uǫ(t0, x0)]
∣∣

=
∣∣∣∣∣E
[

κ−1∑

k=0

E
[
uǫ(ϑk+1, Xk+1)Yk+1+Zk+1 − uǫ(ϑk, Xk)Yk −Zk

∣∣∣ϑk, Xk, Yk, Zk

]]∣∣∣∣∣

=
∣∣∣∣∣E
[

κ−1∑

k=0

E
[

R(ϑk, Xk, Yk, Zk)

∣∣∣ϑk, Xk, Yk, Zk

]]∣∣∣∣∣

≤ E

[
κ−1∑

k=0

1 − e−λǫh(1 + λǫh)

λ2
ǫ

K (1 + |γǫ |2)Yk

]

≤ K
1 + |γǫ |2

λ2
ǫ

(
1 − e−λǫh(1 + λǫh)

)
E [κ]

≤ K (1 + |γǫ |2)
(

1

λǫ(1 − e−λǫh)
− h

e−λǫh

1 − e−λǫh

)
(T − t0)

≤ K (1 + |γǫ |2)
(

1

λǫ

− h
e−λǫh

1 − e−λǫh

)
, (3.23)

where, as usual constants K > 0 are changing from line to line. Combining ( 3.21)–

(3.23), we arrive at (3.20). ⊓⊔

Remark 3.5 (Error estimate and convergence) Note that the error estimate in Theo-

rem 3.2 gives us the expected results in the limiting cases (see also Remark 3.4). If

λǫh < 1, we obtain:

R ≤ K (1 + |γǫ |2)h,

which is expected for weak convergence in the jump-diffusion case.

If λǫ is large (meaning that almost always θ < h), the error is tending to

R ≤ K (1 + |γǫ |2)
1

λǫ

,

as expected (cf. [11]).

We also remark that for any fixed λǫ , we have first order convergence when h → 0.
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Remark 3.6 In the case of symmetric measure ν(z) we have γǫ = 0 and hence the

global error (3.20) becomes

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − uǫ(t0, x0)
∣∣

≤ K

(
1

λǫ

− h
e−λǫh

1 − e−λǫh

)
+ K

1 − e−λǫh

λǫ

. (3.24)

3.4 Remark on the Cauchy problem

Let us set G = Rd in (2.15) and hence consider the Cauchy problem for the PIDE:

∂uǫ

∂t
+ Lǫuǫ + c(t, x)uǫ + g(t, x) = 0, (t, x) ∈ Q,

uǫ(T , x) = ϕ(x), x ∈ Rd . (3.25)

In this case Algorithm 1 stops only when ϑκ ≥ T as there is no spatial boundary

(and hence we write uǫ(T , x) = ϕ(x) instead of uǫ(T , x) = ϕ(T , x)). Theorem 3.1

remains valid for the Cauchy problem, although in this case one should replace the

constant K in the right-hand side of the bound (3.16) with a function K (x) > 0

satisfying

K (x) ≤ K̃ (1 + |x |2q)

with some constants K̃ > 0 and q ≥ 1. Consequently, to prove an analogue of the

global convergence Theorem 3.2, we need to prove boundedness of moments E
[

X
2p

k

]
.

Let

Xk ≡ Xκ for all k ≥ κ. (3.26)

Lemma 3.5 Under Assumptions 2.1, 2.2, and 3.1, we have for Xk from Algorithm 1:

E
[
|Xk |2p

]
≤ K (1 + |x |2p) (3.27)

with some constants K > 0 and p ≥ 1.

Proof As usual, in this proof K > 0 is a constant independent of ǫ and h which can

change from line to line in derivations. We first prove the lemma for an integer p ≥ 1.

Noting (3.26), we have

|Xk+1|2p = |(Xk+1 − Xk) + Xk |2p = |(Xk+1 − Xk)I(κ > k) + Xk |2p

=
(
|Xk |2 + 2I(κ > k)(Xk, Xk+1 − Xk) + I(κ > k)|Xk+1 − Xk |2

)p

≤ |Xk |2p + I(κ > k)2p |Xk |2p−2 (Xk, Xk+1 − Xk)
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+ K

2p∑

l=2

I(κ > k) |Xk |2p−l |Xk+1 − Xk |l . (3.28)

For κ > k:

Xk+1 − Xk = θk+1 (b(ϑk, Xk) − F(ϑk, Xk)γǫ) +
√

θk+1 (σ (ϑk, Xk)ξk

+F(ϑk, Xk)βǫη) + I(θk+1 < h)F(ϑk, Xk)Jǫ,k+1.

Then

E
[
Xk+1 − Xk |ϑk , Xk

]
= E

[
I(κ > k)

(
Xk+1 − Xk

)
|ϑk , Xk

]

= I(κ > k) (b(ϑk , Xk) − F(ϑk , Xk)γǫ) E
[
θk+1

]

+ I(κ > k)F(ϑk , Xk)E
[
I(θk+1 < h)Jǫ,k+1

]

= I(κ > k)
1 − e−λǫh

λǫ

[
b(ϑk , Xk) + F(ϑk , Xk)

∫

|s|>1
sν(ds)

]
,

where we used

− γǫE
[
θk+1

]
+ E

[
I(θk+1 < h)Jǫ,k+1

]

= −γǫ

1 − e−λǫh

λǫ

+
(

1 − e−λǫh
) [γǫ

λǫ

+ 1

λǫ

∫

|s|>1

sν(ds)

]

= 1 − e−λǫh

λǫ

∫

|s|>1

sν(ds).

Then, by the linear growth Assumption 2.2, we get

∣∣∣E
[
|Xk |2p−2 (Xk, Xk+1 − Xk)

]∣∣∣

≤ K
1 − e−λǫh

λǫ

(
E
[
I(κ > k)|Xk |2p−2

]
+ E

[
I(κ > k)|Xk |2p

])

≤ K
1 − e−λǫh

λǫ

(
1 + E

[
I(κ > k)|Xk |2p

])
(3.29)

using that E
[
I(κ > k)|Xk |2p−2

]
≤ K

(
1 + E

[
I(κ > k)|Xk |2p

])
by Young’s inequal-

ity.

For the last term in (3.28), using the linear growth Assumptions 2.2 and 3.1, we get

for l = 2, . . . , 2p:

E
[
|Xk+1 − Xk |l |ϑk, Xk

]
≤ K I(κ > k)

(
1 + |Xk |l

)
E
[
θ

l/2
k+1

]

+K I(κ > k)
(

1 + |Xk |l
)

(1 + |γǫ |l)E
[
θ l

k+1

]
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+K I(κ > k)
(

1 + |Xk |l
)

E
[
|Jǫ,k+1|l

]
E
[
I(θk+1 < h)

]

≤ K I(κ > k)
(

1 + |Xk |l
) 1 − e−λǫh

λǫ

,

where to obtain the last line we used that θ
l/2
k+1 for odd l is estimated by K (θ

(l−1)/2
k+1 +

θ
(l+1)/2
k+1 ) and exploited Lemma 3.2, boundedness of

|γǫ |l

λ
l/2
ǫ

and (3.3). Then

E
[
|Xk |2p−l |Xk+1 − Xk |l

]

≤ K
1 − e−λǫh

λǫ

(
1 + E

[
(I(κ > k)|Xk |)2p

])

and

2p∑

l=2

E
[
|Xk |2p−l |Xk+1 − Xk |l

]

≤ K
1 − e−λǫh

λǫ

(
1 + E

[
(I(κ > k)|Xk |)2p

])
. (3.30)

Combining (3.28)–(3.30), we get

E
[
|Xk+1|2p

]
≤ E

[
|Xk |2p

]
+ K

1 − e−λǫh

λǫ

(
1 + E

[
(I(κ > k)|Xk |)2p

])

= E
[
|Xk |2p

]
+ KE

[
�k+1I(κ > k)|Xk |2p

]
+ KE

[
�k+1

]
,

whence

E
[
|Xκ |2p

]
≤ |x0|2p + KE

κ−1∑

k=0

�k+1|Xk |2p + K (T + h − t0). (3.31)

Introduce a continuous time piece-wise constant process

Ũ (t) = |Xk |2p for t ∈ [ϑk, ϑk+1), k = 0, . . . , κ − 1,

and

Ũ (t) = |Xκ |2p for t ≥ ϑκ .

Then we can write (3.31) as

E
[
Ũ (ϑκ)

]
= E

[
Ũ (T + h)

]
≤ |x0|2p + K (T + h − t0) + KE

[∫ ϑκ

t0

Ũ (t)ds

]
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≤ |x0|2p + K (T + h − t0) + K

∫ T +h

t0

E
[
Ũ (t)

]
ds.

By Gronwall’s inequality, we get

E
[
Ũ (ϑκ)

]
≤ eK (T +h−t0)(K (T + h − t0) + |x0|2p),

implies (3.27) for integer p ≥ 1. Then, by Jensen’s inequality, (3.27) holds for non-

integer p ≥ 1 as well. ⊓⊔

Based on the discussion before Lemma 3.5 and on the moments estimate (3.27)

of Lemma 3.5, it is not difficult to show that the global error estimate (3.20) for

Algorithm 1 also holds in the Cauchy problem case.

3.5 The case of infinite intensity of jumps

In this section we combine the previous results, Theorem 2.1 and 3.2, to obtain an

overall error estimate for solving the problem (1.1) in the case of infinite intensity of

jumps by Algorithm 1. We obtain

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − u(t0, x0)
∣∣

≤ K (1 + |γǫ |2)
(

1

λǫ

− h
e−λǫh

1 − e−λǫh

)
+ K

1 − e−λǫh

λǫ

+ K

∫

|z|≤ǫ

|z|3ν(dz),

(3.32)

where K > 0 is independent of h and ǫ.

Let us consider an α-stable process in which the Lévy measure has the following

singular behaviour near zero

ν(dz) ∼ |z|−m−αdz, α ∈ (0, 2), (3.33)

i.e., we are focusing our attention here on the singularity near zero only and the sign

∼ means that the limit of the ratio of both sides equals to some positive constant.

Consequently, all calculations are done in this section up to positive constant factors

independent of ǫ and h. The behaviour (3.33) is typical for m-dimensional Lévy

measures near zero (see e.g. [2, p. 37] and also the one-dimensional Example 2.1).

Then

λǫ =
∫

|z|≥ǫ

ν(dz) ∼ ǫ−α,

γ 2
ǫ =

m∑

i=1

[∫

ǫ≤|z|≤1

ziν(dz)

]2

∼ ǫ2−2α for α �= 1

and γ 2
ǫ ∼ |ln|2 for = 1,
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∫

|z|≤ǫ

|z|3ν(dy) ∼ ǫ3−α.

Hence

∣∣E[ϕ(ϑ̄κ, Xκ)Yκ + Zκ] − u(t0, x0)
∣∣

≤ K

[
(1 + γ 2

ǫ )

(
ǫα − h

e−ǫ−αh

1 − e−ǫ−αh

)
+ ǫα

(
1 − e−ǫ−αh

)
+ ǫ3−α

]
. (3.34)

Let us measure the computational cost of Algorithm 1 in terms of the average number

of steps (see Lemma 3.3). Since

E [κ] ≤ (T − t0)λǫ

1 − e−λǫh
≤ K

ǫ−α

1 − e−ǫ−αh
,

we choose to use the cost associated with the average number of steps as

C := ǫ−α

1 − e−ǫ−αh
.

We fix a tolerance level ρtol and require ǫ and h to be so that

ρtol = ρ(ǫ, h) := (1 + γ 2
ǫ )

(
ǫα − he−ǫ−αh

1 − e−ǫ−αh

)
+ ǫα

(
1 − e−ǫ−αh

)
+ ǫ3−α.

Note that since we are using the Euler scheme for SDEs’ approximation, the decrease

of ρtol in terms of cost cannot be faster than linear. We now consider three cases of α.

The case α ∈ (0, 1) We have

ρ(ǫ, h) ≤ ǫ2−α + 2ǫα + ǫ3−α = O(ǫα)

and, by choosing sufficiently small ǫ, we can reach the required ρtol . It is optimal to

take h = ∞ (in practice, taking h = T − t0) and the cost is then C = 1/ǫα. Hence

ρtol is inversely proportional to C, and convergence is linear in cost (to reduce ρtol

twice, we need to double C).

The case α = 1 We have

ρ(ǫ, h) = (1 + |ln|2)
(

ǫ − he−ǫ−1h

1 − e−ǫ−1h

)
+ ǫ

(
1 − e−ǫ−1h

)
+ ǫ2 = O(ǫ|ln|2),

i.e. convergence is almost linear in cost.

The case α ∈ (1, 2) If we take h = ∞, then ρ(ǫ, h) = O(ǫ2−α) and the convergence

order in terms of cost is 2/α − 1, which is very slow (e.g., for α = 3/2, the order is
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1/3 and for α = 1.9, the order is ≈ 0.05). Let us now take h = ǫℓ with ℓ ≥ α. Then

ρ(ǫ, h) = ρ(ǫ, ǫℓ) = (1 + ǫ2−2α)

(
ǫα − ǫℓe−ǫℓ−α

1 − e−ǫℓ−α

)
+ ǫα

(
1 − e−ǫℓ−α

)
+ ǫ3−α

≤ (1 + ǫ2−2α)ǫℓ + ǫℓ + ǫ3−α = ǫ2−2α+ℓ + 2ǫℓ + ǫ3−α

and C ≈ 1/h = ǫ−ℓ. The optimal ℓ = 1 + α, for which ρ(ǫ, h) = O(ǫ3−α) and the

convergence order in terms of cost is (3 − α)/(1 + α), which is much better (e.g., for

α = 3/2, the order is 3/5 and it cannot be smaller than 1/3 for any α ∈ (1, 2)). Note

that in the case of symmetric measure ν(z) (see Remark 3.6), convergence is linear in

cost for α ∈ (1, 2).

To conclude, for α ∈ (0, 1) we have first order convergence and there is no benefit

of restricting jump adapted steps by h (see a similar result in the case of the Cauchy

problem and not restricted jump-adapted steps in [12]). However, in the case of α ∈
(1, 2), it is beneficial to use restricted jump-adapted steps to get the order of (3 −
α)/(1 +α). We also recall that restricted jump-adapted steps should typically be used

for jump-diffusions (the finite activity case when there is no singularity of λǫ and

γǫ) because jump time increments δ typically take too large values and to control the

error at every step we should truncate those times at a sufficiently small h > 0 for a

satisfactory accuracy.

4 Numerical experiments

In this section we illustrate the theoretical results of Sect. 3. In particular, we display

the behaviour in the case of infinite intensity of jumps for different regimes of α. We

showcase numerical tests of Algorithm 1 in four different examples: (i) a non-singular

Lévy measure (Example 4.1), (ii) a singular Lévy measure which is similar to that of

Example 2.1 (see Example 4.2), and (iii) pricing a foreign-exchange (FX) barrier basket

option where the underlying model is of exponential Lévy-type (Example 4.3) and (iv)

pricing a FX barrier option showing that the convergence orders hold (Example 4.4).

As it is usual for weak approximation (see e.g. [19]), in simulations we complement

Algorithm 1 by the Monte Carlo techniques and evaluate u(t0, x) or uǫ(t0, x) as

ū(t0, x) := E
[
ϕ(ϑ̄κ, Xκ)Yκ + Zκ

]
≃ û = 1

M

M∑

m=1

[
ϕ(ϑ̄ (m)

κ
, X (m)

κ
)Y (m)

κ
+ Z (m)

κ

]
,

(4.1)

where (ϑ̄
(m)
κ , X

(m)
κ , Y

(m)
κ , Z

(m)
κ ) are independent realisations of (ϑ̄κ, Xκ, Yκ, Zκ).

The Monte Carlo error of (4.1) is

√
DM :=

(Var
[
ϕ(ϑ̄κ, Xκ)Yκ + Zκ

]
)1/2

M1/2
≃
√

D̄M ,
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where

D̄M = 1

M

⎡
⎣ 1

M

M∑

m=1

[
�(m)

]2
−
(

1

M

M∑

m=1

�(m)

)2
⎤
⎦ ,

and �(m) = ϕ
(
ϑ̄

(m)
κ , X

(m)
κ

)
Y

(m)
κ + Z

(m)
κ . Then ū(t0, x) falls in the corresponding

confidence interval û ± 2
√

D̄M with probability 0.95.

4.1 Example with a non-singular Lévymeasure

In this subsection, we illustrate Algorithm 1 in the case of a simple non-singular Lévy

measure (i.e., the jump-diffusion case), where there is no need to replace small jumps

and hence we directly approximate u(t0, x) rather than uǫ(t0, x). Consequently, the

numerical integration error does not depend on ǫ. We recall (see Theorem 3.2) that

Algorithm 1 has first order of convergence in h.

Example 4.1 (Non-singular Lévy measure) To construct this and the next example,

we use the same recipe as in [18,19]: we choose the coefficients of the problem (1.1)

so that we can write down its solution explicitly. Having the exact solution is very

useful for numerical tests.

Consider the problem (1.1) with d = 3, G = U1 which is the open unit ball centred

at the origin in R3, and with the coefficients

a11(t, x) = 1.21 − x2
2 − x2

3 , a22 = 1, a33 = 1, ai j = 0, i �= j, b = 0, (4.2)

F(t, x) = ( f , f , f )T , f ∈ R, (4.3)

g(t, x) := 1

2
et−T (1.21 − x4

1 − x4
2 ) + 6(1 − 1

2
et−T )

[
x2

1 (1.21 − x2
2 − x2

3 ) + x2
2

]

+(1 − 1

2
et−T )

[
(C+ − C−)

4 f

μ2
(x3

1 + x3
2 ) + (C+ + C−)

12 f 2

μ3
(x2

1 + x2
2 )

+(C+ − C−)
24 f 3

μ4
(x1 + x2) + (C+ + C−)

48 f 4

μ5

]
, (4.4)

with the boundary condition

ϕ(t, x) = (1 − 1
2

et−T )(1.21 − x4
1 − x4

2 ) (4.5)

and with the Lévy measure density

ν(dz) =
{

C−e−μ|z|dz, if z < 0,

C+e−μ|z|dz, if z > 0,

where C− and C+ are some positive constants. Note that, keeping in mind Remark 2.3,

the coefficients from (4.2)–(4.4) satisfy Assumptions 2.1–2.2.
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It is not difficult to verify that this problem has the solution

u(t, x) = (1 − 1
2

et−T )(1.21 − x4
1 − x4

2 ).

and we also find

λ =
∫

|z|>0

ν(dz) =
∫

R

ν(dz) = C+ + C−
μ

,

ρ(z) = C−e−μ|z|I(z < 0) + C+e−μ|z|I(z > 0)

λ
.

We simulated jump sizes by analytically inverting the cumulative distribution function

corresponding to the density ρ(z) and making use of uniform random numbers in the

standard manner.

Here the absolute error e is given by

e = |û − u|, (4.6)

where the true solution for the point (0, 0) is u = u(0, 0) ≈ 0.987433. The expected

convergence order O(h) can be clearly seen in Fig. 1 and Table 1.

Fig. 1 Non-singular Lévy measure example: dependence of the error e on h, the error bars show the Monte

Carlo error. The parameters used are T = 1, C+ = 30, C− = 1.0, μ = 3.0, f = 0.1, M = 40,000,000

and û is evaluated at the point (0, 0)
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Table 1 Non-singular Lévy

measure example h û 2

√
D̂M e κ̂

0.1 0.9367 0.0004 0.0507 7.72 ± 0.0037

0.05 0.9612 0.0004 0.0262 11.04 ± 0.0056

0.025 0.9742 0.0004 0.0133 17.85 ± 0.0096

0.01 0.9821 0.0003 0.0054 37.85 ± 0.0217

0.005 0.9850 0.0003 0.0024 70.90 ± 0.0416

The parameters are the same as in Fig. 1. The column κ̂ gives the

sample average of the number of steps together with its Monte Carlo

error

4.2 Example with a singular Lévymeasure

In this subsection, we confirm dependence of the error of Algorithm 1 on the cut-off

parameter ǫ for jump sizes and on the parameter α of the Lévy measure as well as

associated computational costs which were derived in Sect. 3.5.

Example 4.2 (Singular Lévy measure) Consider the problem (1.1) with d = 3, G =
U1 which is the open unit ball centred at the origin in R3, and with the coefficients as

in (4.2), (4.3), and

g(t, x) := 1

2
et−T (1.21 − x4

1 − x4
2 ) + 6(1 − 1

2
et−T )

[
x2

1 (1.21 − x2
2 − x2

3 ) + x2
2

]

+ (1 − 1

2
et−T )

[
(C+ − C−) f

(
4

μ
+ 4

μ2

)
(x3

1 + x3
2)

+ (C+ + C−) f 2

(
6

2 − α
+ 6

μ
+ 12

μ2
+ 12

μ3

)
(x2

1 + x2
2 )

+ (C+ − C−) f 3

(
4

3 − α
+ 4

μ
+ 12

μ2
+ 24

μ3
+ 24

μ4

)
(x1 + x2)

+ (C+ + C−) f 4

(
2

4 − α
+ 2

μ
+ 8

μ2
+ 24

μ3
+ 48

μ4
+ 48

μ5

)]
, (4.7)

with the boundary condition (4.5), and with the Lévy measure density

ν(dz) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

C−e−μ(|z|−1)dz, if z < −1,

C−|z|−(α+1)dz, if − 1 ≤ z < 0,

C+|z|−(α+1)dz, if 0 < z ≤ 1,

C+e−μ(|z|−1)dz, if z > 1,

(4.8)

where C−, C+, and μ are some positive constants and α ∈ (0, 2).

We observe that C− �= C+ gives an asymmetric jump measure and the Lévy process

has infinite activity and, if α ∈ [1, 2), infinite variation. Note that, keeping in mind

Remark 2.3, the coefficients from (4.2), ( 4.3), (4.7) satisfy Assumptions 2.1–2.2.
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Fig. 2 Singular Lévy measure example, the case α = 0.5: dependence of the error e on ǫ, the error bars show

the Monte Carlo error. The parameters used are T = 1, C+ = 0.1, C− = 1.0, μ = 3.0, f = 0.2, M =
40,000,000 and û is evaluated at the point (0, 0)

It is not difficult to verify that this problem has the following solution

u(t, x) = (1 − 1
2

et−T )(1.21 − x4
1 − x4

2 ).

Other quantities needed for the algorithm take the form

γǫ = (C+ − C−)
1 − ǫ1−α

1 − α
, α �= 1,

Bǫ = (C+ + C−)
ǫ2−α

2 − α
,

βǫ =
√

Bǫ =

√

(C+ + C−)
ǫ2−α

2 − α
,

λǫ =
∫

|z|>ǫ

ν(dz) = (C+ + C−)

(
1

μ
+ ǫ−α − 1

α

)
,

ρǫ(z) = 1

λǫ

[C−e−μ(|z|−1)I(z < −1) + C−|z|−(α+1)I(−1 ≤ z < −ǫ)

+ C+|z|−(α+1)I(ǫ < z ≤ 1) + C+e−μ(|z|−1)I(z > 1)],
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Table 2 Singular Lévy measure example for α = 0.5 and h = 1

ǫ û 2

√
D̂M e λǫ γǫ κ̂

0.0025 0.9610 0.0004 0.0265 42.2 − 1.71 17.10 ± 0.0096

0.001 0.9713 0.0004 0.0162 67.7 − 1.74 25.78 ± 0.0149

0.0005 0.9761 0.0004 0.0113 96.6 − 1.76 35.45 ± 0.0208

0.00025 0.9795 0.0003 0.0080 137.3 − 1.77 48.96 ± 0.0290

0.0001 0.9822 0.0003 0.0052 218.2 − 1.78 75.53 ± 0.0452

0.00005 0.9841 0.0003 0.0033 309.3 − 1.79 105.32 ± 0.0633

0.000025 0.9850 0.0003 0.0024 438.2 − 1.79 147.07 ± 0.0888

0.00001 0.9858 0.0003 0.0016 693.9 − 1.79 229.51 ± 0.1393

The parameters are the same as in Fig. 2. The column κ̂ gives the sample average of the number of steps

together with its Monte Carlo error

In this example, the absolute error e is given by

e = |ûǫ − u|. (4.9)

For the case of α = 0.5, we can clearly see in Fig. 2 and Table 2 that the error

is of order O(ǫα) = O(ǫ0.5) as expected. We also observe linear convergence in

computational cost (measured in average number of steps). In addition we note that

choosing a smaller time step, e.g. h = 0.1, does not change the behaviour in this case

which is in accordance with our prediction of Sect. 3.5 (Fig. 3).

Numerical results for the case α = 1.5 are given in Figs. 4 and 5 and Tables 3

and 4. As is shown in Sect. 3.5, convergence (in terms of computational costs) can be

improved in the case of α ∈ (1, 2) by choosing h = ǫ1+α . In Fig. 5, for all ǫ it can be

seen that choosing a smaller (but optimally chosen) step parameter h results in quicker

convergence (i.e., for the same cost, we can achieve a better result if h is chosen in an

optimal way) and naturally in a smaller error.

We recall that if the jump measure is symmetric, i.e. C− = C+ in the considered

example, then γǫ = 0 and the numerical integration error of Algorithm 1 is no longer

singular (see Theorem 3.2 and Remark 3.6). Consequently (see Sect. 3.5), in this case

the computational cost depends linearly on ǫ even for α = 1.5, which is confirmed

on Fig. 6.

4.3 FX option pricing under a Lévy-type currency exchangemodel

In this subsection, we demonstrate the use of Algorithm 1 for pricing financial deriva-

tives where underliers follow a Lévy process. We apply the algorithm to estimate the

price of a foreign exchange (FX) barrier basket option. A barrier basket option gives

the holder the right to buy or sell a certain basket of assets (here foreign currencies) at

a specific price K at maturity T in the case when a certain barrier event has occurred.

The most used barrier-type options are knock-in and knock-out options. This type of

option becomes active (or inactive) in the case of the underlying price S(t) reaching
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Fig. 3 Singular Lévy measure example, the case α = 0.5: dependence of the error e on the average number

of steps (computational costs). The parameters are the same as in Fig. 2

Fig. 4 Singular Lévy measure example, the case α = 1.5: dependence of the error e on ǫ, the error bars

show the Monte Carlo error. The parameters used are T = 1, C+ = 1.0, C− = 25.0, μ = 3.0, f =
1.0, M = 100,000,000 and û is evaluated at the point (0, 0)
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Fig. 5 Singular Lévy measure example, the case α = 1.5: dependence of the error e on the average number

of steps (computational costs), the error bars show the Monte Carlo error. The parameters are the same as

in Fig. 4

Table 3 Singular Lévy measure example for α = 1.5 and h = 1

ǫ û 2

√
D̂M e λǫ γǫ κ̂

0.05 1.0862 0.0011 0.0988 1541.7 − 166.7 15.473 ± 0.002

0.04 1.0814 0.0011 0.0939 2158.0 − 192.0 20.381 ± 0.003

0.03 1.0683 0.0010 0.0809 3327.1 − 229.1 29.531 ± 0.005

0.02 1.0499 0.0010 0.0625 6119.6 − 291.4 51.020 ± 0.008

0.01 1.0216 0.0010 0.0342 17324.7 − 432.0 135.633 ± 0.022

0.009 1.0187 0.0010 0.0313 20292.4 − 458.0 157.883 ± 0.026

0.008 1.0158 0.0010 0.0284 24215.4 − 488.7 187.252 ± 0.030

The parameters are the same as in Figs. 4 and 5. The column κ̂ gives the sample average of the number of

steps together with its Monte Carlo error

a certain threshold (the barrier) B before reaching its maturity. In most cases barrier

option prices cannot be given explicitly and therefore have to be approximated. We

illustrate that the algorithm successfully works in the multidimensional case in Exam-

ple 4.3 and also experimentally demonstrate the convergence orders in Example 4.4,

where Assumptions 2.3–2.5 do not hold.
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Table 4 Singular Lévy measure example for α = 1.5 and adjusted h = ǫ1+α

ǫ h û 2

√
D̂M e λǫ γǫ κ̂

0.1 0.0031623 1.0872 0.0011 0.0998 539.5 − 103.8 7.677 ± 0.001

0.09 0.00243 1.0829 0.0011 0.0955 633.3 − 112.0 8.972 ± 0.001

0.08 0.0018102 1.0769 0.0011 0.0895 757.4 − 121.7 10.619 ± 0.002

0.075 0.0015405 1.0739 0.0011 0.0864 835.2 − 127.3 11.688 ± 0.002

0.07 0.0012964 1.0680 0.0011 0.0806 927.2 − 133.4 13.001 ± 0.002

0.06 0.00088182 1.0530 0.0011 0.0655 1170.7 − 148.0 16.916 ± 0.003

0.055 0.00070943 1.0453 0.0011 0.0579 1335.1 − 156.7 19.704 ± 0.003

0.05 0.00055902 1.0380 0.0011 0.0506 1541.7 − 166.7 23.499 ± 0.004

0.04 0.00032 1.0236 0.0010 0.0362 2158.0 − 192.0 36.188 ± 0.006

0.03 0.00015588 1.0099 0.0010 0.0225 3327.1 − 229.1 65.664 ± 0.011

0.02 5.6569e−05 0.9987 0.0010 0.0112 6119.6 − 291.4 160.570 ± 0.026

0.01 1e−05 0.9906 0.0010 0.0032 17324.7 − 432.0 812.350 ± 0.132

The parameters are the same as in Figs. 4 and 5

Fig. 6 Dependency of ǫ on error plot for a simulation example with symmetric singular Lévy measure for

α = 1.5. The parameters used are T = 1, C+ = 0.5, C− = 0.5, μ = 3.0, f = 1.0, M = 100,000,000

and û is evaluated at the point (0, 0)
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Example 4.3 (Barrier basket option pricing) Let us consider the case with five curren-

cies: GBP, USD, EUR, JPY and CHF, and let us assume that the domestic currency is

GBP. We denote the corresponding spot exchange rates as

S1(t) = SU SDG B P (t), S2(t) = SEU RG B P (t), S3(t) = SJ PY G B P (t), S4(t) = SC H FG B P (t),

where SF O R DO M (t)describes the amount of domestic currency DOM one pays/receives

for one unit of foreign currency FOR (for more details see [5,25]). We assume that

under a risk-neutral measure Q the dynamics for the spot exchange rates can be written

as

Si (t) = Si (t0) exp((rG B P − ri )(t − t0) + X i (t)), i = 1, 2, 3, 4,

where ri are the corresponding short rates of USD, EUR, JPY, CHF and rG B P is the

short rate for GBP, which are for simplicity assumed to be constant; and X(t) is a

4-dimensional Lévy process similar to (2.1) with a single jump noise:

X(t) =
t∫

t0

b(t, X(s−))ds +
t∫

t0

σ(s, X(s−))dw(s) +
t∫

t0

∫

R

F(s, S(s−))z N̂ (dz, ds).

(4.10)

Here w(t) = (w1(t), w2(t), w3(t), w4(t))
⊤ is a 4-dimensional standard Wiener pro-

cess. As ν(z), we choose the Lévy measure with density (4.8) as in Example 4.2 and

we take F(t, x) = ( f1, f2, f3, f4)
⊤. We also assume that σ(s, x) is a constant 4 × 4

matrix.

The risky asset for a domestic GBP business are the foreign currencies Yi (t) =
Bi (t) · Si (t), where Bi (t) denotes the foreign currency (account). Under the measure

Q all the discounted assets Ỹi (t) = e(ri −rG B P )(t−t0)Si (t) = Si (t0) exp(X i (t)) have to

be martingales on the domestic market (therefore discounted by the domestic interest

rate) to avoid arbitrage. Using the Ito formula for Lévy processes, we can derive the

SDEs for Ỹi (see e.g. [2, p. 288]):

dỸi

Ỹi

=

⎡
⎢⎣bi (t, X(s−)) + 1

2

4∑

j=1

σ 2
i j +

∫

|z|<1

(
e fi z − 1 − fi z

)
ν(dz)

⎤
⎥⎦ dt

+
4∑

j=1

σi j dw j (s) +
∫

R

(
e fi z − 1

)
N̂ (dz, ds). (4.11)

Hence, for all Ỹi to be martingales, the drift component bi has to be so that

bi = −1

2

4∑

j=1

σ 2
i j −

∫

R

(
e fi z − 1 − fi zI|z|<1

)
ν(dz)
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Table 5 Market data for 4 currency pairs

Market data Correlation data ρi j

Currency pair i Si (0) ri σi USDGBP EURGBP JPYGBP

USDGBP 0.81 0.02 0.095

EURGBP 0.88 0.00 0.089 0.87

JPYGBP 0.0075 − 0.011 0.071 0.94 0.77

CHFGBP 0.90 0.075 0.110 0.86 0.93 0.96

rG B P 0.01

Here σi are volatilities for the corresponding pairs and ρi j are the correlation coefficients for the corre-

sponding two pairs

= −1

2

4∑

j=1

σ 2
i j − C−

μ + fi

e− fi − C+
μ − fi

e fi − C+ − C−
μ

− Ii (α, C+, C−),

(4.12)

where

Ii (α, C+, C−) =
∞∑

n=2

(C+ + C−(−1)n) f n
i

n!(n − α)
.

We also note that

∫

|z|>1

e fi zν(dz) < ∞

is satisfied by (4.8) if fi < μ.
Let us consider a down-and-out (DAO) put option, which can be written as

Pt0 (T , K ) = exp−rG B P (T −t0) E

⎡
⎣I

(
min

t0≤t≤T
S(t) > B

)
max

⎛
⎝K −

4∑

i=1

wi Si (T ), 0

⎞
⎠
⎤
⎦ ,

(4.13)

where I

(
min

t0≤t≤T
S(t) > B

)
= 1 if for any of the underlying exchange rates Si (t) >

Bi , t0 ≤ t ≤ T , otherwise it is zero.

We use Algorithm 1 (the algorithm is applied to X from (4.10) and then S is com-

puted as exp(X) to achieve higher accuracy) together with the Monte Carlo technique

to evaluate this barrier basket option price (4.13). In Table 5, market data for the 4

currency pairs are given, and in Table 6 the option and model parameters are provided,

which are used in simulations here.

To find the matrix σ = {σi j } used in the model (4.10), we form the matrix a using

the volatility σi and correlation coefficient data from Table 5 in the usual way, i.e.,
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Table 6 Option and model parameters for Example 4.3

Option parameter Model parameter

Currency pair Barrier Bi wi Jump factor fi α 1.5

USDGBP 0.50 0.20 t0 0.0 0.10 C+ 0.3

EURGBP 0.60 0.25 T 1.0 0.15 C− 1.2

JYNGBP 0.0045 0.45 K 0.5 0.05 μ 3.0

CHFGBP 0.55 0.10 0.12 M 106

Fig. 7 Dependence of the approximate price of the FX barrier basket option on ǫ for different choices of

h. The error bars show the Monte Carlo error

ai i = σ 2
i and ai j = σiσ jρi j for i �= j . Then the matrix σ is the solution of σσ⊤ = a

obtained by the Cholesky decomposition.

The results of the simulations are presented in Fig. 7 for different choices of ǫ

and different choices of h. In Fig. 8, it can be seen that (similar to Example 4.2) by

choosing the step size h optimally results in a better approximation for the same cost.

In this example we demonstrated that Algorithm 1 can be successfully used to

price a FX barrier basket option involving 4 currency pairs following an exponential

Lévy model despite the considered problem not satisfying Assumptions 2.3–2.5 of

Sect. 2.2. In particular, we note that the algorithm is easy to implement and it gives

sufficient accuracy with relatively small computational costs. Moreover, application of

Algorithm 1 can be easily extended to other multi-dimensional barrier option (and other

types of options and not only on FX markets), while other approximation techniques
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Fig. 8 Dependence of the approximate price of the FX barrier basket option on average number of steps

(computational costs) for different choices of h. The error bars show the Monte Carlo error

such as finite difference methods or Fourier transform methods typically cannot cope

with higher dimensions.

Example 4.4 (Barrier option pricing: one currency pair) In this example, we demon-

strate that the convergence orders and computational costs discussed in Sect. 3.5

appear to hold, despite the considered problem not satisfying Assumptions 2.3–2.5 of

Sect. 2.2.

Let us consider the case with two currencies: GBP and USD. As before, we assume

that the domestic currency is GBP. The corresponding spot exchange rate is

S(t) = SU SDG B P (t).

We assume the same dynamics under a risk-neutral measure Q for the spot exchange

rates as in Example 4.3. Moreover, X(t) is a 1-dimensional Lévy process as defined

in (4.10) but for one dimension only. Following the same fashion as in Example 4.3,

the risky asset for a domestic GBP business is the foreign currency Y (t) = B(t) · S(t),

where B(t) denotes the foreign currency (account) and under the measure Q the

discounted asset Ỹ (t) has to be a martingale on the domestic market to avoid arbitrage.

Using the Ito formula for Lévy processes, we can derive the SDE for Ỹ as we did in

(4.11)–(4.12). We compute the value for a DAO put option (cf. (4.13)):

Pt0(T , K ) = exp−rG B P (T −t0) E

[
I

(
min

t0≤t≤T
S(t) > B

)
max (K − S(T ), 0)

]
. (4.14)
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Table 7 Market data for the

currency pair
Market data

Currency pair S(0) rU SD σ

USDGBP 0.81 0.02 0.095

rG B P 0.01

Here σ is the volatility

Table 8 Option and model parameters for Example 4.4

Option parameter Model parameter

Currency pair Barrier B t0 T K Jump factor f α C+ C− μ M

USDGBP 0.50 0.0 1.0 0.5 0.10 0.5 0.3 1.2 3.0 108

0.10 1.5 0.3 1.2 3.0 108

Table 9 Reference solution P̂re f for singular Lévy measure example for α = 0.5

M ǫ h û 2

√
D̂M λǫ γǫ κ̂

108 5 × 10−5 1 × 10−5 0.28951 8.7 × 10−6 421.8 −1.7873 98223.5 ± 5.7

The approximate solution P̂ = P̂t0(T , K ) is obtained by applying Algorithm 1

directly to the SDE for S(t). To study the dependence of the error of Algorithm 1 on

the cut-off parameter ǫ for jump sizes and on the parameter α of the Lévy measure

as well as associated computational costs, we need to compare the approximation P̂

with the true price Pt0(T , K ). However, in this example, we do not have the exact

price, and therefore need to accurately simulate a reference solution. To this end, as in

Example 4.3, we apply Algorithm 1 to X(t) and use a sufficiently small ǫ and h and

also a large number of Monte Carlo simulations M (see Tables 9 and 13). We denote

this reference solution as P̂re f = P̂
re f
t0

(T , K ). In this example the absolute error ere f

of Algorithm 1 is evaluated as

ere f = |P̂ − P̂re f |.

In Table 7, market data for the currency pair are given, and in Table 8 the option

and model parameters are provided, which are used in simulations here (Table 9).

The results of the simulations for α = 0.5 are presented in Figs. 9 and 10 and in

Tables 10 and 11 for different choices of ǫ and fixed h = 1.0 and h = 0.1. We can

clearly see that the error is of order O(ǫα) = O(ǫ0.5) as expected. We also observe

linear convergence in computational cost (measured in average number of steps).
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Fig. 9 FX barrier option example, the case α = 0.5: dependence of the error on ǫ for different choices of

h. The error bars show the Monte Carlo error

Fig. 10 FX barrier option example, the case α = 0.5: dependence of the error e on the average number of

steps
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Table 10 FX barrier option example for α = 0.5 and h = 1

ǫ û 2

√
D̂M ere f λǫ γǫ κ̂

0.002 0.29053 2.7 × 10−5 0.00102 64.6 − 1.72 65.389 ± 0.002

0.0015 0.29040 2.7 × 10−5 0.00089 75.0 − 1.73 75.579 ± 0.002

0.001 0.29027 2.7 × 10−5 0.00076 92.4 − 1.74 92.672 ± 0.002

0.0009 0.29024 2.7 × 10−5 0.00073 97.5 − 1.75 97.714 ± 0.002

0.0008 0.29021 2.7 × 10−5 0.00070 103.6 − 1.75 103.667 ± 0.002

0.0007 0.29015 2.7 × 10−5 0.00064 110.9 − 1.75 110.856 ± 0.003

0.0006 0.29012 2.7 × 10−5 0.00061 120.0 − 1.76 119.777 ± 0.001

0.0005 0.29006 2.8 × 10−5 0.00055 131.7 − 1.76 131.253 ± 0.001

Table 11 FX barrier option example for α = 0.5 and h = 0.1

ǫ û 2

√
D̂M ere f λǫ γǫ κ̂

0.002 0.29054 2.7 × 10−5 0.00103 64.6 − 1.72 65.480 ± 0.002

0.0015 0.29043 2.7 × 10−5 0.00092 75.0 − 1.73 75.617 ± 0.002

0.001 0.29027 2.7 × 10−5 0.00076 92.4 − 1.74 92.681 ± 0.002

0.0008 0.29020 2.7 × 10−5 0.00069 103.6 − 1.75 103.670 ± 0.002

0.0007 0.29015 2.7 × 10−5 0.00064 110.9 − 1.75 110.857 ± 0.003

0.0006 0.29011 2.7 × 10−5 0.00060 120.0 − 1.76 119.778 ± 0.003

0.0005 0.29005 2.7 × 10−5 0.00054 131.7 − 1.76 131.256 ± 0.003

Table 12 Reference solution P̂re f for singular Lévy measure example for α = 1.5

M ǫ h û 2

√
D̂M λǫ γǫ κ̂

108 0.001 1 × 10−5 0.24301 1.0 × 10−5 31622.3 − 55.1 110969.3 ± 2.5

123



Randomwalk algorithm for the Dirichlet problem for… 1267

Fig. 11 FX barrier option example, the case α = 1.5: dependence of the error e on ǫ, the error bars show

the Monte Carlo error

Fig. 12 FX barrier option example, the case α = 1.5: dependence of the error e on the average number of

steps
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Table 13 FX barrier option example for α = 1.5 and h = 1

ǫ û 2

√
D̂M ere f λǫ γǫ κ̂

0.1 0.24842 3.2 × 10−5 0.00541 31.1 − 3.9 31.778 ± 0.001

0.08 0.24793 3.2 × 10−5 0.00492 43.7 − 4.6 43.834 ± 0.001

0.07 0.24758 3.2 × 10−5 0.00451 53.5 − 5.0 53.228 ± 0.003

0.06 0.24721 3.2 × 10−5 0.00420 67.5 − 5.5 66.691 ± 0.002

0.05 0.24674 3.2 × 10−5 0.00372 88.9 − 6.2 87.196 ± 0.003

0.04 0.24621 3.2 × 10−5 0.00320 124.5 − 7.2 121.261 ± 0.003

Table 14 FX barrier option example for α = 1.5 and adapting step size h = ǫ1+α

ǫ h û 2

√
D̂M ere f λǫ γǫ κ̂

0.4 0.10119 0.24634 3.3 × 10−5 0.00333 3.5 − 1.0 12.6884 ± 0.0003

0.35 0.072472 0.24678 3.3 × 10−5 0.00377 4.3 − 1.2 16.8552 ± 0.0004

0.3 0.049295 0.24682 3.3 × 10−5 0.00381 5.6 − 1.5 23.6483 ± 0.0006

0.25 0.03125 0.24636 3.3 × 10−5 0.00335 7.5 − 1.8 35.7223 ± 0.0009

0.2 0.017889 0.24549 3.3 × 10−5 0.00248 10.7 − 2.2 59.9885 ± 0.0015

0.15 0.0087142 0.24468 3.3 × 10−5 0.00167 16.7 − 2.8 118.8114 ± 0.0031

Numerical results for the case α = 1.5 are given in Figs. 11 and 12 and in Tables 12,

13 and 14. We observe the expected orders of convergence as given in Sect. 3.5.

In this example, we experimentally demonstrated that convergence orders and com-

putational cost for Algorithm 1 are consistent with predictions of Sect. 3.5 despite the

considered problem not satisfying assumptions of Sect. 2.2.
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