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Random walk models associated with

distributed fractional order

differential equations

Sabir Umarov1,∗,† and Stanly Steinberg1

University of New Mexico

Abstract: In this paper the multi-dimensional random walk models governed
by distributed fractional order differential equations and multi-term fractional
order differential equations are constructed. The scaling limits of these random
walks to a diffusion process in the sense of distributions is proved.

1. Introduction

In this paper we construct new random walks connected with fractional order differ-
ential equations. Namely, the governing equations corresponding to the constructed
random walks are multi-term or distributed fractional order differential equations.
Nowadays the connection between random walk and fractional order dynamics is
well known, see, for instance [1, 17, 26, 33, 38]. A number of constructive random
walk models governed by fractional differential equations in the one-dimensional
case were studied by Gillis, et al. [12], Chechkin, et al. [7], Gorenflo, et al. [15, 16],
and in the n-dimensional case by Umarov [35], Umarov, et al. [36], Andries, et al.
[3]. The governing equation in these studies depends on parameters β ∈ (0, 1] and
α ∈ (0, 2], and is given by the fractional order differential equation

(1) Dβu(t, x) = Dα
0 u(t, x), t > 0, x ∈ R

N ,

where Dβ is the time-fractional derivative in some sense, and Dα
0 , 0 < α < 2, is the

pseudo-differential operator with the symbol −|ξ|α. The precise definitions will be
given below.

In the present paper we construct the random walks the governing equation of
which is a distributed space fractional order differential equation

(2)
∂

∂t
u(t, x) =

∫ 2

0

a(α)Dα
0 u(t, x)dα, t > 0, x ∈ R

N ,

where a(α) is a positive integrable function (positively defined distribution).
The study of properties of distributed order differential operators and their ap-

plications to diffusion processes has been developed extensively in recent years,
although such operators were first mentioned by Caputo [5, 6] in 1960th. The dis-
tributed order differential equations have been used by Bagley, et al. [4] to model
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the input-output relationship of linear time-variant system, by Lorenzo, et al. [22]
to study of rheological properties of composite materials, by Chechkin, et al. [8] to
model some ultraslow and lateral diffusion processes. Diethelm, et al. [9] studied the
numerical aspects of such equations. Umarov, et al. [37] studied general properties
of distributed order differential equations and solvability problems of the Cauchy
and multipoint value problems.

The method used in this paper for construction of multi-dimensional random
walks are essentially based on the symbolic calculus of pseudo-differential operators
and on the convergence properties of some simple cubature formulas. This method
is new even in the one-dimensional case and was suggested recently in [35, 36].
We note that the scaling limits are obtained in terms of characteristic functions
of transition probabilities. The equivalence of corresponding convergence notions is
well-known (see, [11, 13]). See also the recent book by M. Meerschaert and Scheffler
where the multi-dimensional operator stable probability distributions are studied
and analogs of different type limits considered. Multi-dimensional random walks are
frequently used in modeling various processes in different areas [1, 2, 24–26, 31].

The present report is organized as follows. In Section 2 we give preliminaries
simultaneously introducing the terminology that will be used in the paper. We also
recall some properties of pseudo-differential operators with constant symbols and
lay out some elementary properties of symbols. These properties play an essential
role later in the study of the diffusion limits of random walks. In Section 3 we
formulate our random walk problem in terms of sequences of i.i.d. (independent
identically distributed) random vectors. In this Section we also formulate the main
results.

2. Preliminaries

We use the following notation. R
N is the N -dimensional Euclidean space with

coordinates x = (x1, . . . , xN ); Z
N is the N -dimensional integer-valued lattice with

nodes j = (j1, . . . , jN ). We denote by xj = (hj1, . . . , hjN ), j ∈ Z
N , the nodes of the

uniform lattice Z
N
h defined as (hZ)N with a positive number h, the mesh width.

We assume that a walker is located at the origin x0 = (0, . . . , 0) at the initial time
t = 0. In our random walk, at every time instants t1 = τ, t2 = 2τ, . . . , tn = nτ, . . .
the walker jumps through the nodes of the lattice Z

N
h . By pj , j ∈ Z

N , we denote
transition probabilities. Namely, pj means a probability of jumping of the walker
from a point xk ∈ Z

N
h to a point xj+k ∈ Z

N
h , where j and k are in Z

N . Transition
probabilities satisfy the non-negativity and normalization conditions:

1. pj ≥ 0, j ∈ Z
N ;

2.
∑

j∈ZN pj = 1.

Transition probabilities {pj , j ∈ Z
N} are associated with a discrete function p :

Z
N → [0, 1]. For given two transition probabilities, p and q we define the convolution

operation p ∗ q by
(p ∗ q)j =

∑
k∈ZN

pkqj−k, j ∈ Z
N .

Let f be a continuous function integrable over R
N . Then, as is known [32], the

rectangular cubature formula

(3)
∫

RN

f(x)dx = hN
∑

j∈ZN

f(xj) + o(1)
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is valid.
The operators in our random walk models have a close relationship to pseudo-

differential operators with the symbols depending only on the dual variables. Sym-
bols are allowed to have singularities. For general orientation to the theory of such
operators we refer to [10, 14, 18–21, 34].

Let A(D), D = (D1, . . . , DN ), Dj = ∂/i∂xj , j = 1, . . . , N, be a pseudo-differential
operator with a symbol A(ξ) not depending on x, and defined in R

N . We refer to
the variable ξ as a dual variable. Both type of variables, x and ξ belong to R

N (more
precisely, ξ belongs to the conjugate (RN )∗ = R

N ). To avoid confusion sometimes
we write R

N
x and R

N
ξ , indicating their relevance to the variables x and ξ respec-

tively. Further, for a test function ϕ(x) taken from the classical space S(RN
x ) of

rapidly decreasing functions, the Fourier transform

ϕ̂(ξ) = F [ϕ](ξ) =
∫
RN

ϕ(x)e−ixξdx

is well defined and belongs again to S(RN
ξ ). Let S′(RN ) be the space of tempered

distributions, i.e. the dual space to S(RN ). The Fourier transform for distributions
f ∈ S′(RN

x ) is usually defined by the extension formula (f̂(ξ), ϕ(ξ)) = (f(x), ϕ̂(x)),
with the duality pairing (., .) of S′(RN

ξ ) and S(RN
ξ ).

Definition 2.1. Assume G to be an open domain in R
N
ξ . Let a function f be

continuous and bounded on R
N
x and have a Fourier transform (taken in the sense

of distributions) f̂(ξ) with compact support in G. We denote by ΨG(RN
x ) the set of

all such functions endowed with the following convergence. A sequence of functions
fm ∈ ΨG(RN

x ) is said to converge to an element f0 ∈ ΨG(Rx
N ) iff:

1. there exists a compact set K ⊂ G such that supp f̂m ⊂ K for all m = 1, 2, . . .;
2. ‖fm − f0‖ = sup |fm − f0| → 0 for m → ∞.

In the case G = R
N
ξ we write simply Ψ(Rx

N ) omitting R
N
ξ in the index of ΨG(RN

x ).

Note that according to the Paley-Wiener theorem functions in ΨG(RN
x ) are entire

functions of finite exponential type (see [27], [10]).
Denote by Hs(RN

x ), s ∈ (−∞, +∞) the Sobolev space of elements f ∈ S′(RN
x )

for which (1 + |ξ|2)s/2|f̂(ξ)| ∈ L2(RN
ξ ). It is known [18] that if f ∈ Lp(Rx

N ) with
p > 2, then its Fourier transform f̂ belongs to H−s(RN

ξ ), s > N(1
2 − 1

p ). Letting

p → ∞ we get f̂ ∈ H−s(RN
ξ ), s > N

2 for f ∈ L∞(Rx
N ). It follows from this fact

and the Paley-Wiener theorem that the Fourier transform of f ∈ ΨG(RN ) belongs
to the space ⋂

s> N
2

H−s
c (G),

where H−s
c (G) is a negative order Sobolev space of functionals with compact sup-

port on G. Hence f̂ is a distribution, which is well defined on continuous functions.
Let Ψ

′

−G(RN ) be the space of all linear bounded functionals defined on the space
ΨG(RN ) endowed with the weak (dual with respect to ΨG(RN )) topology. By the
weak topology we mean that a sequence of functionals gm ∈ Ψ

′

−G(RN ) converges
to an element g0 ∈ Ψ

′

−G(RN ) in the weak sense if for all f ∈ ΨG(RN ) the sequence
of numbers 〈gm, f〉 converges to 〈g0, f〉 as m → ∞. By 〈g, f〉 we mean the value of
g ∈ Ψ

′

−G(RN ) on an element f ∈ ΨG(RN ).
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Definition 2.2. Let A(ξ) be a continuous function defined in G ⊂ R
N
ξ . A pseudo-

differential operator A(D) with the symbol A(ξ) is defined by the formula

(4) A(D)ϕ(x) =
1

(2π)N
(ϕ̂, A(ξ)e−ixξ), ϕ ∈ ΨG(RN ).

Obviously, the function A(ξ)e−ixξ is continuous in G. Thus, A(D) in Eq. (4) is
well defined on ΨG(RN ). If ϕ̂ is an integrable function with supp ϕ̂ ⊂ G, then (4)
takes the usual form of pseudo-differential operator

A(D)ϕ(x) =
1

(2π)N

∫
A(ξ)ϕ̂(ξ)e−ixξdξ,

with the integral taken over G. Note that in general this integral may not make
sense even for infinitely differentiable functions with finite support (see [14]).

Now we define the operator A(−D) acting in the space Ψ
′

−G(RN ) by the exten-
sion formula

(5) < A(−D)f, ϕ > = < f, A(D)ϕ >, f ∈ Ψ
′

−G(RN ), ϕ ∈ ΨG(RN ).

We recall (see [14]) some basic properties of pseudo-differential operators introduced
above.

Lemma 2.3. The pseudo-differential operators A(D) and A(−D) with a continuous
symbol A(ξ) act as

1. A(D) : ΨG(RN ) → ΨG(RN ),
2. A(−D) : Ψ

′

−G(RN ) → Ψ
′

−G(RN )

respectively, and are continuous.

Lemma 2.4. Let A(ξ) be a function continuous on R
N . Then for ξ ∈ R

N

A(D){e−ixξ} = A(ξ)e−ixξ.

Proof. For any fixed ξ ∈ R
N the function e−ixξ is in Ψ(RN ). We have

A(D){e−ixξ} =
1

(2π)N

∫
RN

A(η)e−ixηdµξ(η),

where dµξ(η) = Fη[e−ixξ]dη = (2π)Nδ(η − ξ)dη. Hence A(D){e−ixξ} = A(ξ)e−ixξ.

Corollary 2.5. 1. A(ξ) = (A(D)e−ixξ)eixξ;
2. A(ξ) = (A(D)e−ixξ)|x=0;
3. A(ξ) =< A(−D)δ(x), e−ixξ >, where δ is the Dirac distribution.

Remark 2.6. Since the function e−ixξ does not belong to S(RN ) and D(RN ), the
representations for the symbol obtained in Lemma 2.4 and Corollary 2.5 are not
directly applicable in these spaces.

Denote by Dα
0 , 0 < α ≤ 2, the pseudo-differential operator with the symbol

−|ξ|α. It is evident that Dα
0 coincides with the Laplace operator ∆ for α = 2. For

α < 2 it can be considered as a fractional power of the Laplace operator, namely
Dα

0 = −(−∆)α/2. Dα
0 can also be represented as a hypersingular integral (see, e.g.

[29])

(6) Dα
0 f(x) = b(α)

∫
RN

y

∆2
yf(x)

|y|N+α
dy,
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where ∆2
y is the second order centered finite difference in the y direction, and b(α)

is norming constant defined as

(7) b(α) =
αΓ(α

2 )Γ(N+α
2 ) sin απ

2

22−απ1+N/2
.

It is seen from (7) that in the representation (6) of Dα
0 the value α = 2 is singular.

Lemma 2.7. For the symbol of Dα
0 the following equalities hold true:

(8)
(
Dα

0 eixξ
)
|x=0 = b(α)

∫
RN

y

∆2
yeixξ

|y|N+α
dy|x=0 = −|ξ|α, 0 < α < 2.

Proof. This statement is a direct implication of Corollary 2.5 applied to the operator
Dα

0 .

The cubature formula (3) yields for the integral in the right hand side of (6)

(9)
∫

RN

∆2
yf(xj)
|y|N+α

dy = hα
∑

k∈ZN

∆2
kfj

|k|N+α
+ o(1), j ∈ Z

N ,

where fj = f(xj) and |k| is Euclidean norm of k = (k1, . . . , kN ) ∈ Z
N .

Consider the distributed space fractional order differential equation

(10)
∂

∂t
u(t, x) =

∫ 2

0

a(α)Dα
0 u(t, x)dα, t > 0, x ∈ R

N ,

where a(α) is a positive (in general, generalized) function defined in (0, 2]. A distri-
bution G(t, x), which satisfies the equation (10) in the weak sense and the condition

(11) G(0, x) = δ(x), x ∈ R
N ,

where δ(x) is the Dirac’s distribution, is called a fundamental solution of the Cauchy
problem (10), (11). In the particular case of

(12) a(α) =
M∑

m=1

amδ(α − αm), 0 < α1 < · · · < αM ≤ 2,

with positive constants am we get a multiterm space fractional differential equation

(13)
∂

∂t
u(t, x) =

M∑
m=1

amDαm
0 u(t, x) t > 0, x ∈ R

N .

Denote the operator on the right hand side of the equation (10) by B(D). It can be
represented as a pseudo-differential operator with the symbol

(14) B(ξ) = −
∫ 2

0

a(α)|ξ|αdα.

It is not hard to verify that the fundamental solution of equation (10) is

(15) G(t, x) = F−1
(
etB(ξ)

)
,
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where F−1 stands for the inverse Fourier transform. In the particular case of a(α) =
δ(α − 2) we have the classical heat conduction equation

∂

∂t
u(t, x) = ∆u(t, x), t > 0, x ∈ RN ,

whose fundamental solution is the Gaussian probability density function evolving
in time

G2(t, x) =
1

(4πt)n/2
e

−|x|2
4t .

For a(α) = δ(α − α0), 0 < α0 < 2, the corresponding fundamental solution is the
Levy α0-stable probability density function [30]

(16) Gα0(t, x) =
1

(2π)N

∫
RN

e−t|ξ|α0
eixξdξ.

The power series representation of the stable Levy probability density functions is
studied in [3, 23, 33]. Recall also that α0 = 1 corresponds to the Cauchy-Poisson
probability density (see [28])

G1(t, x) =
Γ(n+1

2 )
π(n+1)/2

1
(|x|2 + t2)(n+1)/2

.

3. Main results: construction of random walks

In this Section we construct random walks associated with distributed space frac-
tional order differential equations (10). More precisely, we show that the special
scaling limit of the constructed random walk is a diffusion process whose probabil-
ity density function is the fundamental solution of (10).

Let X be an N-dimensional random vector [25] which takes values in Z
N . Let the

random vectors X1,X2, . . . also be N-dimensional independent identically distrib-
uted random vectors, all having the same probability distribution, common with
X. We introduce a spatial grid {xj = jh, j ∈ Z

N}, with h > 0 and temporal grid
{tn = nτ, n = 0, 1, 2, . . . } with a step τ > 0. Consider the sequence of random
vectors

Sn = hX1 + hX2 + · · · + hXn, n = 1, 2, . . .

taking S0 = 0 for convenience. We interpret X1,X2, . . . , as the jumps of a particle
sitting in x = x0 = 0 at the starting time t = t0 = 0 and making a jump Xn from
Sn−1 to Sn at the time instant t = tn. Then the position S(t) of the particle at
time t is ∑

1≤k≤t/τ

Xk.

Denote by yj(tn) the probability of sojourn of the walker at xj at the time tn.
Taking into account the recursion Sn+1 = Sn + hXn we have

(17) yj(tn+1) =
∑

k∈ZN

pkyj−k(tn), j ∈ Z
N , n = 0, 1, . . .

The convergence of the sequence Sn when n → ∞ means convergence of the discrete
probability law (yj(tn))j∈ZN , properly rescaled as explained below, to the probabil-
ity law with a density u(t, x) in the sense of distributions (in law). This is equivalent
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to the locally uniform convergence of the corresponding characteristic functions (see
for details [25]). We use this idea to prove the convergence of the sequence of char-
acteristic functions of the constructed random walks to the fundamental solution
of distributed order diffusion equations.

In order to construct a random walk relevant to (10) we use the approximation
(3) for the integral on the right hand side of (6), namely

Dα
0 u(t, xj) ≈ b(α)

∑
k∈ZN

uj+k(t) − 2uj(t) + uj−k(t)
|k|N+αhα

,

and the first order difference ratio

∂u

∂t
≈ uj(tn+1) − uj(tn)

τ

for ∂u
∂t with the time step τ = t/n. Then from (10) we derive the relation (17) with

the transition probabilities

(18) pk =

{
1 − 2τ

∑
m �=0

Qm(h)
|m|N , if k = 0;

2τ Qm(h)
|k|N , if k �= 0,

where

(19) Qm(h) =
∫ 2

0

|m|−αρ(α, h)dα, ρ(α, h) =
a(α)b(α)

hα
.

Assume that the condition

(20) σ(τ, h) := 2τ
∑
m �=0

Qm(h)
|m|N ≤ 1.

is fulfilled. Then, obviously, the transition probabilities satisfy the properties:

1.
∑

k∈ZN pk = 1;
2. pk ≥ 0, k ∈ Z

N .

Introduce the function

R(α) =
∑
k �=0

1
|k|N+α

=
∞∑

m=1

Mm

mN+α
, 0 < α ≤ 2,

where Mm =
∑

|k|=m 1. (In the one-dimensional case R(α) coincides with the Rie-
mann’s zeta-function, R(α) = 2ζ(1 + α).) The Eq. (20) can be rewritten as

(21) σ(τ, h) = 2τ

∫ 2

0

a(α)b(α)R(α)
hα

dα ≤ 1.

It follows from the latter inequality that h → 0 yelds τ → 0. This, in turn, yields
n = t/τ → ∞ for any finite t.

Now we assume that the singular support of a does not contain 2, i.e., {2} /∈
singsupp a 1.

1This condition relates only to distributions.
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Theorem 3.1. Let X be a random vector with the transition probabilities pk =
P (X = xk), k ∈ Z

N , defined in Eqs: (18), (19) and, which satisfy the condition (20)
(or, the same, (21)). Then the sequence of random vectors Sn = hX1 + · · ·+ hXn,
converges as n → ∞ in law to the random vector whose probability density func-
tion is the fundamental solution of the distributed space fractional order differential
equation (10).

Proof. We have to show that the sequence of random vectors Sn tends to the
random vector with pdf G(t, x) in Eq. (15), or the same, the discrete function
yj(tn) tends to G(t, x) as n → ∞. It is obvious that the Fourier transform of
G(t, x) with respect to the variable x is the function Ĝ(t, ξ) = etB(ξ), where B(ξ) is
defined in Eq. (14). Let p̂(−ξ) be the characteristic function corresponding to the
discrete function pk, k ∈ Z

N , that is

p̂(−ξ) =
∑

k∈ZN

pkeikξ.

It follows from the recursion formula (17) (which exhibits the convolution) and
the well known fact that convolution goes over in multiplication by the Fourier
transform, the characteristic function of yj(tn) can be represented in the form

ŷj(tn,−ξ) = p̂n(−ξ).

Taking this into account it suffices to show that

(22) p̂n(−hξ) → etB(ξ), n → ∞.

The next step of the proof is based on the following simple fact: if a sequence sn

converges to s for n → ∞, then

(23) lim(1 +
sn

n
)n = es.

We have

p̂n(−hξ) = (1 − τ
∑
k �=0

Qk

|k|N (1 − eikξh))n

= (1 − τ
∑
k �=0

1
|k|N

∫ 2

0

a(α)b(α)dα

|k|αhα
(1 − eikξh))n(24)

= (1 +
t
∫ 2

0
a(α){b(α)

∑
∆2eikξh

|kh|N+α hN}dα

n
)n

It follows from (3) and Corollary 2.5 that

b(α)
∑

k∈ZN

∆2eikξh

|kh|N+α
hN

tends to (Dα
0 eixξ)|x=0 = −|ξ|α as h → 0 (or, the same, n → ∞ ) for all α ∈ (0, 2].

Hence

sn =
∫ 2

0

a(α){b(α)
∑ ∆2eikξh

|kh|N+α
hN}dα → B(ξ), n → ∞ (h → 0).

Thus, in accordance with (23) we have

p̂n(−hξ) → etB(ξ), n → ∞.
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The random walk related to the multiterm fractional diffusion equation can be
derived from Theorem 3.1. Assume that a(α) has the form (12) with 0 < α1 <
· · · < αM < 2. So, we again exclude the case {2} ∈ singsupp a.

Theorem 3.2. Let the transition probabilities pk = P (X = xk), k ∈ Z
N , of the

random vector X be given as follows:

pk =




1 −
∑
j �=0

1
|j|N

M∑
m=1

µmamb(αm)
|j|αm

, if k = 0;

1
|k|N

M∑
m=1

µmamb(αm)
|j|αm

, if k �= 0,

where µm = 2τ
hαm , m = 1, . . . ,M . Assume,

M∑
m=1

amb(αm)R(αm)µm ≤ 1.

Then the sequence of random vectors Sn = hX1+· · ·+hXn, converges as n → ∞
in law to the random vector whose probability density function is the fundamental
solution of the multiterm fractional order differential equation (13).

Remark 3.3. The condition {2} /∈ singsupp a is required due to singularity of the
value α = 2 in the definition of Dα

0 (see (7)). The particular case a(α) = δ(α − 2)
reduces to the classic heat conduction equation and corresponding random walk is
the classic Brownian motion. In more general case of a(α) =

∑m
l=0 clδ

(l)(α−2) this
condition leads to the scaling limit with σ(τ, h) = h2ln 1

h (see, also [16]).

This work was supported in part by NIH grant P20 GMO67594.
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