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Abstract— We quantify the effectiveness of random walks for
searching and construction of unstructured peer-to-peer (P2P)
networks. We have identified two cases where the use of random
walks for searching achieves better results than flooding: a) when
the overlay topology is clustered, and b) when a client re-issues
the same query while its horizon does not change much. For
construction, we argue that an expander can be maintained
dynamically with constant operations per addition. The key
technical ingredient of our approach is a deep result of stochastic
processes indicating that samples taken from consecutive steps
of a random walk can achieve statistical properties similar to
independent sampling (if the second eigenvalue of the transition
matrix is bounded away from 1, which translates to good
expansion of the network; such connectivity is desired, and
believed to hold, in every reasonable network and network
model). This property has been previously used in complexity
theory for construction of pseudorandom number generators.
We reveal another facet of this theory and translate savings in
random bits to savings in processing overhead.

Keywords: Peer-to-Peer networks, Statistics, Random Walks,
Graph Theory.

I. INTRODUCTION

The simulation of a random walk, or more generally a Markov
chain, is a fundamental algorithmic paradigm with highly so-
phisticated and profound impact in algorithms and complexity
theory. Furthermore, it has found a wide range of applications
in such diverse fields as statistics, physics, artificial intel-
ligence, vision, population dynamics, bioinformatics, among
others.

Recently, random walks have been proposed as primary
algorithmic ingredients in protocols addressing searching and
topology maintenance of unstructured P2P networks. In par-
ticular:

(a) Following extensive experimentation, Lv et al. report
that searching by simulating random walks is preferable to
the standard practice of searching by flooding [1]. They
attribute the suitability of random walks to their adaptivity
in termination conditions and hence granularity in coverage
of the search space (in flooding, increasing the TTL by 1 may
increase the space coverage exponentially).

(b) Law and Siu give a distributed algorithm for constructing
and maintaining unstructured topologies with very strong
connectivity properties, namely constant degree and constant
expansion, with O(log n) overhead per addition of a peer,
where n is the number of peers [2]. At a very high level,
when a new peer arrives, their protocol would ideally attach the
new node to existing peers chosen uniformly at random. They

approximate such uniform sampling by simulating O(log n)
steps of a random walk.

What are the analytic reasons of the success of the random
walk method? Can we isolate one or two comprehensible
analytic primitives that explain the power of the method? Most
important, can we translate these primitives to heuristics, or
rules of thumb, for the use of the method in P2P network
applications?

Independent sampling from the uniform distribution is a
primodal statistical, and hence algorithmic primitive. However,
it is infeasible to implement in many populations of complex
systems, such as the set of nodes of a P2P network. The
difficulty arises from the fact that this set is not centrally
maintained and it is also quite dynamic. In this paper we make
the following argument: (i) The random walk method is an
excellent candidate to simulate sampling for P2P networks,
moreover, (ii) the number of simulation steps required can
be as low as the number of samples in independent uniform
sampling, which translates to constant network overhead,
independent of the size of the network.

In particular, beyond termination adaptivity and space cov-
erage granularity discussed in [1], we believe that the power of
the random walk method can be pinned down into two kinds
of analytic properties:

The first analytic property, corresponding to (i), is as fol-
lows. Consider a population whose members can be connected
by links forming a connected graph. Perform a random walk
starting at any state and simulate the random walk for τ steps,
Use the state of the random walk at state τ as a sample point.
This simulates sampling with arbitrary accuracy, for τ bounded
by well defined parameters of the graph. The above is rather
intuitive, since we expect that graphs without any “bad” or
“bottleneck” cuts will make the walk to “loose memory” and
hence reach a random state quite fast. In particular, for a wide
range of applications, it is possible to construct sparse graphs
so that τ =O(log n). Such fast convergence rates translate to
practically efficient simulation of uniform sampling.

The second analytic property, related to (ii), is substantially
more profound and rather counter-intuitive. It states that start-
ing the random walk at a random state, simulating the walk
for k steps, and using each visited node as a sample point,
we may achieve same statistical properties as k independent
uniform samples. The reason why this is counter-intuitive is
because of the obvious huge dependencies between successive
steps of a random walk.
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In this paper we focus on two central issues of P2P net-
works, namely searching and overlay topology construction.
For both problems we have isolated scenaria where indepen-
dent uniform sampling would have been a good algorithmic
primitive. We use k successive states visited during the sim-
ulation of a random walk on the P2P network in the place
of k independent samples. We compare the performance of
sampling by random walk to the performance of the previouly
known methods for search and construction. Our results and
conclusions are:

(a) For searching relatively popular items, we found, ex-
perimentally, that random walk performs better than flooding,
for the same number of network messages, in two cases:
(i) When peers in the topology form clusters so that the whole
topology is arranged in two tiers, the lower representing peer
clustering and the higher connecting representatives from each
cluster (e.g. super-nodes) to ensure good global connectivity.
(ii) When the same search request is re-issued repeatedly, in
hopes of finding new peers, while the entire topology has not
changed dramatically (less than 40%). We believe that both
scenaria are realistic. However, to the best of our knowledge,
they have not been considered in previous studies.

We believe that our results in the context of searching are
intuitive. Our primary contribution was to formalize set-ups of
practical interest and translate our analytic intuition in these
set-ups.

(b) For constructing and maintaining a P2P topology with
good connectivity properties, we turned to the approach of [2].
As mentioned before, when a new peer arrives, they find a
few nearly uniformly random existing peers to connect the
new peer by simulating O(log n) steps of a random walk. This
causes O(log n) network overhead per newly arriving peer. We
introduce a daemon construction and connect a newly arriving
peer with constant network overhead. Our construction is
based on the second analytic property, described earlier in
this section. In fact, there are strong dependencies between
the edges of peers that arrive closely in time. We give analytic
evidence that these local dependencies do not affect the global
connectivity properties of the network, up to constant factors.
We also give strong experimental evidence that our daemon
construction simulates the algorithm of [2] (and other related
constructions) (i) with overhead a very small constant per
arriving peer, (ii) for networks up to 5M nodes (which is
the current believed size of Kazaa; larger experiments were
stressing the memory limits of our machines), and (iii) with
truly negligible penalty in the quality of the connectivity of
the overall topology.

We believe that our results in the context of P2P network
construction are particularly surprising. From a practical point
of view, they indicate that minimal amount of correctly used
randomization suffices to keep a dynamic network well con-
nected. From a theoretical point of view, we believe that our
results lead to an exciting new problem and paradigm in the
study of the power and necessity of randomness. All of our
algorithms in the context of construction were inspired by the
second analytic property of random walks.

The isolation of the second property has been one of the
most celebrated results in complexity theory [3]–[6]. In com-
plexity theory this property has been used as follows. Consider
a randomized algorithm that uses n random bits and has
probability of success 1/2. By simulating the algorithm k times
we may decrease the failure probability to 1/2k. This needs
kn random bits. Now think of the nodes of a graph labeled by
all 2n n-bit strings that can be used to simulate a randomized
algorithm. Consider a constant degree “expander” graph H
imposed on these 2n nodes (there are known deterministic
constructions of such expander graphs [7] [7]. Start from a
uniformly random point of H and simulate a random walk
on H for k steps. This requires O(n) random bits to pick the
initial point, and O(k) bits to perform the walk. Then simulate
the randomized algorithm on the k n-bit strings visited by
the random walk. The failure probability is O(1/2k), and
yet we used only O(n + k) random bits to perform the
experiment! This idea is the basis of several pseudorandom
number generators with provably good performance. In some
sense, our work can be viewed as translating a complexity
result, mostly known in the context of savings in random
bits, into savings in overhead and improved performance in
a practical networking context.

The balance of the paper is as follows: In Section II, we
give the supporting theory, comparing coupon collection and
Chernoff bounds to the corresponding statements for random
walks. All the technical parts of this section are known; their
synthesis and relevance in the context of networking is new.
In Section III, we use random walks to perform searching in
P2P networks and compare this approach to searching using
flooding and uniform sampling. Note that flooding corresponds
to breath first search, whose statistics are not as well quantified
as those of random walks. In Section IV, we describe two
algorithms for distributed construction of P2P topologies with
good expansion properties. We stress that our experiments in
Sections III and IV are on the size of current P2P networks.
Many implementational and other details are suppressed to
emphasize clearly the new ideas and for lack of space. We
conclude in Section V.

II. STATISTICAL ESTIMATION AND RANDOM WALKS

In this section we focus on the statistical properties of sam-
pling performed (a) by ideal independent draws, and (b) by
simulating a random walk. In the case of independent sampling
we are interested in the number of samples sufficient to achieve
a certain statistical property. In the case of random walks we
are interested in the number of simulation steps sufficient to
achieve the same statistical property.

For comparison, we consider two common abstractions,
namely the coupon collection problem and Chernoff bounds
for independent Bernoulli trials; these abstractions refer to
sampling by independent draws. For sampling by random walk
simulation, we consider the cover time which is the suitable
analogy to coupon collection, and the trajectory sample av-
erage which is the suitable analogy to independent Bernoulli
trials.
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We observe that, for both abstractions, the overhead of the
random walk simulation method is determined only by the
second eigenvalue of the probability transition matrix of the
random walk. In particular, when the second eigenvalue is
constant (independent of the size of the graph) the random
walk method achieves the same statistical characteristics as
independent sampling, up to O() notation.

The reason why the second eigenvalue provides such clean
characterizations is that it is intimately related to global
connectivity properties of the graph, namely expansion and
conductance. Intuitively, expansion and conductance express
the worst-case cuts of the graph, and it is natural to expect
that when the graph does not have bad cuts a random walks
approaches its stationary distribution very fast, and hence
sampling by random walk mimics independent sampling well.

A. Coupon Collection and Chernoff Bounds

The coupon collection problem is the following: Suppose that
there are n distinct types of coupons. At each step, we draw a
coupon whose type is uniformly distributed among all n types.
Let Tn be the time by which we have encountered coupons
belonging to all n distinct types. It is well known [8] that

E[Tn] = 1 +
n

n − 1
+

n

n − 2
+ . . . + n = O(n log n) . (1)

Let δ be a constant, 0<δ <1. Let Tδn be the time by which
we have encountered coupons belonging to δn distinct types.
It is also well known that

E[Tδn] = 1+
n

n − 1
+ . . .+

n

n − δn + 1
=

1
1 − δ

O(n) . (2)

We proceed with an outline of Chernoff bounds [9]. Let
X1, . . . , Xk be independent Bernoulli trials with Pr[Xi =1]=
p and Pr[Xi =0]=1−p, 0≤p ≤1, 1≤ i≤k. Let X =

∑k
i=1 Xi,

hence E[X] = kp. In a searching context, where p denotes
the probability that a randomly drawn object has a desired
property, we are interested in the probability that the property
is found in substantially fewer draws than its frequency in the
search space. This corresponds to the event X≤(1−ε)kp, for
0<ε<1. For this event, Chernoff bounds are

Pr[X ≤ (1−ε)kp] ≤ e−
εkp
2 . (3)

In a measurement context, where p denotes the fraction of
objects satisfying a certain property, we are interested in the
quality of the estimator X/k for p. Now, for 0 < ε < 0.9,
Chernoff bounds are:

Pr
[
|X
k

− p| ≥ εp

]
≤ 2e−

ε2kp
20 . (4)

B. Random Walks, Convergence, Cover Time and Trajectory
Sample Average

Let G(V,E) be an undirected connected graph, |V | = n.
Let di denote the degree of vertex i, 1 ≤ i ≤ n. Let dmin =
min1≤i≤n{di}. Let A = {aij}, 1≤ i, j ≤n, be the adjacency
matrix of G. Let P be the transition matrix of the random walk
on G, where a particle that is on vertex i at time t, moves to a
neighbor of i at time t+1, chosen uniformly at random among

all neighbors of i. It is well known and easy to verify that the
above random walk has a unique stationary distribution �π, in
the sense that �πP = �π, with πi = di/2|E|, 1≤ i≤ n, and let
πmin =dmin/2|E|.

Let f be a 0-1 function on V , f : V
f−→ {0, 1}. Let p be

the probability mass of vertices that take the value 1 under f
under the stationary distribution �π, which is the same as the
mean of f under �π:

p =
∑

v∈V :f(v)=1

πv =
∑
v∈V

f(v)πv . (5)

Of particular interest are the following three metrics:
(a) Convergence rate, which is the rate with which the random
walk approaches the stationary distribution. (b) Cover time,
which is the time when the random walk has visited all vertices
at least once. This is analogous to the coupon collection
abstraction, and we wish to have bounds comparable to (1)
and (2). (c) Trajectory sample average, which is the rate with
which the value of f , averaged over successive vertices of a
trajectory of the random walk, approaches p. This is analogous
to the Chernoff bound abstraction, and we wish to have bounds
comparable to (4). In the next paragraph we point out bounds
for all the above metrics in terms of the second eigenvalue of
P .

C. Bounds in terms of the Second Eigenvalue

In general, a vector �x is an eigenvector of P with eigenvalue
λ if and only if �xP = λ�x. Thus, �π is an eigenvector of
P with eigenvalue 1. It is well known that P has n real
eigenvectors with corresponding eigenvalues 1 = λ1 > λ2 ≥
. . .≥λn ≥ −1 [10] [11]; the strict separation of the first and
second eigenvalues follows from the connectivity of G. The
first eigenvalue λ1 = 1 which corresponds to eigenvector �π
characterizes stationarity. We may also assume that |λ2| >
|λn| (large negative eigenvalues concern strong periodicities,
like bipartiteness, which we may exclude for the purposes of
this paper).

Consider a random walk on G according to the transition
matrix P , starting from an arbitrary vertex, or an arbitrary
distribution on V . Let yt be the vertex that the random walk
visits at time t, 1≤ t≤∞. To bound the convergence rate of
the random walk we focus on the so-called variation distance
which, at time t, is ∆(t)=maxS⊂V |Pr[yt ∈ S]−�π(S)|. The
following is known [12]:

∆(t) ≤ π−1
minλt

2.

Let Cn be the time by which the above random walk visits
all the vertices of G. [13] [14] show:

E[Cn] ≤ O
(
π−1

min log n/(1 − λ2)
)

= O (n log n/(1 − λ2)) , for πmin =Ω( 1
n ).

(6)
Compare (6) to (1) and realize that, for constant λ2, they both
solve coupon collection in the same order of magnitude.

Let Cδn be the time by which the random walk visits δn
distinct vertices of G, for some constant δ, 0 < α < 1. It is
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straightforward to derive from [13] [14] (and is folklore among
probabilists) that

E[Cδn] ≤ 1
1−δ O

(
π−1

min/(1 − λ2)
)

= 1
1−δ O (n/(1 − λ2)) , for πmin =Ω( 1

n ).
(7)

Compare (7) to (2) and realize that, for constant λ2, they both
solve partial coupon collection in the same order of magnitude.

Recall that yt denotes the vertex that the random walk visits
at time t. Let Yt =f(yt). Suppose that we simulate the random
walk for

τ =
log π−1

min

1 − λ2
≥ log π−1

min

log λ−1
2

(8)

steps. Very roughly, this guarantees good approach to sta-
tionarity according to the bound on ∆t. Then use the next
k steps as sample points. We thus let Y =

∑τ+k
t=τ+1 Yt. The

particularly strong result is that, using Y/k as an estimator for
p, is of the same quality as Chernoff bounds. Thus, despite
the local dependencies introduced by consecutive steps of the
random walk, the overall distribution of the vertices visited by
the random walk is well spread across the sample space. In
particular, (9) below is to be compared to (4):

Pr[|Y
k

− p| ≥ εp] ≤ 8e−
ε2kp2(1−λ2)

20 . (9)

The above result was obtained (in increasingly stronger forms
and referring to pseudorandom number simulation) in a se-
quence of celebrated complexity theory papers [3]–[6]. The
version that we give above is from [6].

D. Second Eigenvalue, Expansion and Conductance

For S ⊆ V , define the cutset of S, C(S), as the set of edges
with one endpoint in S and the other endpoint is S̄. Define
the volume of S as the sum of the degrees of vertices in S:
vol(S) =

∑
v∈S dv . The expansion, φ, and the conductance,

Φ, of G are:

φ = min
S ⊂ V

|S| ≤ |V |/2

|C(S)|
|S| , Φ = min

S ⊂ V
vol(S) ≤
vol(V )/2

|C(S)|
vol(S)

.

(10)
In addition, the following bound is known [12]:

1 − 2Φ ≤ λ2 ≤ 1 − Φ2

2
. (11)

Finally, realize that in graphs where we have bounds on the
minimum and maximum degrees, both expansion, conductance
and eigenvalues are easily related. In particular, in a family of
regular graphs, if any of these metrics is a constant then all
of them are constants.

In summary, for families of graphs where λ2 is constant,
consecutive states of random walks are excellent candidates
to approximate independent uniform sampling. Since, λ2

constant is equivalent to expansion φ constant, and constant
expansion is equivalent to good global connectivity, it is
reasonable to try the random walk approach in communication

networks. Good global connectivity is desired and believed to
hold in all reasonable networks and network models [15]–
[20].

III. SEARCHING

In this section we study the performance of searching using
flooding and random walks, and compare the two methods
to each other and to a baseline case of independent uniform
sampling. We measure the performance in terms of the average
number of distinct copies of an item located in the search,
the probability of not finding any copy of the item, and the
number of messages that the searching algorithm uses. We
show experimentally that searching by random walks is better
than flooding, if at least one of the following conditions holds:

• The user issues multiple search requests for the same
item and between two consecutive requests the topology
changes relatively slowly (in the sense that two consec-
utive snapshots of the topology are highly correlated).

• There is peer clustering. That is, there are communities
in the topology, with dense connectivity between peers
in the same community and sparse connectivity between
peers of different communities.

We believe that the two scenarios introduced above are
important for the following reasons:

In practice, when a user issues a request, the user (or,
the system on behalf of the user) re-issues the same request
multiple times hoping to locate more sources. Consecutive
floodings take advantage of the changes in the topology so
as to discover more sources. If the topology however remains
mostly unchanged between consecutive requests, then the new
floodings will mostly discover sources already known. On the
other hand, for the same number of messages, the random walk
follows totally different trajectories and has better chances to
discover new sources. Note that in previous work, searching
has been always modeled as an one time process. However,
we believe that studying searching under multiple requests and
a changing topology is realistic and important.

The motivation behind studying peer clustering becomes
clear if we consider the process by which the P2P network
is formed. Each peer keeps a cache of other peers and picks
its neighbors from its cache. The cache is populated by the
addresses of peers that answered previous queries [21]. Thus,
intuitively, the cache contains addresses of peers that have
similar interests. It is therefore reasonable to expect that this
process leads to the formation of communities of users. The
exact process by which P2P networks are formed is largely
unknown and thus peer clustering is at this point only a
hypothesis. But, we believe that it is a fair hypothesis based
both on our practical experience with P2P systems, and on the
observation that most networks grown in a decentralized way
exhibit strong clustering properties. See also [22]–[25] and for
related discussion [26].

The rest of the section is organized as follows. First, we give
the methodology. Then, we discuss the most simple case of a
topology without clustering that does not change with time. In
this scenario, we find that flooding and random walk behave
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similarly. Next, we examine topologies with peer clustering.
Subsequently, we examine multiple re-issues of a request in
topologies that change with time. In the last part we discuss
power-law graphs and real topologies. Random walks behave
better than flooding in most cases of interest.

A. Methodology

In all our experiments we assume that copies of the item
to be discovered populate α% of the peers, where α is a
parameter with 0.01% ≤ α ≤ 0.1%; tnis represents items
that are not rare. Assuming that a single search reaches 10000
distinct nodes, a typical value of the horizon of a user in the
Gnutella network [21], the search will result, in expectation,
in 1 to 10 distinct copies found for the range of α’s we
have experimented with. The performance of each searching
technique is measured as the number of distinct copies located
when simulating the searching algorithm from a randomly
chosen peer of the topology. To make statistically robust
conclusions, we repeat the experiment from a set of randomly
chosen peers, typically 500 peers, and study the distribution
of the number of distinct copies located (hits).

a) Performance Metrics: A metric that summarizes the
distribution of the hits is the mean. Of equal importance,
however, is the discrepancy around the mean, and failure
probability (probability of no copies discovered). Even when
the means of random walks and flooding are the same, it
is almost always the case that the discrepancy and failure
probability of random walks are substantially better than
flooding (e.g. see Figure 2). We therefore measure Mean,
standard deviation Std, and Failure probability.

b) Cost: We measure the cost of each searching tech-
nique as the number of messages or queries performed during
the search. When comparing different algorithms, it is always
under the assumption of using the same number of messages.

c) Peer-to-peer topologies: Available topologies of cur-
rent P2P networks are limited in size and of questionable
quality due to the collection method (topologies from [27]
have only 30-40K nodes, when current P2P networks have
hundreds of thousands and perhaps millions of users). We
have therefore experimented on synthetic topologies of up
to 1 million nodes. Experimenting with extremal synthetic
topologies has the additional advantage of facilitating the
demonstration of general principles.

We have used the following models to generate synthetic
P2P topologies:

• Flat regular expanders. This is a canonical example of
regular graphs with good expansion properties. We use
expanders since expansion is desired and believed to hold
in every reasonable network and network model [2], [18],
[19]. We have used 6-regular expanders.

• Two-tier topologies with clustering. To study the effects
of peer clustering we have started by constructing a
number of isolated regular expanders that correspond to
the clusters. Then, from each cluster we pick a small
number of nodes at random and connect them using
another regular expander.

• Power-law graphs. Many important networks that arise
in a decentralized fashion are known to have power-laws
[16], [24], [28]. Some researches argue that P2P topolo-
gies may also possess heavy tails [29]. We have used the
standard model of growth with preferential connectivity
to generate power-law random graphs (this model runs in
linear time and hence can efficiently generate graphs of
very large size).

• Samples of real topologies. We have used partial views
of the Gnutella topology made available in [27]. These
topologies are limited in the number of peers (around
35K) and of questionable accuracy, since the topology
evolves during the topology discovery process, some
peers are uncooperative and for other practical reasons.
Because of their very limited size, our results are incon-
clusive.

d) Dynamic Topologies: The dynamic nature of P2P
topologies is a crucial parameter of these systems [30]. How-
ever, very few things are known about the way these topologies
evolve over time. To model the dynamic nature of the P2P
topologies we have used the following heuristic: We perform
a number of “rewirings”; for each rewiring we pick two
edges uniformly at random and exchange their end points. The
number of rewirings is a parameter that is related to the speed
by which the topology is changing. In our experiments, the
measurements are happening before and after the rewirings
and not during the process of changing the topology. The
size of the topology remains unchanged during the rewirings,
because we want to capture only the effects of changes in the
connectivity and not in the number of peers.

In our experiments we measure the speed by which the
topology is changing as the ratio of the number of links
changed by performing rewirings over the total number of
links. We have experimented with ratios in the range from
2% to 40%. The rate of change in current P2P networks is
not known and is difficult to estimate. However, from our
practical experience, we observe that consecutive searches that
happen every 10-20min do not result in differences in hosts
discovered that would have been expected if a large fraction
of the network has changed.

e) Content placement: The straightforward approach is
to pick the nodes that will host the copies uniformly at random
from the entire population. This is what we have used in our
experiments. We have also experimented with cases where the
nodes that host the item are close to each other in the topology
(content clustering). In our experiments, we have observed
that content clustering affects the performance of searching
by flooding or random walk much less than peer clustering,
or re-issuing of the same request. We therefore do not present
this case.

B. Flat Topologies with Uniformly Distributed Content

We start by examining a scenario in which the performance
of flooding and random walks is similar. See Table I. We
study the performance of issuing a request only once in a
flat regular topology of 500K peers. After simulating the
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TABLE I

PERFORMANCE OF SEARCHING IN A STATIC TOPOLOGY WITHOUT PEER

CLUSTERING.

Attribute Flooding RW Uniform
Mean 8.712 8.796 10.990
Std 3.01 2.93 3.22
Min 1 2 3
Messages 22331 22331 22331
Unique peers 17235 17431 21839

Note: 500K peers, α = 0.05%. Min is the minimum number of hits
over all searching requests. Unique peers is the number of distinct peers
discovered during the search. Observe that flooding and RW have very similar
performance, while uniform sampling is better.
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Fig. 1. Sorted number of hits when searching from 500 randomly chosen
peers. Topology of 500K peers, α = 0.05%. Observe that flooding and
random walk have very similar performance.

flooding algorithm with a time to live (TTL) of 5 and counting
the number of messages, we run the random walk algorithm
and configured it to use the same number of messages.
Observe that the mean and minimum numbers of hits, and
the standard deviation of the hits distribution of both flooding
and random walk are roughly the same, while independent
uniform sampling is better. Moreover the entire distribution of
hits, given in Figure 1, is similar for both random walk and
flooding.

We have experimented with topologies of various sizes and
for various popularities of files, with 0.01% ≤ α ≤ 0.1%, and
found that always the performance of flooding and random
walk are similar, when both are allowed to use the same
number of messages.

Observe that compared to the study of [1] we use only one
walker. The results were similar when using a larger number of
walkers assuming that the total number of messages stays the
same. The use of more walkers decreases the user-perceived
delay, which is a parameter not studied in this paper.

C. Topologies with Peer Clustering

We now examine a topology with well separated commu-
nities of peers and show that the random walk method has
better performance than flooding. The example topology is
constructed as follows. We generate five flat regular graphs
each with size 40K. From each topology we pick 1000 nodes
at random (for a total of 5K nodes) and construct another flat
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Fig. 2. Sorted number of hits in a topology with peer clustering. The
distribution of random walk is more concentrated around the mean. Topology
of 200K peers, α = 0.05%.

regular graph on the selected nodes. The final P2P network is
the union of all topologies.

The performance of each searching algorithm for different
content popularities is given in Table II. First, observe that the
average number of hits using flooding is slightly worse than
using random walks but, given the large standard deviations,
it could be argued that the differences are not statistically
significant. Even though the two schemes behave similarly
with respect to the average number of hits, they have totally
different behavior when it comes to the failure rate and the
minimum number of copies found. For α = 0.01%, flooding
failed in 28.8% of the cases and random walk in only 10.8%,
an improvement of nearly a factor of 2.

The fundamental difference between the two searching
algorithms is that the number of hits in the case of random
walks appears more concentrated around the mean (observe
also the entire distribution of hits in Figure 2). Indeed, the
standard deviation in the case of random walks is much smaller
compared to the standard deviation of flooding. Obviously, the
optimal concentration around the mean is achieved by uniform
sampling. The basic strength of random walks, following
Section II, is precisely that they resemble uniform sampling
in a quantifiable way.

D. Re-issuing the Same Query

In this section, we study the performance of flooding and
random walks in flat regular topologies under the assumption
that users issue the same query multiple times while the
topology is changing. Realize that dynamic topologies favor
only flooding, while random walks will be largely unaffected.
In fact, in the worst case where the topology is not changing,
re-issuing a query k times, by flooding, does not find new
copies. On the other hand, according to (7) and (9), increasing
the length of the random walk by a factor of k has substantial
impact.

The performance of the different algorithms for topologies
of various sizes and for various values of α is given in Ta-
ble III. Our experimental methodology is as follows: Each peer
initiates a searching request and waits for the results. Then, we
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TABLE II

PERFORMANCE OF SEARCHING IN A TOPOLOGY WITH PEER CLUSTERING.

Method α = 0.01% α = 0.05% α = 0.10%
Mean Std Min Failure Mean Std Min Failure Mean Std Min Failure

Flooding 1.754 1.91 0 28.8% 9.308 6.44 1 0.0% 18.192 11.04 5 0.0%
RW 2.124 1.38 0 10.8% 10.860 3.21 2 0.0% 21.764 4.54 10 0.0%
Uniform 2.676 1.52 0 6.6% 13.496 3.26 5 0.0% 27.274 4.87 15 0.0%

Note: Topology of five clusters for a total of 200K peers. λ2 = 0.9956.

TABLE IV

PERFORMANCE OF SEARCHING IN DYNAMIC TOPOLOGIES AS A FUNCTION

OF THE RATE OF CHANGES.

Links Flooding Random Walk
Changed Mean Std Failure Mean Std Failure

2% 0.488 0.67 60.6% 1.398 1.14 24.6%
4% 0.644 0.82 53.0% 1.382 1.11 23.6%

10% 0.888 0.86 38.0% 1.450 1.11 21.4%
20% 1.162 0.99 27.6% 1.456 1.12 20.8%
40% 1.460 1.12 20.0% 1.378 1.13 23.8%

change the topology by performing rewiring operations to 2%
of the links. Then, each peer initiates a new searching request.
We repeat the process four times, simulating consecutive
queries. In the end, we count the number of distinct items
found for each peer.

Table III indicates that random walks have better perfor-
mance compared to flooding with respect to both the average
number of hits and the probability of failure. The average
number of hits for random walks was at least three times better
compared to the same number for flooding. Also, the fail-
ure probability dropped substantially. This great performance
improvement was expected since, even though we change a
certain number of links, the overall topology remains relatively
stable and successive flooding searches do not result in many
new items found. On the other hand, prolonging the random
walk, or, successive random walks from the same peer, follow
totally different sampling paths and have better chances of
locating new copies of the requested item.

The performance of successive searches depends on the
number of topology changes that take place between the
consecutive searches. We have studied this effect and report
the results in Table IV. We observe that the performance of
flooding increases as the rate of topological changes increases.
For very fast rates of change (40% at each step in our
experiment), the performance of flooding becomes comparable
to that of random walks, since effectively the neighborhood
of each node changes almost completely between consecutive
searches. On the other hand, the performance of random walk
remains relatively unaffected by the changes in the topology.

E. Real topologies and topologies with power-law statistics

In the previous analysis we have experimented on flat
regular graphs. Similar results hold for topologies with heavy-
tailed statistics as well as real topologies. In Figure 3, we show
the distribution of hits for a topology of 500K nodes generated
with the model of growth with preferential connectivity [31],

and for a real Gnutella topology taken from [27]. Again,
observe that the distribution of hits in the case of random
walk is more concentrated around the mean compared to
flooding. Indeed, in the real topology, the mean number of
hits, the standard deviation and the failure rate were 0.514,
2.15 and 81% respectively in the case of flooding in the real
topology, and 0.538, 0.73 and 59% in the case of random walk.
Similar results apply for the graph grown with preferential
connectivity.

Observe that the very small TTL used for flooding in the
case of the real topology was due to the small size of the
topology. Increasing the TTL to 3, would have resulted in
reaching almost half of the nodes with flooding and would
have skewed the statistics. It is more realistic to expect that
searching visits only a small portion of the graph.

In conclusion, we expect that our results apply to all graphs
with good expansion property as expected from the theoretical
section. In addition, we expect that typical networks, like P2P
networks, have good expansion properties; otherwise, they
would not have scaled easily from a few tens of thousands
to a few million nodes.

IV. CONSTRUCTION

In this section we turn our attention to construction and
maintenance of well connected P2P topologies. Following the
spirit of the previous sections, as well as the work of [2], [17],
[18], [20], we translate good connectivity to good expansion,
conductance, and separation of λ2 from 1. We further translate
the fact that the construction concerns a P2P network to the
following conditions:

(i) Peers arrive and leave the network dynamically.
(ii) The algorithm must be strongly or weakly decentralized.

By strong decentralization we mean that there is no
central server. In weak decentralization there is a constant
number of central servers. However, the computational
resources of each central server are of the same order of
magnitude as those of an average peer. In other words, a
typical peer can simulate the behavior of a central server.

(iii) We wish to achieve low network overhead, in terms of
messages, per addition or deletion. In the rest of section.
we deal only with additions. Deletions can be handled as
in [2].

In paragraph IV-A we shall revisit the known randomized
algorithms for constructing sparse graphs with good expansion
properties, without being concerned about conditions (i) and
(ii). We call these baseline constructions. The schemes for
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TABLE III

PERFORMANCE OF SEARCHING IN DYNAMIC TOPOLOGIES.

A. Flooding
Size (K) α = 0.01% α = 0.05% α = 0.10% λ2

Mean Std Min Failure Mean Std Min Failure Mean Std Min Failure
100 0.488 0.67 0 60.6% 2.294 1.45 0 8.6% 4.566 2.08 0 1.4% 0.79
300 0.412 0.64 0 66.2% 2.350 1.57 0 9.4% 4.918 2.26 0 0.4% 0.79
500 0.550 0.75 0 58.6% 2.562 1.68 0 8.8% 4.992 2.27 0 0.6% 0.79

1000 0.494 0.62 0 60.0% 2.684 1.72 0 8.7% 5.032 2.31 0 0.2% 0.80
B. Random Walk

Size (K) α = 0.01% α = 0.05% α = 0.10% λ2

Mean Std Min Failure Mean Std Min Failure Mean Std Min Failure
100 1.398 1.14 0 24.6% 7.058 2.40 1 0.0% 14.076 3.30 5 0.0% 0.79
300 1.436 1.12 0 20.2% 7.396 2.62 1 0.0% 14.894 3.87 5 0.0% 0.79
500 1.562 1.19 0 19.8% 7.634 2.78 1 0.0% 15.152 3.88 7 0.0% 0.79

1000 1.518 1.20 0 22.4% 7.544 2.71 1 0.0% 14.982 3.91 4 0.0% 0.80
C. Uniform Sampling

Size (K) α = 0.01% α = 0.05% α = 0.10% λ2

Mean Std Min Failure Mean Std Min Failure Mean Std Min Failure
100 1.734 1.18 0 13.8% 8.634 2.83 1 0.0% 17.210 3.75 7 0.0% 0.79
300 1.864 1.23 0 12.6% 9.212 2.90 1 0.0% 18.496 4.07 9 0.0% 0.79
500 1.872 1.38 0 15.2% 9.486 2.98 2 0.0% 18.924 4.21 10 0.0% 0.79

1000 1.876 1.34 0 14.2% 9.482 3.14 0 0.2% 18.850 4.34 8 0.0% 0.80

constructing expander graphs under conditions (i) and (ii)
explicitly simulate a baseline construction.

All known baseline algorithms construct an expander essen-
tially by choosing the edges incident to a vertex uniformly at
random, and independently for each vertex. This facilitates the
probabilistic arguments that are subsequently used to establish
expansion. We review the baseline probabilistic argument in
Theorem 4.1.

Thus, when constructing an expander on n vertices, a
baseline construction uses O(log n) random bits per edge. In
a distributed setting, when vertices arrive dynamically and a
new vertex needs to extend an edge to an existing vertex, one
may use O(log n) steps of a random walk on the existing
graph to find a random existing vertex, thus simulating the
baseline construction with O(log n) message overhead on the
network. This is the approach of [2]. (Pandurangan et al. use
the fact that deletions happen in a random way, and they use
the “randomness” of deletions to connect new vertices [17]).

In paragraph IV-B, Theorem 4.2, we show, analytically, that
a certain baseline construction achieves non-trivial expansion
properties using constant number of random bits per new
edge. When translated to overhead in network resources,
this gives a heuristic to construct an expander with constant
message overhead per new vertex. In particular, instead of
taking O(log n) steps of a random walk per newly arriving
vertex, we do the following. We keep a constant number of
daemons which continuously simulate a random walk on the
existing network and use the vertices visited by the daemons
every c steps as sample points, where c is a constant. We
stress that we do not wait O(log n) steps until the daemon
randomizes. In paragraph IV-C we report that, in experiment,
the method achieves constant separation of λ2 from 1 for c
as small as 1 (sampling consecutive vertices visited by the
daemons). The eigenvalue gap depends on c and on the average
degree of the constructed graph, but does not depend on the

size of the constructed graph, for n as large as 5M vertices.
Note that the current size of Kazaa is thought to be 2M to
4M. (Performing experiments for more than 5M vertices was
stressing the memory limitations of our machines.)

A. Baseline Construction of Expander Graphs

ABASE is the following construction: On input n, the number
of vertices, and d, the degree of every vertex, each vertex,
independently, picks d vertices independently and uniformly
at random among the set of all vertices, and connects with an
(undirected) edge to each one of these vertices. Thus the total
number of edges is nd and the expected degree of a vertex is
2d. (It can be easily seen, using (4), that all vertices will have
degree at most O(log n), almost surely.)

When we insist on all vertices having the same degree, then
we simulate ABASE by picking random perfect matchings, or
random Hamilton cycles. In particular, AM is the following
construction: Pick d perfect matchings on n vertices indepen-
dently and uniformly at random among all perfect matchings
(assume w.l.o.g. that n is even), and consider the union of these
perfect matchings. Finally, AH is the following construction:
Pick d Hamilton cycles on n vertices independently and
uniformly at random among all Hamilton cycles, and consider
the union of these Hamilton cycles.

Theorem 4.1 (Folklore.): Let G(V,E) be the graph con-
structed by ABASE. G(V,E) is an expander, with high prob-
ability. In particular, there is a positive constant α < 1 such
that

Pr[ min
S⊂V,|S|≤|V |/2

|C(S)|
|S| ≥ α] ≥ 1 − o(1) . (12)

Proof: For a positive constant α, we say that a set of
vertices S with |S| ≤ |V |/2 is Bad if and only if |C(S)| ≤
α|S|. We will show that there exists a positive constant α such
that

Pr[∃ BadS] ≤ o(1) . (13)
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A. Growth with preferential connectivity model with 500K
nodes. (TTL=4)
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B. Sample from the Gnutella network with 36K nodes.
(TTL=2)
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Fig. 3. Performance of searching in A) a network with heavy-tailed statistics,
and B) in a real topology. The small TTL in the real topology is due to the
fact that using a larger TTL would have resulted in reaching with flooding
almost half of the nodes, which is unrealistic.

The left hand side of (13) is

n/2∑
k=1

Pr[∃ BadS, |S| = k] . (14)

Let us fix k in the above range. There are at most
(
n
k

)
sets of

vertices of cardinality k. We hence need to bound

n/2∑
k=1

(
n

k

)
Pr[a fixed set S, |S| = k, is Bad] . (15)

We may now assume that the set S is fixed. Let B⊂S be the
set of vertices in S that chose to connect to vertices in S̄. In
order for S to be Bad, the cardinality |B| must be at most αk.
For each cardinality in the range 0 to αk, there are at most(

k
αk

)
possibilities for |S| , and at most αk possibilities for the

cardinality of B. We may now assume that the set B is also
fixed. Finally, for fixed S and B, the probability that an edge
picked by a vertex in S \ B connects to a vertex in S is at
most k/n, and there are d(k−αk) such edges. We may now
write

Pr[fixed S, |S|=k, is Bad] ≤ αk

(
k

αk

)(
k

n

)dk(1−α)

.

(16)

Combining ( 14), (15) and (16), (13) gives:

Pr[∃ BadS]
≤ ∑n/2

k=1 Pr[∃ BadS, |S| = k]
≤ ∑n/2

k=1

(
n
k

)
αk

(
k

αk

) (
k
n

)dk(1−α)

using
(

n
k

)k ≤ (
n
k

) ≤ (
en
k

)k

≤ ∑n/2
k=1

(
en
k

)k
αk

(
ek
αk

)αk (
k
n

)dk(1−α)

≤ ∑n/2
k=1 e′k

(
k
n

)k(d(1−α)−1)

(17)

where e′ = e′(α) is a constant. Now the last line of (17) is
bounded by o(1) if every term is bounded by o(n−1), which
is true for any d≥2(1−α)−1, since α<1.

B. Baseline Construction of Expanders with Constant Over-
head in Random Bits

Procedure ABASE assumes that when a vertex chooses d other
vertices to attach, these choices are independent and uniformly
distributed in the integers 1 to n. Now consider the following
pseudorandom number generator: A constant degree expander
graph H, with second eigenvalue µ2, is imposed over a set of
n points labeled with the numbers 1 to n. We start a random
walk on H from a point chosen uniformly at random, and,
whenever the algorithm ABASE needs a random point, we feed
it with the current point of the random walk on H. We call this
algorithm A′

BASE. Realize that the random choices of A′
BASE

are highly correlated, since they resulted from consecutive
vertices visited by the random walk on H. Nevertheless, we are
able to establish a non-trivial expansion property for ABASE,
which essentially describes constant expansion of relatively
large subsets of vertices. Our proof follows by the same
probabilistic argument as Theorem 4.1, except we use (9)
to bound the probability of correlated bad events:

Theorem 4.2: Let G(V,E) be a graph constructed by
A′

BASE. There are positive constants α and β, 0 < β < .5,
such that any subset S of at least β|V | and at most |V |/2
vertices has cutset expansion α, almost surely. In particular,

Pr[ min
S⊂V,β|V |≥|S|≤n/2

|C(S)|
|S| ≥ α] ≥ 1 − o(1) . (18)

Proof: The reasoning is identical to the proof of The-
orem 4.1, up to (16). At this point we use (9): What is the
probability that dk(1−α) subsequent points of the random
walk on H corresponded to ending up inside S, while the
probability of falling outside S is at least (n−k)/n≥ 1/2 ?
We apply (9) with ε=1 and p = 1/2 and get

Pr[fixed S, |S|=k, is Bad] ≤ αk

(
k

αk

)
8e−

dk(1−α)
80 (1−µ2) .

(19)
Now the final calculations become

Pr[∃ BadS]
≤ ∑n/2

k=βn

(
n
k

)
αk

(
k

αk

)
8e−

dk(1−α)
80 (1−µ2)

≤ ∑n/2
k=βn

(
en
k

)k
αk

(
ek
αk

)αk
8e−

dk(1−α)
80 (1−µ2)

≤ ∑n/2
k=βn e−′ke

dk(1−α)
80 (1−µ2)

(20)

where e′ = e′(α, β) is a constant, and the last line of (20)
is bounded by o(1) for some constant d= d(α, β). Note that
k ≥ βn is crucial to bound (n/k)k by ek.
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TABLE V

λ2 OF A′
H AS A FUNCTION OF SIZE AND NUMBER OF RANDOM WALK

STEPS.

Size Random c = log2 n c=5 c=3 c=1 c=0
(K)
10 0.7455 0.7445 0.7452 0.7506 0.7906 0.9999
50 0.7453 0.7457 0.7459 0.7508 0.7924 0.9999
100 0.7452 0.7453 0.7460 0.7504 0.7938 0.9999
500 0.7453 0.7453 0.7463 0.7504 0.7944 0.9999
1000 0.7453 0.7452 0.7462 0.7503 0.7956 0.9999
5000 0.7453 0.7454 0.7462 0.7504 0.8023 0.9999

C. Distributed Construction of Expanders with Constant
Overhead on Network Resources

In this paragraph, we study how the concept of Paragraph IV-
B can be used to speed up the approach of [2]. We examine
two algorithms.

1) A′
H: This is an extension of the scheme proposed in

[2]. The authors propose a scheme to implement the AH
construction in a distributed, decentralized environment. To
ensure random placement of each arriving node in each of
the d cycles, they propose techniques to estimate the size of
the network n and then perform d random walks of length
O (log n), thus their overhead is O(log n).

Instead, we keep d daemons, one for each Hamilton cycle.
These daemons move freely in the topology. When a new
node arrives, it contacts the daemon associated with the i-
th Hamilton cycle, for 1 ≤ i ≤ d, and inserts itself between
the peer that currently hosts daemon i and one of its two
neighbors in cycle i. We require that the daemons perform
c number of steps before allowing a new peer to join the
topology. Observe that in [2] c is O(log n). In fact, when c
is O(log n), the daemons can be allowed to start from any
node of the topology, and this makes the algorithm of [2]
fully decentralized.

We measure the quality of the constructed topology by the
second eigenvalue of the corresponding transition matrix. See
Table V and Figure 4. It is obvious that λ2 remains constant
as the topology scaled from 10K to 5M nodes. On the other
hand, λ2 depended on c. However, notice that for c = 1, λ2

is larger only by 0.05 compared to c = log n. (As a sanity
test, when c is 0, that is without randomization, there is no
expansion.) λ2 also depends on d. In Table V we give the case
of d = 3 corresponding to degree 6. The trends are identical
for larger values of d.

2) A′
M: The existence of Hamilton cycles in AH and A′

H is
a good property since it guarantees connectivity. Maintaining
Hamilton cycles however is difficult. In this paragraph, we
consider a distributed implementation of the AM algorithm
which does not require the existence of a special structure in
the topology and thus is easier to implement. On the other
hand, the price paid is an increased second eigenvalue. Also,
the second eigenvalue does not remain relatively constant with
the size of the network, but it increases slightly as we increase
the number of peers.

Our algorithm works as follows. Again, we maintain d
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Fig. 4. The connectivity matrix of a topology constructed using A′
H for

c = 1. The strong dependencies are reflected in the concentration along the
diagonal. However, there are many points away from the diagonal and the
picture appears random.

TABLE VI

λ2 OF A′
M AS A FUNCTION OF SIZE, DEGREE d AND NUMBER OF RANDOM

WALK STEPS c.

Size d=4 d=4 d=4 d=4 d=6 d=6 d=6
(K) c=1 c=2 c=5 c=10 c=1 c=5 c=10
1 0.9754 0.8982 0.8711 0.8600 0.7782 0.7385 0.7392
10 0.9893 0.9131 0.8732 0.8654 0.7854 0.7468 0.7443
50 0.9939 0.9144 0.8777 0.8670 0.8015 0.7471 0.7450

100 0.9929 0.9312 0.8925 0.8673 0.8273 0.7470 0.7456
500 0.9969 0.9482 0.8833 0.8679 0.8332 0.7472 0.7454
1000 0.9995 0.9421 0.8861 0.8679 0.8287 0.7476 0.7455
5000 0.9996 0.9504 0.8846 0.8677 0.8348 0.7473 0.7454

daemons. We model the arrival of a new node, as the arrival
of two nodes X and Y , each with degree d. Upon the arrival,
X and Y contact the central server to discover the location of
the d daemons. Assume that daemon i is located at node A,
and that the i-th neighbor of A is B. The connection between
A and B is teared down and the new i-th neighbor of A is X
and the new i-th neighbor of B is Y . Between each arrival,
the daemons move c steps.

The performance of the topology constructed by our al-
gorithm, measured in terms of λ2, for various sizes of the
topology, values of d, and c are given in Table VI. Observe
that the second eigenvalue in this construction is a function of
the degree, the number of steps and the size of the topology.
However, for degree 6 and for c = 1, the second eigenvalue for
5M nodes is 0.8348 which is comparable to the corresponding
entrance value in Table V, which is 0.8023. The interpretation
is that for current sizes of the network and for degree at least
6, both methods achieve equally good results.

V. SUMMARY

In this paper we focus on the power and efficiency of sampling
using random walks in peer-to-peer networks. We provide
theoretical justification in support of random walks as a
primitive operation for P2P networks.
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We argue that, in the context of searching, random walks are
superior to flooding in two cases of practical interest. Related
work was previously done in [1].

For construction of dynamic P2P topologies, we use random
walks to add new peers with constant overhead. This improves
the algorithm of [2]. The construction of [2] is strongly decen-
tralized; however, our construction is weakly decentralized. It
is an open question how to design a strongly decentralized
construction with constant overhead. Both of these algorithms
handle deletions much less effectively than additions. Handling
deletions efficiently is an interesting open question.

In practice the performance of searching and constructing
methods depends on parameters not studied in this work; some
of them are discussed in [30]. It is interesting further work to
study the effect of these parameters on random walks. We have
also suppressed many implementational details. In practice, we
expect adaptations of the random walk methods and in general
a hybrid between random walks and other methods.

Theorem 4.2 shows constant expansion of large sets. We
can also show expansion Ω(1/ log n) for all sets, large and
small. We believe that constant expansion holds for all sets.
Obtaining a proof is an open problem.

Theorems 4.1 and 4.2 concern the so-called base-line con-
structions, where the random choices are obtained by a random
or a pseudo-random number generator. Of particular interest
are the real constructions A′

H and A′
M of Section IV-C, where

the random choices are generated by the growing network
itself. It would be very interesting to prove expansion for these
constructions.
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