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RANDOM WALK IN A WEYL CHAMBER

IRA M. GESSEL AND DORON ZEILBERGER

(Communicated by Jeffrey N. Kahn)

Abstract. The classical Ballot problem that counts the number of ways of

walking from the origin and staying within the wedge xx > X2 > ■ ■ ■ > x„

(which is a Weyl chamber for the symmetric group), using positive unit steps,

is generalized to general Weyl groups and general sets of steps.

0. Introduction

To any simple and natural proof, one can ask the question: How far can it

be generalized? We will attempt to give one possible answer to this question for

Andre's [A] celebrated solution of the two-candidate ballot problem. Andre's
proof uses a reflection argument, and we will show that it can be naturally gen-

eralized to the context of Coxeter-Weyl [Co, H, H1, BG] general finite reflection

groups.
Random and lattice walks form a venerable part of probability theory and

combinatorics. In a typical problem, a walker is allowed to perform a certain

number of given fundamental steps and must remain in a certain region of the

lattice. It is then required to find the number of ways, or probability, of getting

from an initial point to a final point. The oldest such problem is the celebrated

ballot problem in which it is required to find the number of ways of walking

from the origin to a typical point (mx, ... , m„), performing positive unit steps,

such that the walk remains in the region xx > ■■■ > x„ . More recently Fisher

[Fis] and Huse and Fisher [HF] used reflection arguments to consider other such

problems.
A beautiful combinatorial proof of the two-dimensional ballot problem was

given by André [A] using reflection. Andre's elegant argument is extended to 3

dimensions in [Gr], to « dimensions in [Z] and [WM], and it is ^-analogized

by Krattenthaler [K] and Krattenthaler and Mohanty [KM], who give many

far-reaching applications.
In this paper we will show that Andre's idea extends naturally to the wider

context of root systems and Weyl groups. After the first version of this paper

was written, Proctor [P] used our method to give new proofs of Cauchy-type
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symmetric function identities.   We would like to thank Bob Proctor and the

referee for many helpful suggestions.

1. Root systems and their Weyl groups

A root system [H, B, Ca] is a finite set of vectors in Euclidean «-space such

that the reflection of any root with respect to any hyperplane that is perpen-

dicular to a root is yet another root, and such that the difference between any

such root and its mirror image with respect to any such hyperplane is an in-

teger multiple of the root corresponding to the hyperplane. If we allow affine

hyperplanes and affine vectors, we get affine root systems [Ml]. A root system

is called reduced if for any root a, ka cannot be a root unless k = ± 1. The

set of linear (affine-linear) transformations generated by all the reflections with

respect to the hyperplanes perpendicular to the roots is called the Weyl group.

Both finite and affine root systems have been completely characterized ([B]

and [Ml] respectively). Every root system is a direct sum of irreducible root

systems. There are five infinite families of irreducible finite root systems, four

of which are reduced (A„ , B„ , C„ , D„) and one of which is not (BCn), and

five exceptional cases (G2, F4, E6, E1, E&) all of which are reduced ([B]).

The irreducible, reduced, affine root systems fall into seven infinite families
(A„ ,B„,Bvn, C„, Cjj, D„, BC„), and seven exceptional cases (G2, G2/,F4,

F%, E¿, Ej, E% ([Ml]).) We refer the reader to the comprehensive planches

of [B] and the appendix of [Ml] for a description of these root systems. For

example the finite root system An-X consists of the «(« - 1) vectors {e¡ - e¡,

1. < î # J < «}, where e¡ is the unit vector with all zeroes except the rth

component which is 1, and its Weyl group is the symmetric group acting by

permuting the coordinates.

The Weyl group of a finite root system is a finite group and that of an affine

root system is a discrete group acting locally finitely. The complement of the

union of all the hyperplanes is an open set and its connected components are

called Weyl chambers. It is easy to see that any Weyl chamber is a fundamental

region for the action of the Weyl group.

2. The fundamental formula

We will use the notation of [H] and [Ml]. Let R be a finite or affine root

system, let W be its Weyl group, and let A be any of its bases. The length of

an element w of the Weyl group, l(w), is the least number of terms possible to

express w as a product of fundamental reflections oa , a £ A. We will consider

a random walk in a lattice L embedded in the Euclidean space in which R

resides, with an inner product inherited from it, and which is invariant under
the action of the Weyl group: gL = L for every g in W. We fix a set of

allowable steps 5, that is, a finite subset of L that is also invariant under the

Weyl group: WS = S. We will also assume that for any a in A, the nonzero

values of (a, s), as 5 ranges over S, are ±k(a), where k(a) is a fixed number

that depends only on a. Now, for any positive integer m and any two lattice

points a and b , let WALKm(a —» b) be the number of walks from a to b,

using exactly m steps drawn from the set S.
Let a and b be two lattice points that belong to the fundamental Weyl

chamber C := {x £ L : (x, a) > 0 for every a} and such that for every a
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in A, (a, a) and (b, a) are integral multiples of k(a). We are interested in

WALK^(a —> b), the number of walks from a to b that always stay strictly

within the Weyl chamber C . The fundamental result of our paper is the fol-

lowing:

Theorem 1. With the above notation and assumptions, we have

(1) WALK£(0 - b) = J2 (-l)l{w)WALKm(w(a) - b).
wew

Proof. The proof is modeled after [Z], (where as Krattenthaler [K] observed,

"first" should be replaced by "last"). Totally order the roots of A by some

arbitrary but fixed order. Let WALK^(a —> b) be the number of bad walks

from a to b , i.e., walks that bump into at least one of the walls of C, {x :

(x, a) = 0} for some a in A. The assumption on S, that the absolute value

of (a, S) is either zero or a constant that only depends on a, guarantees that

every walk that crosses a wall must touch it, i.e., it is not possible to get from

inside C to outside C and vice versa, without pausing on some wall. Thus

(2) WALK£(a -► b) = WALKm(a -► b) - WALK* (a -♦ b).

We now claim that

(3) £(-l)'WWAUi£(ti;(a)->6) = 0.
wew

Indeed, let walk := (sx, ... , sn) be a typical bad walk from, say, w(a) to b .

This means that the walker bumps into at least one wall (x, a) = 0, a £ A.

Let a be the fundamental root corresponding to the last visit to a wall. In

case of a "tie", in which that last visit takes place on more than one wall, let

a be the "largest" such root in the above-mentioned total order. We pair to

this walk the walk from waw(a) to b obtained by reflecting, with respect to

(x, a) = 0, that portion of the walk until the last visit to the wall (x, a) —

0. In symbols, if the last visit to a wall was at the rth step and the walk

from w(a) to b was (sx, ... ,sm), then the paired walk from waw(a) to

b is (wa(sx), ... , wa(sr), sr+i,..., sm). This pairing of walks is clearly an

involution, since wa is an involution. It is sign reversing, since the length of

w and waw have opposite parity. It follows that all the terms in (3) can be

arranged in mutually canceling pairs, and thus the sum total is zero.

Now, if w is not the identity, w(a) is outside C since C is a fundamental

region, and so every walk from w(a) to b must cross a wall, and hence is bad;

so

(4) WALK*(w(a) -> b) = WALKm(w(a) -^b),        w± identity .

Combining (2), (3), and (4) yields (1).   D

In the affine case, the Weyl group is infinite, but since it is discrete, the sum

in (1) is always finite. It is readily seen that for the affine root system S(An),

(1) reduces to Filaseta's theorem [Fi, p. 103], since the Weyl group of S(An) is

the semidirect product of the symmetric group and the group of translations on

the lattice M, described in [Ml, p. 92].

3. Constant term and integral representation formulas

We will now derive some constant term and integral representation formulas

for WALKm(a —► b) and WALK^(a —► b), for finite root-systems. First we
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will deal with the simple case of unrestricted walks. If the walk takes place

in Z" , then let xx, ... , xn be indeterminates. For any vector of integers

a = (ax, ... , an), let Xa := x"1 ■ ■ ■ x"' •••xH" ; otherwise, we think of xa as

"formal exponential." For our set of steps S, let <I>(jc) := l^es-** ■

Recall that a Laurent polynomial is a linear combination of exponents xa .

The constant term of a Laurent polynomial /, denoted by CT /, is the coeffi-

cient of x° . The following theorem is almost trivial:

Theorem 2.

(5) WALKm(a -» b) = CT<P(x)m/xb-a .

Proof. Obviously WALKm(a -> b) = WALKw(0 -> b - a), so without loss
of generality, we can assume that a = 0 since every step is independent

of the others. When we multiply out <&(x)m, every term, before simplifica-

tion, corresponds to a walk with m steps, and those terms that evaluate to

xb correspond to walks that end at b, so the coefficient of xb gives exactly

WALKm(0^6).   D

Combining Theorems 1 and 2, we have

Theorem 3.

(6) WALK£(úí -» b) = CT

For special values of a, the sum on the right side of (6) factorizes nicely,

thanks to the celebrated Weyl denominator formula [H, p. 138; Ca, p. 149],

which we now recall. Let ô be one-half of the sum of all positive roots ô :=

(1/2) Y,a€R+ a. Then we have

The Weyl denominator formula.

J2.(_1)««)jc«W = X-* J\(xa-\).
W€W aeR+

Plugging this into Theorem 3 we have

Theorem 4. For any scalar c such that cö is a lattice point, and for any lattice

vector X that is invariant under the Weyl group (i.e., w(X) = X for every w in

W), and such that (X + cô, a) is an integral multiple of k(a) for every a in

A, we have

(7) WALK£(/L + cô -► b) = CT

If we replace each Xj with e'e', j = 1,...,«, and replace the operator

"constant term" with that of integration over the torus [0, 2n]n, Theorems 3

and 4 become integral representation formulas, from which it is possible, in

many cases, to obtain asymptotic formulas, generalizing the formulas of Fisher

[Fis, p. 676]. Let us mention that the constant Ap appearing in formulas (4.9)

and (4.10) of [Fis] can be evaluated explicitly by Mehta's [M2] integral, and its

analogs for the other root-systems follow from the Macdonald-Mehta conjec-

tures, proved for the infinite families by Regev and Beckner (see [M2]), for F4

by Garvan [Ga], and for all root systems by Opdam [O].

<S>(x)mx-b J2 (b y  ' t_\

wCW

l(w) Yw(a)

<&(x)mx-b+l-cS ] I (xca- 1)

aGR+
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