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Abstract

We recast the Cosegmentation problem using Random Walker (RW) segmenta-

tion as the core segmentation algorithm, rather than the traditional MRF approach

adopted in the literature so far. Our formulation is similar to previous approaches

in the sense that it also permits Cosegmentation constraints (which impose con-

sistency between the extracted objects from ≥ 2 images) using a nonparametric

model. However, several previous nonparametric cosegmentation methods have

the serious limitation that they require adding one auxiliary node (or variable)

for every pair of pixels that are similar (which effectively limits such methods

to describing only those objects that have high entropy appearance models). In

contrast, our proposed model completely eliminates this restrictive dependence –

the resulting improvements are quite significant. Our model further allows an op-

timization scheme exploiting quasiconvexity for model-based segmentation with

no dependence on the scale of the segmented foreground. Finally, we show that

the optimization can be expressed in terms of linear algebra operations on sparse

matrices which are easily mapped to GPU architecture. We provide a highly spe-

cialized CUDA library for Cosegmentation exploiting this special structure, and

report experimental results showing these advantages.

1 Introduction

The problem of Cosegmentation [1], has attracted much attention from the community

in the last few years [2–5]. The basic goal in Cosegmentation is to segment a common

salient foreground object from two or more images, as shown in Fig. 1. Here, con-

sistency between the (extracted) object regions is accomplished by imposing a global

constraint which penalizes variations between the objects’ respective histograms or

appearance models. The idea has been adopted for obtaining concise measures of im-

age similarity [1], discovering common appearance patterns in image sets [6], medical

imaging [7], and building 3D models from community photo collections [2, 8]. Mo-

tivated by the spectrum of these applications, some recent papers have sought to bet-

ter understand the optimization-specific aspects of this problem – in particular, issues

such as sub-modularity [1], linear programming relaxations [4], dual-decomposition
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Figure 1: A representative application for cosegmentation.

based strategies [5], network flow constructions [7], and maximum-margin inspired in-

terpretations [9]. Most of these works provide good insights on cosegmentation, but

only in the context of the traditional Markov Random Field (MRF) based segmenta-

tion objective (referred to as graph-cuts [10]). This may be partly because the first

work on Cosegmentation [1] presented means for including global constraints within

segmentation but was designed specifically for the MRF function. The present paper

complements this body of research, and provides an end-to-end analysis of the Coseg-

mentation problem in terms of the Random Walker segmentation function [11] – these

results show that in many cases, well-known advantages of the Random Walker model

extend nicely to the Cosegmentation setting as well.

A Toy example. An important aspect of our formulation
is that it is possible to employ a nonparametric appear-
ance model for arbitrary distributions but without incurring
rather substantial additional computational costs. When
there are significant regions of homogeneity in the fore-
ground (inline figure), we clearly want a distribution which has a corresponding peak.
In Fig. 1, the distribution should capture the fact that the bear is “brown and furry”,
and not try to differentiate one patch of fur from another across multiple images. To
illustrate why this point is relevant, let us analyze the overhead of some existing meth-
ods for cosegmentation by considering a simple toy example (see inline image pair)
where we should identify the common blue circle (in distinct backgrounds). Several
approaches for cosegmentation with a nonparametric model require that an auxiliary
node (or variable) be introduced into the graph whenever two pixels share the same bin
[4, 7] (i.e., the two pixels are similar). While the segmentation aspect for the blue cir-
cles by itself is easy, the cost of introducing an auxiliary node for perceptually similar
pixels can grow very quickly – counting just the blue foreground pixels for a 196×196
image pair, one must introduce 42 million additional variables, and the associated cost
is infeasible even for moderately sized images. As a result, these previous models are
limited to feasibly cosegmenting only those image pairs that have a relatively high en-
tropy distribution (i.e., each bin is shared by only a few pixels). Our formulation has
no such limitation, since auxiliary nodes are not needed to perform the optimization.
Consequently, it is possible to perform cosegmentation in general settings where the
target foreground is summarized with an arbitrary appearance model (color, texture),
but with no associated restriction on its entropy. Further, several nonparametric coseg-
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mentation models (except [9]) are somewhat limited to segmenting foregrounds which
are at the same scale within each image. Our method compares histograms independent
of scale, and the objective is shown to be quasiconvex. This is leveraged to develop an
optimization scheme which can solve this nonconvex problem with optimality guaran-
tees. Finally, all optimization steps in the core method can be expressed as sparse linear
algebra operations, which makes GPU implementations possible.

Related Work. The initial model for Cosegmentation in [1] provided means for includ-
ing global constraints to enforce consistency among the two foreground histograms in
addition to the MRF segmentation terms for each image. The objective function incor-
porating these ideas was expressed as follows

Ecoseg = MRFimage 1 +MRFimage 2 + λE
global(h1, h2), (1)

where Eglobal(·, ·) was assumed to penalize the ℓ1 variation between each h1 and h2

(the two foreground histograms obtained post segmentation). The appearance model

for the histogram was assumed to be generative (i.e., Gaussian), and a novel scheme

called trust region graph cuts was presented for optimizing the resulting form of (1).

Subsequently, [4] argued in favor of using an ℓ22-distance for Eglobal(·, ·) whereas [7]

developed a reward based model. A scale-free method is presented in [12], which bi-

ases the segmentation towards histograms belonging to a low-rank subspace. Batra

et al. [2] suggested exploiting user interaction if available for cosegmentation (again,

using MRF terms) and [3, 9] have adopted a clustering based approach to the prob-

lem. Recently, [5] compared several existing MRF-based models, and presented a

new posterior-maximizing scheme which was solved using dual decomposition. Other

recent ideas include modulating the graph-cuts objective a priori by finding similar

patterns across images [3], generating multiple segmentations of each image and iden-

tifying which segmentation pair is similar [13], and identifying salient regions followed

by a filtering step to leave out distinct regions not shared across images [14]. One rea-

son for these varied strategies for the problem is that when a histogram difference term

is added to the segmentation, the resultant objective is no longer submodular (therefore,

not easy to optimize). So, the focus has been on improved approximate algorithms for

different choices of Eglobal.

A commonality among these existing works has been the preference for MRF (i.e.,

graph-cuts) based terms for segmentation. Part of the reason is that combinatorial meth-

ods such as graph-cuts are extensively used in vision, and are known to be efficient. On

the other hand, graph-partitioning methods such as Random Walker [11] also work well

for image segmentation and are widely used. Our formalization here suggests that it

is also well suited for the Cosegmentation problem and offers efficiency benefits (e.g.,

issues identified in the blue circles example) in the nonparametric setting.

The contributions of this paper are: (1) We derive a cosegmentation model with the

Random Walker segmentation at its core. The model finally reduces to a Box-QP prob-

lem (convex program with box constraints). Based on this structure, we propose a spe-

cialized (and efficient) gradient projection based procedure which finds a global real-

valued optimum of the model (which preserves many advantages of Random Walker

[11]). (2) Our model allows for a nonparametric representation of the foregrounds

(e.g., using distributions over texture words), but one which permits any distribution of

features without incurring additional computational costs. This provides a substantial
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advantage over the existing nonparametric cosegmentation approaches which are lim-

ited only to regions described by a high entropy model (i.e., object features must be

spread evenly across bins). (3) We extend this model to a scale-independent penalty.

This paper presents a novel optimization method for a class of objectives based on

quasiconvex functions. We prove correctness, and demonstrate it for model-based im-

age segmentation. These theoretical results are of independent interest. (4) Our opti-

mization consists of linear algebra operations (BLAS Level 1, 2) on sparse matrices.

Consequently, the algorithm is easy to implement on a GPU architecture. We give a

specialized open-source CUDA library for Cosegmentation.

2 Random Walker and its properties

The Random Walker segmentation algorithm has been studied extensively in the com-

puter vision literature. Essentially, the method simulates a random walk from each

pixel in the image to a set of user specified seed points where the walk is biased by im-

age intensity gradients. The eventual assignment of pixels to foreground or background

is determined by whether the pixel-specific walk reaches a foreground (or background)

seed first. Observe a subtle yet important property of how the Random Walker model

is specified, and what the solution actually denotes. Because of direct analogues in

circuit theory and physics, the formalization, even in its original form, seeks a solution

in reals (not integers). What is eventually solved is therefore not a relaxation because

the variables have a clear probabilistic meaning. As a result, thresholding these proba-

bilities at 0.5 is statistically sound; conceptually, this is different from solving a binary

linear program in reals and recovering a {0, 1} solution by rounding. In practice, Ran-

dom Walker is optimized by recasting segmentation as the solution to a combinatorial

Dirichlet problem. Random Walker derived segmentations offer some benefits with

respect to boundary length regularization, number of seeds, metrication errors, and

shrinking bias [15].

3 Random Walker for Cosegmentation

We begin our presentation by rewriting the Random Walker algorithm for a single im-
age as a quadratic minimization problem (also see [16]). As is common, we assume a 4-
connected neighborhood over the image, weighted according to a Gaussian function of
normalized Euclidean distances between pixel intensities, wij = exp (−β‖pi − pj‖).
The Laplacian L of the graph is then

Lij =











∑

k
wik if i = j

−wij if i 6= j and (i, j) ∈ neighborhood graph

0 otherwise

(2)

The Laplacian is diagonally dominant and so L � 0; we can derive the following
convex quadratic program,

min
x

x
T
Lx subject to x

(s) = m
(s)

, (3)
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where x(s) are the values for certain seed pixels, and m(s) is the known value of those

seeds (i.e., foreground or background). Each component of the solution x∗ will then

be a pixel’s probability of being assigned to the foreground. To output a {0, 1} seg-

mentation, we may threshold x∗ at 1
2 , to obtain a hard x ∈ {0, 1}n segmentation which

matches the solution from [11].
Pre-processing. Cosegmentation methods [7] use a pre-processing procedure to

determine inter- (and intra-) image pixel similarity. This is generated by tesselating
the RGB color space (i.e., pixel distribution) into clusters or by using SIFT (or color
pattern models, edge-profiles, textures etc) based correspondence methods, see [17].
We can derive a matrix H such that

H
kj
i =

{

1 if pixel j is in histogram bin k in image i

0 otherwise
(4)

Here, pixels are assigned to the same bin if they are similar. With an appropriate H ,

the global term Eglobal from (1) requires that at the level of individual histogram bins

k, the algorithm assign approximately the same number of pixels to each foreground

region (the objective incurs a penalty proportional to this difference). This ensures

that the appearance models of the two foregrounds based on the features of interest are

similar, and has been used very successfully in object recognition [18]. Observe that

this difference only serves as a regularizer for the main segmentation task, and does not

drive it on its own. This is relevant because as with any global measure, such models

(and the measurement of their variations) may not be perfect. But existing literature

suggests that when derived from good context-based features [18], such appearance

model based differences provide a meaningful global bias for Cosegmentation [2].

Cosegmentation for 2+ images. Given a segmentation for n pixels, x ∈ {0, 1}n,

one may use the H matrix from (4) to write the histogram of only the foreground pixels

as h = Hx. The expression gives the form of constraints needed for Cosegmentation.

Let L1, · · · , Lm be the Laplacian matrices of graphs constructed using each of the

images, and H1, · · · , Hm be the histogram assignment matrices from (4), with the

property that Hkj
i = Hkj′

i′ = 1 for pixels j and j′ if and only if j and j′ are similar.

Here, if one uses SIFT matches, then the matrix entry may reflect the confidence of the

match. Now, we seek to segment the two images simultaneously, under the constraint

that their histograms match. For this purpose, it suffices to consider the following

optimization model

min
xi,hi,h̄

∑

i

xT
i Lixi + λ‖hi − h̄‖22

s.t. xi ∈ [0, 1]ni

x
(s)
i = m

(s)
i i = 1...m

Hixi = hi

(5)

The second term in the objective above corresponds to Eglobal(h1, h2) in (1), and

the last constraint sets up the foreground histograms, hi using Hi and (bin k in H1

corresponds to bin k in H2, · · · , Hm which makes a direct comparison between his-

tograms possible). Instead of comparing the histograms to each other, we compare
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them to a common global histogram h̄ which at the optimum will be the centroid of the

hi’s. The resulting inter-image matching penalty will then be the trace of the covariance

between foreground histograms across the image set. This model additionally extends

to multiple labels (i.e., multiple objects) by adding additional columns to the optimiza-

tion variables identically to [11]. The resulting problem can be easily decomposed into

separate segmentations for each object class. Existing cosegmentation methods, on the

other hand, mostly tackle figure-ground labeling.

Each Laplacian matrix Li is postive semidefinite, so along with the histogram dis-

tances the objective function is convex. Further, the feasible region is the intersection

of bound constraints and linear equalities. We directly have:

Theorem 3.1. For λ ≥ 0, (5) is a convex problem.

3.1 Deriving an equivalent Box-QP

The model in (5) can already be solved using widely available convex programming

methods, and provides the desired solution to the Cosegmentation problem using the

Random Walker segmentation function. Next, we will derive an equivalent model

(but with a much nicer structure) that will allow the design of specialized solvers and

thereby lead to far more efficient algorithms.
Consider the left hand side of the equality constraint on each hi, substituted into

the objective function with a penalty ‖h1 − h2‖. Further, let us choose bounds to limit
x to the unit box as well as suitably enforce the seed constraints. This process gives a
quadratic problem of the form

min
x1,x2

[

x1

x2

]T [

L1 + λHT
1 H1 −λHT

1 H2

−λHT
2 H1 L2 + λHT

2 H2

] [

x1

x2

]

(6)

s.t. li ≤ xi ≤ ui xi is of size [0, 1]ni i = 1, 2,

where the 2-tuple (li, ui) is (1, 1) for foreground seeds, (0, 0) for background seeds,
and (0, 1) otherwise. For m > 2 images we optimize over x1, · · · , xm, h̄ with
quadratic objective matrix











L1 + λHT
1 H1 −λH1

. . .
...

Lm + λHT
mHm −λHm

−λHT
1 . . . −λHT

m λmI











It can be verified that (6) is equivalent to (5). The difference is that it is now

expressed as a bound-constrained quadratic problem (or box-QP due to the box con-

straints). Like (5), the model in (6) also permits general purpose convex programming

methods. However, we can design means to exploit its special structure since the model

is nearly an unconstrained quadratic problem.

4 Scale-Free Cosegmentation

A limitation of previous cosegmentation methods is their sensitivity to the scale of the

target object, since histogram-based priors are dependent on scale. For example, if an
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otherwise identical object appears in the second image such that it occupies twice as

many pixels as in the first image, then h2 = 2h1. Consequently, ||h2 − h1|| > 0,

meaning that the larger scale is penalized in traditional formulations. We show here

how our formulation may be made scale-invariant. Formally, our goal is to modify the

cosegmentation term to satisfy

E(shi, h̄) = E(hi, h̄) ∀s ∈ R+. (7)

This property may be satisfied by a normalization step,

E(hi, h̄) =

∥

∥

∥

∥

hi

‖hi‖
−

h̄

‖h̄‖

∥

∥

∥

∥

2

= 2− 2
hT
i h̄

‖hi‖‖h̄‖
. (8)

Here we further note that under minimization and choice of the parameter λ in the

combined model this is equivalent to minimizing

−
hT
i h̄

‖hi‖‖h̄‖
= − cos(∠hih̄) (9)

Substituting these normalized histograms in (5) leads to a function that cannot be

efficiently optimized. However, in the Random Walker setting, we can optimize this

function when the model histogram h̄ is a fixed unit vector. The resulting problem

is related to model-based segmentation, where we are imposing a known histogram

distribution in segmenting images. For image i we solve the problem

min
xi,hi

xT
i Lixi − λ

hT
i h̄

‖hi‖

s.t. hi = Hixi

li ≤ xi ≤ ui

(10)

where we name

ĝh̄(h) = −
h̄Th

‖h‖
. (11)

In order to proceed with the minimization of our scale-invariant energy, we must

first establish some properties of (11).

Definition 4.1 ([19]). We define a function f to be quasiconvex if its sublevel sets

are convex subsets of the domain. Equivalently, for any x, x′ in the domain of f and

λ ∈ [0, 1],
f((1− λ)x+ λx′) ≤ max{f(x), f(x′)} (12)

We call (12) the “Jensen’s Inequality for Quasiconvexity.”

Theorem 4.2. ĝh̄ as defined in (11) is quasiconvex.

Proof. Consider any h1, h2 wlog chosen to satisfy

ĝh̄(h2) ≤ ĝh̄(h1),

h̄Th2

‖h2‖
≥

h̄Th1

‖h1‖
,
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Multiply by (1− λ)‖h1‖‖h2‖ ≥ 0

(1− λ)h̄Th2‖h1‖ ≥ (1− λ)h̄Th1‖h2‖,

Add λh̄Th1‖h1‖,

λh̄Th1‖h1‖+ (1− λ)h̄Th2‖h1‖ ≥ λh̄Th1‖h1‖+ (1− λ)h̄Th1‖h2‖
(

λh̄Th1 + (1− λ)h̄Th2

)

‖h1‖ ≥ h̄Th1 (λ‖h1‖+ (1− λ)‖h2‖)

taking any λ ∈ [0, 1].
Since all these vectors are in the nonnegative orthant, h̄Th1, h̄

Th2 ≥ 0, and−ĝh̄(h2) ≥
−ĝh̄(h1) this inequality is equivalent to:

λh̄Th1 + (1− λ)h̄Th2

λ‖h1‖+ (1− λ)‖h2‖
≥

h̄Th1

‖h1‖
(13)

Using this expression with the triangle inequality to show Jensen’s inequality for qua-

siconvexity (12) gives

ĝh̄(λh1 + (1− λ)h2) = −
λh̄Th1 + (1− λ)h̄Th2

‖λh1 + (1− λ)h2‖

≤ −
λh̄Th1 + (1− λ)h̄Th2

λ‖h1‖+ (1− λ)‖h2‖

Using (13),

≤ −
h̄Th1

‖h1‖

= ĝh̄(h1) = max {ĝh̄(h1), ĝh̄(h2)}

Corollary 4.3. The scale-free energy on x, gh̄(x) = ĝh̄(Hx) is quasiconvex for his-

togram assignment matrix H .

Proof. This G represents the outer composition of E with an affine function. This

operation preserves quasiconvexity (see [20]).

The next section exploits these properties of gh̄ to solve the segmentation problem

using this penalty.

Theorem 4.4. gh̄(x) is Lipschitz-smooth when ‖Hx‖ > 0.

Proof. Let ·̂ = ·
‖·‖ . Assume wlog ‖h1‖ ≥ ‖h2‖.

‖h1 − h2‖ ≥

∥

∥

∥

∥

‖h2‖

‖h1‖
h1 − h2

∥

∥

∥

∥

= ‖h2‖ × ‖ĥ1 − ĥ2‖

1

‖h2‖
‖h1 − h2‖ ≥ ‖ĥ1 − ĥ2‖

(14)
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Figure 2: Segmentation using the model of section 4 on a set of images from the iCoseg dataset

with differences in scale. h̄ from an image in the same set was applied as a prior.

Thus for any function f which is L-smooth,

‖f(ĥ1)− f(ĥ2)‖ ≤ L‖ĥ1 − ĥ2‖

≤
L

‖h2‖
‖h1 − h2‖

(15)

And if we lower-bound ‖h1‖ ≥ ‖h2‖ ≥ C > 0, f (̂·) is L
C

-smooth.

In our case, gh̄(h) is an affine function of ĥ, and any affine function will be Lips-

chitz.

4.1 Nonconvex Sum Minimization

For the following, we consider the setting of minimizing h = f + g, such that f is

convex, g is quasiconvex and both are bounded below. Note that under these conditions,

h is not necessarily quasiconvex and may have multiple local minima. Nonetheless, our

method proposed below can optimize our segmentation objective with f(x) = xTLx
and g as defined in Corollary 4.3. Let x∗

f = argminx f(x), similarily define x∗
g and

x∗
h.

Theorem 4.5. Define

P(α) =





argmin
x∈X

f(x)

s.t. g(x) ≤ α



 (16)

For x any solution to P(g(x∗
h)), h(x) = h(x∗

h).

Proof. Since x is feasible for P(g(x∗
h)), g(x) ≤ g(x∗

h). With x, x∗
h both feasible for

the problem, x is a solution iff f(x) ≤ f(x∗
h).

We can add these inequalities to show h(x) ≤ h(x∗
h), which by definition of x∗

h

gives equality.

Theorem 4.6. P(α) has no solutions for α < g(x∗
g), and x is a solution to P(g(x∗

f ))
iff x is a solution ∀α > g(x∗

f ).
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x

f(x)

x

f(x)

(a) (b)

Figure 3: Given a pair (x, f(x)) for a L-Lipschitz function f , the Lipschitz condition guar-

antees that the function will always lie between two lines of slope L and −L through this point

and in the shaded region shown in (a). The one-sided Lipschitz condition in Definition 4.7 only

bounds the rate of increase, and the function must lie in the shaded region shown in (b).

Proof. For α < g(x∗
g) the feasible set of P(α) is the empty set, by the definition of x∗

g .

Take any α ≥ g(x∗
f ). The feasible region of P(α) is a superset of the feasible

region of P(g(x∗
f )). Let x∗ be a solution to P(α). Since x∗

f lies in the feasible region

of this problem and f(x∗
f ) ≤ f(x) for any x, then f(x∗) = f(x∗

f ). As long as the

minimum of f lies in the feasible region of P(α), this will be a solution.

Definition 4.7 ([21]). A function f : [a, b] → R is one-sided Lipschitz if for any

x1, x2 ∈ [a, b]
(x1 − x2)(f(x1)− f(x2)) ≤ m(x1 − x2)

2 (17)

for some m.

Intuitively, in the case that f is continuously differentiable, the Lipschitz condition

bounds |f ′(x)| while this condition only guarantees an upper bound on f ′(x). This is

illustrated in Figure 3.

Lemma 4.8. Let ◦ denote the composition operator: (g◦P)(α) = g(P(α)). We claim:

(g ◦ P)(α) = α for any α ∈
[

g(x∗
g), g(x

∗
f )
]

(18)

Proof. Let x = P(α). x satisfies the KKT conditions for the P(α) problem and either:

Case 1) x is the unconstrained minimum of f (i.e. 0 ∈ ∂f(x))
Case 2) x lies on the boundary of the feasible region (so the g(x) ≤ α constraint is

active and −∂f(x) ∩ ∂g(x) 6= ∅).1

As previously used for Theorem 4.6, case 1 will only be true for α ≥ g(x∗
f ), with

equality in the range we consider here. In case 2, we have the theorem simply from the

fact that the constraint is active.

Lemma 4.9. f ◦ P is monotonically non-increasing.

1 Here ∂f denotes the subdifferential of f .
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∇f∇g

Figure 4: A series of expanding sublevel sets of f (solid ellipses) and the correspond-

ing minimal intersecting sublevel sets of g (dashed ellipses). The gradient at a boundary

is normal to a supporting line, and each pair of sublevel sets intersect only along this

line.

Proof. Take any α1 < α2. Let x1 = P(α1) and x2 = P(α2). Since g(x1) = α1 < α2

we know x1 is feasible for the P(α2) problem. Thus, since x2 is a minimizer for the

P(α2) problem, f(x1) ≥ f(x2).

Theorem 4.10. h ◦ P is one-sided Lipschitz.

Proof. Take any α1, α2 ∈
[

g(x∗
g), g(x

∗
f )
]

.

Since f ◦ P is monotonically non-increasing,

(α1 − α2) ((f ◦ P )(α1)− (f ◦ P )(α2)) < 0

So if we let m ≥ 1, and because (α1 − α2)
2 ≥ 0,

(α1 − α2) ((f ◦ P )(α1)− (f ◦ P )(α2)) ≤ (m− 1)(α1 − α2)
2

(α1 − α2) ((f ◦ P )(α1)− (f ◦ P )(α2) + (α1 − α2)) ≤ m(α1 − α2)
2

Using Lemma 4.8,

(α1 − α2) ((h ◦ P )(α1)− (h ◦ P )(α2)) ≤ m(α1 − α2)
2

So that h is one-sided Lipschitz with constant m.

With the result of Theorem 4.10, by simply sampling h(P (α)) densely enough,

we can get an estimate of this function to arbitrary precision over the entire interval

α ∈
[

g(x∗
g), g(x

∗
f )
]

. If we select a global minimum of this estimated function, we can

derive a point with objective arbitrarily close to the true minimum of h. The bounds

are given from the following theorem:

Lemma 4.11. For any interval [α1, α2] ⊆
[

g(x∗
g), g(x

∗
f )
]

and any α ∈ [α1, α2],

(h ◦ P)(α) ≥ (h ◦ P)(α2)− (α2 − α)

≥ (h ◦ P)(α2)− (α2 − α1)
(19)
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x

Figure 5: Illustration of the lower bound used in Lemma 4.11. If we only have the sampled

points shown, we can nonetheless guarantee that a function which is one-sided Lipschitz will lie

above the dashed lines.

Proof. Take m = 1 in Lemma 4.11, applied to this particular α, α2:

(α− α2) ((h ◦ P )(α)− (h ◦ P )(α2)) ≤ (α− α2)
2

By interval construction α− α2 ≤ 0, so

(h ◦ P )(α)− (h ◦ P )(α2) ≥ (α− α2)

(h ◦ P )(α) ≥ (h ◦ P )(α2)− (α2 − α)

Theorem 4.12. Take an increasing sequence α1, ..., αn from the domain of h ◦P with

α1 = g(x∗
g) and αn = g(x∗

f ). Let τ be the maximum gap αi+1 − αi. Denote the

minimum sample by α∗, chosen such that

(h ◦ P )(α∗) = min
i

(h ◦ P )(αi) (20)

Then the function h has lower bound:

h(x) ≥ (h ◦ P )(α∗)− τ ∀x (21)

Proof. By Theorem 4.5, we can instead show

(h ◦ P )(α) ≥ (h ◦ P )(α∗)− τ ∀α (22)

Consider any α. By our choice of α1, ..., αn there is an αi, αi+1 such that α ∈
[αi, αi+1]. By Lemma 4.11,

(h ◦ P )(α) ≥ (h ◦ P )(αi)− (αi+1 − αi)

by the construction of α∗,

≥ (h ◦ P )(α∗)− (αi+1 − αi)

12



and since τ ≥ αi+1 − αi

≥ (h ◦ P )(α∗)− τ

4.2 Application to Scale-Free Cosegmentation

In the scale-free cosegmentation setting our P problem consists of

min
x

xTLx

s.t. λh̄THx ≥ −α‖Hx‖

l ≤ x ≤ u

(23)

With this case f is convex and g is quasiconvex. The P problem can therefore be solve

efficiently using ordinary methods. We can calculate x∗
f as the solution to the ordinary

random-walker segmentation and x∗
g is the projection of h̄ onto the feasible set under

seed constraints.

5 Optimization

This section describes our strategy for solving (6) to optimality in a highly efficient
manner. We use a projected gradient-based method which would additionally form the
key component if we were to use any variation (i.e. augmented Langrangian) as stated
explicitly in [22].

Identifying a Sparse Structure: Expressing our model as a purely bound-constrained
problem as in (6) requires the formation of the HT

i Hi products which form dense n×n
matrices. Consequently, our optimization method must be careful not to explicitly form
these matrices. Fortunately, we observe that explicit formulation of these matrices may
be avoided by gradient projection methods, which are a simple and efficient class of
algorithms in which it is only necessary to be able to calculate matrix-vector products.
Here, this product can be distributed over the sparse components,

(L+H
T
1 H1)x1 = Lx1 +H

T
1 (H1x1). (24)

With this modification, we can solve our Box-QP in (6) by adapting the Gradient

Projection/Conjugate Gradient (GPCG) algorithm of [23]. We describe this strategy

next.

5.1 GPCG

GPCG solves quadratic problems with a rectilinear feasible region Ω = {x : l ≤ x ≤
u}. The algorithm alternates between two main phases (GP and CG): these correspond

to alternately estimating the active set at the minimum and finding the minimum while

keeping the active set fixed.
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A) Gradient Projection (GP). Gradient projection coupled with the projected line

search allows fast searching of a wide range of Ω. As a result, we can rapidly estimate

which face of the feasible region the optimum lies on.

A.1) Search Direction for GP: In this phase, we search along a projected gradient

∇ΩO(x) which has been modified so the corresponding search direction d = −∇ΩO
does not point outside the feasible region. Specifically, this search direction is con-

structed to satisfy ∃ ǫ > 0 such that x + ǫd ∈ Ω. We then use a projected line search

(described later) to arrive at a step length α and update x← x+ αd.

A.2) Phase Switch for GP: We switch to the conjugate gradient phase if either of

the following conditions are satisfied: (a) The active set A = {i : xi = li or xi =
ui} remains unchanged between two iterations; note that the active set corresponds to

the minimal face (w.r.t. inclusion) of Ω to which x belongs; (b) GP is making little

progress.

B) Conjugate Gradient (CG). We search a given face of the feasible region of our

model using the conjugate gradient phase described below.

B.1) Search Direction for CG: Given the active set, our algorithm calculates a search

direction conjugate to the previous direction (under the projection on to the free vari-

ables). Note that this method of generating a search direction is the same as applying

ordinary conjugate gradient descent to a restriction of the QP to the current minimal

face.
B.2) Phase Switch for CG: If the projected gradient points out of the current face (or
if the iterations are making little progress), we switch back to the gradient projection
(GP) phase. Formally, this is true if ∃i ∈ A(x) and either

xi = li and ∂iO(x) < 0, or xi = ui and ∂iO(x) > 0.

Note that these “phase switch” conditions will never be satisfied for the face which

contains the global minimum for our model. Thus, when the gradient projection phase

has found the correct active set, conjugate gradient iterations suffice to explore the final

face.

C) Projected Line Search: The projected line search modifies the active set by an

arbitrary number of elements, and helps our GPCG process. Given a starting point x
and search direction d, the line search finds α > 0 which produces a sufficient decrease

under the Armijo rule of the function φ(α) = O (P [x+ αd]), where P describes the

projection function which maps its input to the closest point in Ω. This can be thought

of as a “line search” along a 1-manifold which bends to stay within Ω (thus, not a

ray). Rather than directly finding all the piecewise quadratic segments of φ(α), we

efficiently produce a sufficient decrease using an estimate of φ by sampling one point

at a time (as in [23]). It can be verified that all operations above can be expressed as

Level 1, 2 BLAS operations. This allows a highly parallel implementation, described

next.

D) GPU Implementation. Graphical Processing Units (GPUs) have gained attention

from a wide range of the scientific computing community for their ability to efficiently

address parallel problems [24]. These architectures operate by running multiple in-

stances of a piece of code simultaneously, operating on different parts of a dataset.

While this approach is not well-suited to all algorithms, Level 1 and 2 BLAS opera-

tions used in our algorithm are known to fit well with this architecture and can therefore
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exhibit a significant speedup. The linear algebra operations comprising our GPCG al-

gorithm for Cosegmentation may be easily parallelized using high-level languages as

CUDA. In fact, the CUSPARSE toolkit (used here), supports Level 2 and 3 BLAS op-

erations on sparse matrices as well. Further, the control flow of our procedure relies

only on the results of accumulations, so the standard bottleneck of transferring data

between main and GPU memory is not a major factor, and entry-level hardware (found

on many workstations already) is sufficient.

6 Histogram Construction

In this section we discuss the fact that a wide variety of different preprocesssing steps

can take advantage of the same core method to produce a cosegmentation result.

At the heart of cosegmentation is some notion of similarity between pixels. The key

property of cosegmentation over independent cosegmentation is that the foregrounds

should contain similar distributions of pixels. In the group of cosegmentation methods

we consider here, we rely on histograms, in which similar pixels are placed in the same

histogram bin and dissimilar pixels are placed in different histogram bins. This is done

through a histogram assignment matrix H as in (4).

In order to apply a cosegmentation method to a pair of images, we must first con-

struct this matrix. One aspect of the problem is to assign a bin to some subset (or all)

of the pixels between the two images. This needs to be done in such a way that similar

foregrounds have similar histograms so that it matches a common-sense idea of when

two foregrounds are similar. This includes some invariance to lighting, rotation, etc.

The bin assignment problem can be divided into two steps:

1. Assign local descriptors [25] to each pixel independently.

2. Find sets of “similar” pixels.

6.1 Texture-Based Histograms

We empirically found high-quality dense histograms were most consistently produced

by clustering in a descriptor space based on texture. We derive the descriptors by ap-

plying the 17-filter bank of texture filters proposed in [18] shown in Figure 6. The

responses at each pixel can then be clustered using nonparametric methods such as

mean-shift or the greedy clustering of [26] with modified stopping conditions, avoid-

ing explicitly specifying the number of clusters k (as we found the optimal k varies

somewhat between images).

As an alternative to naı̈ve clustering, the authors of [18] further present a method

of training a texture dictionary from an incompletely labeled dataset. They present an

agglomerative clustering algorithm based on maximizing a probability

P̃ (ĉ|{Hn}) =
P ({Hn}|ĉ)

P ({Hn}|ĉ) + P ({Hn}|csame)
(25)

15



Figure 6: Winn filters from [18] used in our histogram generation. The first three blur filters

are applied to each channel of the Lab colorspace, with the rest applied only to the lightness

channel.

(a) (b)

Figure 7: Clustering (a) and matching (b) results generated using VLFeat [27].

for histograms Hn and training labels ĉ. This clustering can be leveraged in texture-

based cosegmentation algorithms, producing a binning method optimized to handle

differentiating between object classes in the training data.

As described above, the first step produces local contextual descriptors of each

image pixel. The clustering step finds those pixels which are similar under the given

descriptor (similar color and texture will be in the same bin). We also consider SIFT-

based features in step one, and an optical-flow-based pipeline, discussed below.

6.2 SIFT-based

A popular class of descriptors are those based on gradient binning, including SIFT,

GLOH, etc. The high dimension of these descriptors makes it relatively difficult to

find high-quality dense matches between the feature vectors of different pixels. In our

setting (which does not allow i.e. assuming a homography), we found the matching to

either be sparse or overly specific. Representative matching and clustering results are

shown in Figure 7, which are reasonable but did not lead to better segmentation results.

This additional module was thus not utilized further.
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Figure 8: Comparing the entropy of the constructed histogram (x axis), with a symmetric KL-divergence

between the true foreground histograms (y axis), as we vary the number of clusters. Each line shows one

image pair. We consistently see higher-entropy histograms producing greater divergence for the target seg-

mentation.

6.3 Histograms from Optical Flow

The flexibility of our method with respect to histogram construction allows the use of

application-specific preprocessing steps. There is a natural parallel between cosegmen-

tation and the task of segmenting video. When the images are temporally related, we

have a relationship between foreground pixels determined by the movement shown in

the video. This is a well-studied problem in computer vision, allowing us a class of

optical flow methods.

We can find corresponding pixels using optical flow, placing pixels i and i′ in the

same bin if the position of i maps to i′ in the next image. Applying this scheme to the

frames of a video sequence suggests the model

min
x∈X

∑

i

xT
i Lixi + λ

∑

i

‖Hixi −H ′
i+1xi+1‖

2
2 (26)

where the second sum compares subsequent frames of an image sequence.

In Fig. 16 we perform correspondences based on optical flow to map superpixel-

based bins in order to segment frames of a video sequence. Other correspondence

determination methods can be used and no change to our algorithm is needed.

6.4 Histogram Entropy

As discussed above, using low-entropy histograms allows for more accurate matching

between images for some images. Intuitively, recall the example from Fig. 1 where

a high-entropy histogram tries to differentiate between different patches of fur on a

17



brown bear. This cannot be done in a consistent manner across realistic images, so er-

roneous matches are introduced. By contrast, our histogram matching technique better

describes the the true texture description of the bear’s fur as a combinations of very

few homogenous textures. We verify this experimentally in Fig. 8 which plots the

statistical distance between the histogram of the true foreground for a sample of im-

ages from our dataset. In these cases we found that as the entropy increases, so does

the JS divergence measure between the histograms for the true segmentations. Low

entropy histograms, however, relate to smaller divergences, which impose the global

Cosegmentation constraint more tightly.

7 Experiments

Our experimental evaluations included comparisons of our implementation (on a Nvidia

Geforce 470) to another Cosegmentation method [7], and the Random Walker algo-

rithm [11] (run independently on both images). We also performed experiments using

the methods in [4] and [9], but due to the problem of solving a large LP and incorpora-

tion of foreground/background seeds respectively, results could not be obtained for the

entire dataset described below. To assess relative advantages of the specialized GPCG

procedure, we also compared it with a stand-alone implementation of (5) linked with a

commercial QP solver (using multiple cores). We provide a qualitative and quantitative

overview of the performance w.r.t. state of the art. Additional experiments demonstrate

the efficacy of the multiple-image and scale-free segmentation models.2

7.1 Weak Boundary Experiment

For an initial probe of the behavior of the Random Walker as the engine of a coseg-

mentation method, we replicate the experiment of [11] in a cosegmentation setting.

The setup in [11] used a synthetic image consisting of two white triangles which were

separated by a black line that contained a large hole, such that the triangles appear to

be touching (see Figure 9). This image is challenging to segment into the two trian-

gles because each triangle exhibits exactly the same appearance (white), and there is

a substantial portion of the boundary between them for which there is zero contrast.

Consequently, segmentation algorithms which rely exclusively on appearance priors or

boundary contrast are unable to separate the two triangles. In particular, [11] showed

that a segmentation driven by a boundary length prior (e.g., graph cuts) was unable to

separate these triangles when the inputs consisted of only a single seed in each triangle.

We may investigate the same scenario in a cosegmentation setting. Specifically, if

we let an image pair consist of two replicas of the “two triangles” image from [11], we

may supply one seed in each of the triangles of only one of the images. Further, we

set up a synthetic histogram in such a way that the desired (i.e., perceptual) partition

incurs zero histogram variation penalty relative to Eglobal in (1). An example of such

a histogram pair is shown in Fig. 9 (rightmost column) where common colors indicate

similarity among pixels in both images (based on some arbitrary feature). Given this

2The full set of segmentation results and code is available at

http://pages.cs.wisc.edu/~mcollins/pubs/cvpr2012.html
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Figure 9: Figure showing RW cosegmentation’s performance on weak boundaries. Columns

(left to right): (1) Identical pair of images, with seeds placed only on the top image; (2) Output

potentials of random walker; (3) Output of graph-cuts based cosegmentation (4) Identical his-

togram bin assignments for both images (common colors indicate similar pixels, considered both

inter and intra image);

input image pair, our cosegmentation algorithm based on the Random Walker is able to

successfully segment both images into two triangles (see Fig. 9, second column), de-

spite the fact that each triangle exhibits the same appearance and it not well-separated

by the boundary. In contrast, if we apply the traditional cosegmentation model which

penalizes boundary length to the same problem, these two images are poorly segmented

as a result of the difficulty of the problem instance (see Fig. 9, third column). Note that

while this experiment is artificially constructed, it nonetheless suggests that Cosegmen-

tation based on the Random Walker will retain the beneficial properties of the Random

Walker segmentation algorithm and some of its advantages over boundary length reg-

ularization.

7.2 Datasets

In order to leverage all available test data we aggregated all images provided by the

authors in iCoseg [2], Momi-coseg [3] and Pseudoflow-coseg [7], and further supple-

mented them with a few additional images from the web and [28]. In order to compare

with algorithms that only handle image pairs we selected a dataset with 50 pairs of

images (100 total). For the > 2 image case we used the iCoseg dataset from [2]. Since

a number of image sets from (from [2]) share only semantically similar foreground

objects and are unsuitable for cosegmentation with common appearance models, we

selected 88 subsets comprising 389 of the 643 iCoseg images (also observed in [13]).

7.3 Running time complexity

We now discuss what is the strongest advantage of this framework. We show an exam-

ple in Fig. 10 of the running time of the proposed model relative to [7], as a function of
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Figure 10: Variation in run-time with histogram granularity (a) and image size (b) relative to a

Cplex-based implementation and Pseudoflow-coseg [7].

decreasing entropy (number of bins). The plot suggests that for a realistic range, our

implementation has a negligible computation time relative to [7] and the CPLEX-based

option – in fact, our curve almost coincides with the x-axis (and even this cost was dom-

inated primarily by the overhead from problem setup done on the CPU). For the most

expensive data point shown in Fig. 10, the model from [7] generated 107 auxiliary

nodes (about 12 GB of memory). Due to the utility of low entropy histograms, these

experiments show a salient benefit of our framework and its immunity to the ‘coarse-

ness’ of the appearance model. Over all 128×128 images, the wall-clock running time

of our CUDA-based model was 10.609 ± 5.230 seconds (a significant improvement

over both [7, 9]). The time for a Cplex driven method (utilizing four cores in parallel)

was 17.982± 5.07 seconds, but this increases sharply with greater problem size.

An artificial image shown in Figure 11 was used in order to allow for isolation of

specific variables, and mitigate variability (in optimization time) as a function of the

specific problem instance.

With an increase in the image size, the running time of the model is expected to

increase because of two reasons. First, the number of pixels to segment determines the

size of the input problem and the dimensionality of the decision variables in the opti-

mization. Second, if the histogram is generated the same way across different sizes,

the number of pixels in each histogram bin also increases. An analysis of this behav-

ior is presented in Figure 10. The image shown in Fig. 11 was generated for various

sizes, with the number of pixels along each side plotted along the x axis in Fig. 10.

Our specialized GPU-based Cosegmentation library and an implementation based on

the Cplex solver were used for Random Walker Cosegmentation. In this result, we

see only marginal increase in the overall running time of our model (the curve stays

close to the x-axis); on the other hand, the running time of the Cplex-based imple-

mentation increases quickly as we increase the size of the images. Notice how this

difference is substantially magnified for larger images. The reason is that our algo-

rithm distributes each individual BLAS operation over the GPU’s computational units;
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as a result, higher-dimensional operations take better advantage of the parallelization

in the model presented in this paper. We believe our method is thus especially suited

for large images where computation time is a consideration.

7.4 Effect of λ parameter

The images in Fig. 12 demonstrate the role of the histogram consistency bias, λ in

equation (5). For a very small λ, the segmentation probabilities are diffuse (compare

to the independent random walker results from Fig. 15); as the influence of the bias

grows, the consistency between the histograms makes the partitions more pronounced.

7.5 Performance w.r.t. pair methods

We evaluated the quality of segmentations (0/1 loss) on the 50 image pairs described

above, relative to Pseudoflow-coseg [7], LP [4] (only partial), and discriminative clus-

tering [9]. As in [11], a few seeds were placed to specify foreground and background

regions, and given to all methods. Representative samples on the images from [2] us-

ing the method in [7, 9] are shown in Fig. 13. Averaged over the pair dataset, the

segmentation accuracy of our method was 93.6 ± 2.9%, where as the gross values for

the algorithms from [7] and [9] were 89.1% and 84.1% respectively.

7.6 Performance on 2+ images

Across the iCoseg dataset we achieved an accuracy of 93.7% with seeds provided by 5

different users. The algorithm of [9] achieves an accuracy of 82.2% across the dataset

(excluding some for which the implementation provided by the authors did not com-

plete). Representative image sets and accuracy comparisons appear in Table 1 and

Figure 14.

(a) (b)

Figure 11: Artificial image used in computation time experiments (a) and corresponding his-

togram bins (b). Seed points were placed as shown in both foreground and background. To

create a cosegmentation problem, the same image was used twice.
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Figure 12: Effect of varying λ parameter on an example image for λ = 10−8 in Column 2,

and λ = 10−6 in Column 3. A segmentation potential biased towards matching the histograms

makes the partitions more pronounced.

We note that these results must be interpreted with the caveat that different meth-

ods respond differently to seed locations and the level of discrimination offered by

the underlying appearance model. Since most cosegmentation models (including this

paper) share the same basic construction at their core (i.e., image segmentation with

an appearance model constraint), variations in performance are in part due to the in-

put histograms. The purpose of our experiments here is to show that at the very least

one can expect similar (if not better) qualitative results with our model, but with more

flexibility and quite significant computational advantages.

Figure 13: Comparison results on example images (columns 1,2) of the the Pseudoflow based

method of [7] (columns 3,4) and the discriminative clustering approach of [9] (columns 5,6),

with segmentation from RW-based cosegmentation (columns 7,8).
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Our Method [9]

Airshow (8/21) 99.7 80.5

Alaskan bear (5/18) 92.2 76.6

Christ (6/14) 95.6 97.3

Ferrari (4/10) 96.4 59.4

Goose (13/31) 97.3 97.5

Helicopter (9/11) 96.9 98.1

Kendo (10/31) 91.4 93.4

Lobster Kite (4/11) 97.0 88.5

Monk (4/17) 83.3 87.1

Soccer (5/36) 93.9 79.9

Speed Skater (9/13) 80.8 77.3

Liberty (11/41) 93.2 86.1

Table 1: Segmentation accuracy for some iCoseg image sets. Subsets were chosen which have

similar appearance under a histogram model.

Figure 14: Interactive segmentation results using the multi-image model across five images

from the “Kendo” set of iCoseg. As the number of images increases, less user input is required,

as seen by the lack of such for the middle image.

7.7 Comparisons to independent Random Walker runs

In Fig. 15, we present qualitative results from our algorithm, and from independent

runs of Random Walker (both with up to two seeds per image). A trend was evident

on all images – the probabilities from independent runs of Random Walker on the two

images were diffuse and provide poorer boundary localization. This is due to the lack

of global knowledge of the segmentation in the other image. Random walker based

Cosegmentation is able to leverage this information, and provides better contrast and

crisp boundaries for thresholding (a performance boost of up to 10%).

8 Conclusions

We present a new framework for the cosegmentation problem based on the Random

Walker segmentation approach. While almost all other cosegmentation methods view

the problem in the MRF (graph-cuts) setting, our algorithm translates many of the

advantages of Random Walker to the task of simultaneously segmenting common fore-

grounds from related images. Significantly, our formulation completely eliminates a

practical limitation in current (nonparametric model based) Cosegmentation methods

that requires the overall image histogram to be approximately flat (in order to restrict

the number of auxiliary nodes added). Our model extends nicely to the multi-image

setting using a penalty with statistical justification. A further extension allows model-

based segmentation which is independent of the relative scales of the model and target
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Figure 15: Columns (1–2): Input images; Columns (3–4) segmentation potentials from inde-

pendent random walker runs on the two images; Columns (5–6) Segmentation potentials from

Random Walker based cosegmentation. Note that the object boundaries have become signifi-

cantly more pronounced because of the histogram constraint.

Figure 16: Segmentation using correspondences from optical flow on video sequence from

[28]. Shows outline of segmented foreground in red, with foreground and background indica-

tions. Our algorithm achieves 99.3% accuracy.

foregrounds. We discuss its optimization specific properties, give a state of the art GPU

based library, and show quantitative and qualitative performance of the method.
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