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Random Walks, Markov Processes and the
Multiscale Modular Organization of Complex

Networks
Renaud Lambiotte, Jean-Charles Delvenne and Mauricio Barahona

Abstract—Most methods proposed to uncover communities in complex networks rely on combinatorial graph properties. Usually

an edge-counting quality function, such as modularity, is optimized over all partitions of the graph compared against a null random

graph model. Here we introduce a systematic dynamical framework to design and analyze a wide variety of quality functions for

community detection. The quality of a partition is measured by its Markov Stability, a time-parametrized function defined in terms of

the statistical properties of a Markov process taking place on the graph. The Markov process provides a dynamical sweeping across

all scales in the graph, and the time scale is an intrinsic parameter that uncovers communities at different resolutions. This dynamic-

based community detection leads to a compound optimization, which favours communities of comparable centrality (as defined by

the stationary distribution), and provides a unifying framework for spectral algorithms, as well as different heuristics for community

detection, including versions of modularity and Potts model. Our dynamic framework creates a systematic link between different

stochastic dynamics and their corresponding notions of optimal communities under distinct (node and edge) centralities. We show

that the Markov Stability can be computed efficiently to find multi-scale community structure in large networks.

✦

1 INTRODUCTION

H OW the structure of a network affects the dynamics

(e.g., diffusion or synchronization) that takes place on

it has been studied extensively in recent years [1], [2], [3].

This relationship is particularly relevant when the network

is composed of tightly-knit modules or communities [4], [5],

[6], [7], [8], [9], which can lead, for instance, to partially

coherent dynamics [10], [11], or to the emergence of co-

operation [12] and coexistence of heterogeneous ideas in a

social network [13]. Conversely, it has been proposed that dy-

namical processes such as random walks [14], [15], [16], [17]

and synchronization [10] could be used as empirical means

to extract information about the network and, specifically, to

uncover its community structure.

Recently, there has been extensive research on the detection

of communities and hierarchies in real world systems, ranging

from social systems to technological and bio-chemical systems

(for a review see [6]). Most of these studies follow from the

classical problem of graph partitioning and are thus based on

structural properties of graphs [6], [7]. In order to discover

communities, such methods usually proceed by optimizing a

quantity that captures what is thought to be the goodness of a

partition in terms of combinatorial properties of the graph. A

variety of such quality functions (and associated optimization
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strategies) have been proposed, including different versions of

balanced and normalized cuts, as well as modularity and its

extensions [6], [7]. In general, these combinatorial definitions

operate by counting the number of links within and between

the communities, and are thus blind to the flows of information

taking place on the network.

In contrast, we adopt here a dynamical viewpoint for the

analysis of community structure in graphs. Specifically, we

use statistical properties of a random walk (or its associated

Markov processes) evolving on a given network to quantify

the quality of partitions across all time scales. Consider, for

instance, the simple random walk, where a random walker

jumps at every step from the node where it sits to one of its

immediate neighbours with a probability proportional to the

weight of the link joining the nodes. We define the Markov

Stability [14], [18], [19], [20] of a partition of the graph

at time t as the probability of a walker to be in the same

community at time zero and at time t when the system is at

stationarity, discounting the expected probability as t → ∞.

For an ergodic and mixing random walk (i.e., on an aperiodic,

strongly connected graph), this limiting probability is the

probability of two independent walkers to be in the same

community. The Markov Stability so defined measures the

quality of a partition in terms of the persistence of the Markov

dynamics within the communities of the partition within the

time scale t, i.e., the Markov Stability is large when it is

unlikely that a random walker will escape the communities

within time t. Alternatively, the Markov stability can also be

understood as the time auto-correlation of a coarse-grained

signal. Hence, a large Markov Stability is equivalent to a non-

asymptotic time scale separation [21], [22] within the diffusion

dynamics, where the fast dynamics mixes the probability flow

inside the communities and the slow dynamics describes the

transfer of probability between the communities. It can be
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shown that the Markov Stability so defined, which we will

make more explicit below, is monotonically decreasing for

most partitions on most graphs [14].

The dynamics-based Markov Stability framework for com-

munity detection introduced in [14], [18], [19] has mathe-

matical connections with the wider literature relating random

walks on graphs and graph properties and allows us to link

those results with applications in community detection. A

strong initial motivation for our work was the theory of quasi-

stationary distributions in Markov chains [23], [24], and the

theory of quasi-stable (long-lived) states in the physics of

energy landscapes [25]. Random walks have been used by a

variety of methods in graph partitioning and clustering. For

example, the mixing rate of the random walker is closely

related to the conductance, a measure of quality for two-way

partitions [26], [27], [28]. Through their commute times [29]

or through more general spectral embeddings [30], random

walks also allow representations of the graph in a Euclidean

space on which classic machine learning techniques can be

used, including clustering. Other partitioning algorithms have

also made use of random walk measures [15], [31], [32],

[33]. The distinguishing feature of the Markov Stability ap-

proach is the systematic sweeping through all time scales,

fast to slow, in order to discover fine or coarse partitions,

thus relating characteristic time scales of the dynamics to

the structural scales present in the network. In constrast, the

precited methods focus on a fixed time scale (e.g., one-step)

or a fixed number of communities (e.g., two) and hence

do not exploit fully the dynamical aspects of the random

walk. See [14] for a more extensive discussion, and Section

2 for an overview of the unifying character of the Markov

Stability framework, whose dynamical character allows the

interpolation between the structural (edge-counting) measures

and the spectral approach to community detection.

In this article, we extend the Markov Stability formal-

ism and show that any random walk on a given network,

whether in discrete or continuous time, generates a different

partition Stability function, and therefore a different notion

of community reliant on specific measures of node and/or

edge centrality. Indeed, classical notions of centrality (e.g.,

degree, eigencentrality, pagerank) can be shown to correspond

to different random walks on the networks. Within this frame-

work, we observe that good communities appear as a result

of an optimization that balances the cost of severing many or

highly central edges against a maximum-entropy spread of the

centrality across communities. This compound optimization is

parametrically modulated by time, which gives varying weight

to the energetic cost of the cut against the maximum entropy

term. At long times, the problem turns out to be solved

exactly by spectral methods. We show how these dynamical,

graph-theoretical and optimization concepts are intertwined,

providing insight on the nature of different community struc-

tures, the centrality optimizations they entail, and associated

spectral partitioning algorithms known in the literature. Our

work thus provides a unifying viewpoint for different variants

and heuristics used in the graph-partitioning, clustering and

community detection literatures, including several variants of

null-model-based modularity or spectral algorithms, which

appear as particular cases of our formalism. Conceptually, our

work indicates that, rather than searching for a single partition

at a particular scale, dynamics can be used to unfold and detect

systematically the relevant partitions by scanning across all

scales in the graph [14], [19]. Similarly, we show here that

the choice of dynamics can also be used to find the most

appropriate community structure (if particular information

about the system is available) or to explore the network

under different (and complementary) viewpoints to gain deeper

information about the system.

The paper is organized as follows. First, the framework is

introduced via the standard (simple) random walk and its as-

sociated continuous-time processes, including those generated

by the normalized and combinatorial Laplacians. We show

how the relevant centrality measure in this case is the degree,

yet different continuous-time Markov processes (potentially

relevant for different network dynamics) lead to different

communities linked to particular heuristic null models used in

the community detection literature. The dynamical scanning

implicit in our framework is used to illustrate the detection of

community structure across scales in several examples without

imposing the scale or number of communities a priori. Part of

these results were reported in the unpublished preprint [18].

We then consider the analysis of less standard random walks,

specifically the Ruelle-Bowen case, and show that its notion

of community is based on a different kind of centrality, i.e.,

eigencentrality. This is followed by a brief section where

we show how the dynamical viewpoint afforded by Markov

Stability seamlessly extends to the case of directed graphs, thus

allowing us to recast the concept of structural communities

in terms of flow communities. The final section illustrates the

framework with the analysis of synthetic benchmarks and real-

world examples, and discusses computational and practical

issues for Markov Stability, e.g. assessing the presence of

robust partitions, or of a hierarchical structure.

2 THE SIMPLE RANDOM WALK AND COM-
MUNITY DETECTION: DISCRETE-TIME MARKOV

STABILITY FOR UNDIRECTED GRAPHS

To make our arguments more precise, we first review briefly

some of the notation and results from [14], [19], where

mathematical proofs and further results can be found. For

simplicity, we start by considering the case of undirected

graphs, although we will see below that the arguments extend

to directed graphs too.

Consider an undirected graph with N nodes and weighted

adjacency matrix A ∈ R
N×N , such that the weight of the

link between node i and node j is given by Aij = Aji. The

vector containing the degrees (or strengths) of the nodes is

d = A1, where 1 is the N × 1 vector of ones, and we

also define the diagonal matrix D = diag(d). The sum of all

degrees is 2m = 1T d. The combinatorial graph Laplacian is

defined as L = D − A and the normalized graph Laplacian

is defined as L = D−1/2LD−1/2. Both Laplacians are

symmetric nonnegative definite, with a simple zero eigenvalue

when the graph is connected [34]. We denote the trace with

the notation Tr[ ].
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Consider the simple (unbiased) random walk governed by

the standard dynamics:

pt+1 = pt

[

D−1A
]

= ptM, (1)

where p denotes the 1×N dimensional probability vector and

M is the transition matrix. Note that following the Markov

chain literature, the probability vectors are defined as row

vectors. Under the assumptions of a connected, undirected,

and non-bipartite graph this dynamics converge to a unique

stationary distribution

π = dT /2m. (2)

Each partition of the graph into c communities is encoded

by a N × c indicator matrix H with Hij ∈ {0, 1}, where

a 1 denotes that node i belongs to community j. Given

a partition H , the clustered autocovariance matrix of the

diffusion process at time t is:

Rt(H) = HT
[

ΠM t − πTπ
]

H, (3)

where Π = diag(π). The c × c matrix R(t) reflects the

probability of the random walk to remain within each block

(diagonal elements) and to transfer between blocks (off di-

agonal elements) after a time t. Consequently, we define the

Markov Stability of the partition H as

rt(H) = min
0≤s≤t

Tr [Rs(H)] ≈ Tr [Rt(H)] , (4)

the approximation coming from the computational obser-

vation that Tr [Rt(H)] is mostly monotonically decreasing

for empirical graphs [35]. A ‘good’ partition over a time

scale t has well-defined communities that preserve probability

flows within them, hence maximizing the trace of Rt and,

conversely, the Markov Stability rt(H) can be seen as a quality

function for a partition of a graph as a function of the time

horizon of the random walk.

The Markov Stability rt(H) can be used to rank partitions

of a given graph at different time scales or, alternatively, rt(H)
can be used as an objective function to be maximized for every

time t in the space of all possible partitions of the graph:

rt = max
H

rt(H). (5)

Such an optimization results in a sequence of partitions

optimal over different time interval. Although this optimization

is NP-hard, a variety of efficient optimization heuristics for

graph clustering can be used, as discussed in later sections.

The discrete-time Markov Stability rt(H) for undirected

graphs encompasses several well-known heuristics and has

other desirable theoretical properties, some of which we high-

light here succinctly (see [14], [19] for proofs):

• Discrete-time Markov Stability at time t = 1 is equal to

the ‘usual’ modularity Qconf , i.e., with the configuration

model as null model [37], [4]:

r1(H) = Tr

[

HT

(

A

2m
− πTπ

)

H

]

= Qconf . (6)
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Fig. 1. Unfolding the multiscale community structure of
a hierarchical network as a function of Markov time.
As an illustration, consider a hierarchical graph generated as
follows [36]: start with a pair of nodes connected by a link of
weight c < 1, duplicate them and add a link of weight c2 between
all pairs of nodes in different modules. Iterate the procedure K
times to obtain a fully connected, weighted network of 2K nodes.
The figure shows a network with 24 = 16 nodes with edges
shaded according to their strength (c = 1/4). By symmetry,
the natural partitions are into 16 single nodes, 8 pairs (colours),
4 tetrads (shapes) and 2 groups of 8 nodes (upper and lower
hemispheres). Evaluation of the Markov Stability rnorm(t) shows
that, as t grows, the optimal partition goes from 16 communities
to 8 to 4 to 2 over different time intervals.

• Markov Stability at time t = 0 is equivalent to the Gini-

Simpson diversity index of the partition H [38]:

r0(H) = 1−

c
∑

C=1

(πhC)
2 = GSπ, (7)

where hC is the C-th column of the matrix H . GSπ is

a measure of entropy of the partition according to the

values of π, i.e., the degree. GSπ is large when the

partition has many communities of equal size (according

to π), and is low when the partition has few and uneven

communities. GSπ is maximum for the partition into

one-node communities. This index is well known in

economics (Hirschman-Herfindahl index [39]) and infor-

mation theory (Rényi entropy [40]), among others.

• The probability of changing community in one step

r0(H)− r1(H) = 1− Tr

[

HT A

2m
H

]

= Cut, (8)

is a measure of the cut induced by the partition, i.e., the

fraction of edges between all the communities.

• The long-term behavior of rt is governed by the nor-

malized Fiedler eigenvector associated with the second

dominant eigenvalue of M , i.e., that which is closest

to 1 in absolute value. Hence the optimal community

structure as t → ∞ is typically 1 given by the bipartition

1. Close-to-bipartite graphs are the exception: they have a strongly negative
eigenvalue whose odd and even powers generate an alternating rt.
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according to the sign of the entries of the normalized

Fiedler eigenvector [14], [19].

• Spectral algorithms (either iterative or based on several

eigenvectors at a time) are classic relaxation heuris-

tics [41], [42] for the optimization of a variety of NP-

hard partitioning quality functions, including modular-

ity [43] or normalized cut [44]. We have shown that

spectral clustering methods provide exact procedures for

the optimization of Markov Stability at long times.

3 CONTINUOUS-TIME MARKOV STABILITY:
THE DYNAMICAL ORIGIN OF DIFFERENT QUAL-
ITY FUNCTIONS

We now consider continuous-time Markov processes associ-

ated with the simple random walk (1) in order to extend

our dynamics-based framework for community detection in

undirected graphs.

3.1 Normalized Laplacian Markov Stability

Given the random walk (1) on an undirected graph, a standard

way to derive a continuous-time model is to assign a continu-

ous Poisson process of given density at each node [45], [46]. If

we assume identically distributed Poisson processes (i.e., with

identical waiting times) for all nodes, we obtain the standard

diffusive dynamics:

dp

dt
= −p [I −D−1A] = −p [D−1L] (9)

Note that the operator D−1L is isospectral with the normalized

Laplacian L since they are related by the similarity transfor-

mation D−1/2LD1/2 = D−1L. Hence the dynamics of (9) is

dictated by the spectral properties of L. In particular, this pro-

cess converges to the same unique stationary distribution (2)

as the (discrete-time) simple random walk. As above, we thus

define the continuous-time Markov Stability as:

rnorm(t;H) = Tr
[

HT
(

Πe−tD−1L − πTπ
)

H
]

, (10)

where the notation rnorm emphasizes the connection with

the normalized Laplacian. This continuous-time version of

Markov Stability shares broadly similar properties with the

discrete-time version (4), and most of the discussion presented

in Section 2 applies here. For instance, Figure 1 shows the

results of the optimization of rnorm(t;H) over time and over

the space of partitions for a simple example. Note that the

Markov Stability explores the community structure at all

scales (from finer to coarser) using the dynamic zooming

provided by the Markov time of the diffusion process t.
The relevant (time) scales emerge as the ones leading to

persistent (robust) partitions over extended intervals of time.

See Section 6 and Refs. [19], [20] for a discussion of some of

the practical issues of the computational implementation and

more illustrative examples.

It is also instructive to consider the behavior of (10) in the

limit of small times, t → 0. Keeping terms to first order, we

obtain the linearized Markov stability:

rlin
norm(t;H) = rnorm(0;H)− t Tr

[

HT L

2m
H

]

= GSπ − tCut (11)

= (1− t)GSπ + tQconf (12)

where we have used (6)–(8) and the fact that Tr
[

HTLH
]

=
2m−Tr

[

HTAH
]

. A few remarks about the linearized Markov

Stability follow:

• Analogously to (8), the instantaneous probability rate

of the walker escaping from its initial community

− drnorm(t;H)/dt|t=0
= Tr[HTLH]/2m is the Cut.

• The Potts model heuristic proposed by Reichardt &

Bornholdt [47] is exactly recovered as the linearized

Markov stability. Hence we can see the Markov time t as

the equivalent of a resolution parameter. From (12) it also

follows that the ‘usual’ modularity [37], [4] is recovered

at t = 1 for undirected graphs:

rlin
norm(1;H) = Qconf. (13)

• Equation (11) provides an interpretation of Markov Sta-

bility as a compound quality function to be optimized

under two competing objectives: minimize the Cut size

while trying to maximize the diversity GSπ , which

favours a large number of equally-sized communities

according to π, thus resulting in more balanced partitions.

The relative weight between both objectives is modulated

as the Markov time t increases.

The stationary distribution π plays a key role in the defini-

tion of the community quality function:

• Firstly, π can be understood as originating the null model

of modularity, i.e., the model of random graph against

which the network is compared to detect the signifi-

cance of the communities. The null model in the ‘usual’

modularity is the configuration model, which randomly

rewires the edges of a given graph preserving the degree

of every node. The probabilistic description of this model

is given by the outer product πTπ, which in our dynam-

ical interpretation corresponds to the expected transfer

probabilities at stationarity for this Markov process.

• Secondly, GSπ measures the diversity of the partitions

according to the node property π. Hence, as the value of

t grows, the optimization leads to balanced distributions

of π across communities, splitting nodes with high values

of πi into different communities. In this case, we tend to

segregate nodes with high degree into different groups.

3.2 Combinatorial Laplacian Markov Stability

Given a discrete-time random walk, a variety of continuous-

time Markov processes are possible. Although in (9) we

assumed identical Poisson processes at all nodes, we have

the flexibility to assign different waiting times at each node.

An interesting choice is to consider that the waiting time at

each node is inversely proportional to its degree, i.e., the

walker spends less time on nodes of high degree. Using



5

an inhomogeneous rescaling of time this leads to a Markov

process governed by the combinatorial Laplacian:

dp

dt
D−1〈d〉 = −pD−1 [D −A]

=⇒
dp

dt
= −

1

〈d〉
p L, (14)

where 〈d〉 = (1TD1)/N is the average degree and

p = pD−1. The stationary distribution of (14) is now the

uniform distribution over the nodes:

πc = 1T /N, (15)

and the combinatorial continuous-time Markov Stability is:

rcomb(t;H) = Tr
[

HT
(

Πce
−t L/〈d〉 − πc

Tπc

)

H
]

. (16)

The corresponding linearized version is then:

rlin
comb(t;H) = GSπc

− tCut (17)

= (1− t)GSπc
+ tQER. (18)

In this case, the stationary distribution πc leads to a different

diversity index:

GSπc
= 1−

c
∑

C=1

(1ThC/N)2 = 1−

c
∑

C=1

(nC/N)
2
, (19)

where nC is the number of nodes of community C. The

modularity associated with this process is:

QER = GSπc
− Cut = Tr

[

HT

(

A

2m
−

11T

N2

)

H

]

, (20)

which is precisely the modularity based on the Erdös-Rényi

(ER) null model with a probabilistic description given by

the outer product 11T /N2. This version of modularity was

originally discussed by Newman [4], [37] and has been

recently studied against network benchmarks [48]. Based on

our arguments above, the combinatorial Markov Stability op-

timizes partitions that balance the Cut against the diversity πc,

which ignores degrees and counts only the fraction of nodes

present in each community. Hence, it is more likely to group

nodes with high degree in the same community when using

combinatorial Markov Stability, as we will discuss below.

Finally, we remark that at long Markov time scales, the com-

binatorial Laplacian dynamics recovers the bipartition based

on the classic heuristic of the signs of the components of the

Fiedler eigenvector [41], which constitutes the basis of several

spectral algorithms. As stated above, the normalized Laplacian

version converges to the bipartition based on the normalized

Fiedler eigenvector, which is also used in other spectral

algorithms like Shi-Malik [44]. Seeing those algorithms as the

coarser extreme of a range of community detection problems

provides additional insight into the meaning and differences

between those popular spectral algorithms.
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Fig. 2. Dynamical coherence in synchronization and
community structure. We computed the coherence of Ku-
ramoto oscillators in this toy network and represented it in the
bottom panel by using a colour code, from black to red as the
coherence grows. The lower triangle is always more coherent
than the upper triangle. The partitions obtained by optimizing the
combinatorial Markov Stability rcomb(t;H), related to the Erdös-
Rényi null model, capture this behavior. On the other hand,
the optimization of the normalized Markov Stability rnorm(t;H),
related to the usual configuration model, does not find the
relevant sequence of partitions.

3.3 Normalized vs Combinatorial Markov Stability:
some examples

The relevance of dynamical coherence

As discussed above, a driving force in the definition of

quality functions for community detection has been the use of

null models, i.e., random graph models that preserve certain

properties of the graph under study and act as bootstraps to

establish the significance of communities. Early on, it was

proposed [4], [37] that the configuration model should be

preferable to Erdös-Rényi as the null model, because the

former takes into account the degree heterogeneity typically

found in realistic networks. However, it has been recently

shown[48] that the Erdös-Rényi model behaves at least as well

as the configuration modularity on benchmarks [49] and leads

to improved results in particular graphs.

Under our dynamical framework, the two null models cor-

respond to the stationary distributions of the Markov processes

governed by the normalized and combinatorial Laplacians.

The two Laplacian dynamics can emerge naturally in the

modelling of different continuous-time dynamics on networks,

such as heat diffusion [50], [34], the linearization of Kuramoto

oscillators [10], [3], or consensus dynamics [51], [52], [11].

In the important cases when the dynamics of the system is

governed by the combinatorial Laplacian (e.g., synchroniza-

tion, consensus, or vibrational dynamics), we expect that the

relevant dynamical groupings should correspond to commu-

nities obtained using the combinatorial version of Markov

Stability (i.e., corresponding to the ER null model) and not

the canonical configuration model.
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Figure 2 illustrates this point by examining relevance of

dynamic communities in synchronization dynamics on a toy

network made of two triangles: links in the upper triangle

have weight 5; links in the lower triangle have weight 25;

and they are connected by links of weight 1. The dynamics of

the network is given by the Kuramoto model with uniform

frequencies, a prototypal model for synchronization where

each node has a phase φi evolving as

φ̇i = ω +
∑

j

Aij sin(φj − φi). (21)

The coherence between nodes i and j is measured by the

order parameter ρij(t) = 〈cos (φi(t)− φj(t))〉IC , where the

average is performed over an ensemble of random initial

conditions. The coherence ρij(t) computed from simulations

(bottom panel) shows that the lower triangle is always more

coherent than the upper triangle, as expected. If we threshold

to find coherent clusters [10], the first group detected is

the lower triangle, followed by the upper triangle at later

times. If we use the combinatorial Markov Stability on this

toy graph, this sequence of partitions is correctly uncovered.

This follows unsurprisingly from our dynamical interpretation

since the linearization of the Kuramoto dynamics leads to the

combinatorial Laplacian. In contrast, rnorm(t) does not recover

this result, as it first uncovers a dynamically irrelevant partition

where the upper triangle is found. Interestingly, numerics on

Kuramoto dynamics [10], [53] have shown that the ‘usual’

modularity Qconf is only optimized for near-regular graphs,

i.e., when it is equivalent to the true optimization performed

by the dynamics, QER. Therefore, if we are interested in

coherent Kuramoto communities (e.g., motivated by power

grid applications [54]), the partitions found with the ‘usual’

modularity could be misleading. On the other hand, if we are

interested in the study of probabilistic diffusive dynamics, the

relevant communities should follow from the study of rnorm(t).
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Normalized Combinatorial

Fig. 3. Different random walks, different community
structure: the C. Elegans neural network. The choice of
Laplacian dynamics leads to different communities in this real-
life example. Here we present the partitions at t = 7.8 that
optimize rnorm (left) and rcomb (right) consisting mainly of 3 large
communities in both cases (indicated by different colors). The
nodes are displayed along the vertical axis according to their
degree centrality. The normalized Laplacian Markov Stability
biases towards equicentral communities thus leading to a sepa-
ration of high degree nodes into different communities, whereas
high degree nodes can be grouped within the same community
for the combinatorial Laplacian version.

An optimization perspective: distinct cost functions

Further insight into the communities for each version of

Markov Stability can be gained by examining the role of the

stationary distribution of the Markov process in the definition

of the diversity index appearing in the compound cost function

to be optimized. From the definitions (7) and (19) of the di-

versity indices GSπ and GSπc
(associated with the normalized

and combinatorial versions of Markov Stability, respectively),

it follows that the normalized version balances communities

with respect to their edge volume while the combinatorial

version balances communities with respect to their node vol-

ume. Therefore, the normalized version (related to the ‘usual’

modularity) tends to separate nodes with high degree into

different communities. This may lead to unexpected results,

e.g., in assortative networks, where high degree nodes tend to

be strongly connected to one another, yet could be split when

using quality functions based on the configuration model.

To illustrate this point, consider the community structure

uncovered in the symmetrized version of the C. elegans neural

network, a weighted network with 297 nodes and 2m = 17598
edges. The partitions found by the combinatorial and normal-

ized versions of Markov Stability are significantly different—

not unexpectedly since the graph is far from being degree-

homogeneous. In Fig. 3, we present the partitions at t = 7.8
for both versions consisting of mainly 3 large communities.

As discussed, the optimization of rnorm(t) tends to balance the

total degree
∑

i∈C di of the communities C, while rcomb(t)
tends to balance the number of nodes nC of the communities.

Indeed, for the combinatorial Laplacian, the total degree

of each of the three communities are {1984, 11782, 3424},

whereas these numbers are more balanced for the normalized

Laplacian: {5753, 5561, 6284}. On the other hand, the fact

that the combinatorial Markov Stability does not penalize as

much grouping together nodes with high degree into the same

community can also be seen in Fig. 3. The high degree nodes

tend to be split evenly among the three communities for the

normalized Laplacian, while the combinatorial Laplacian has a

disproportionately large number of high degree nodes grouped

together in the red community, less so in the green community

and even fewer in the blue community. More specifically, the

top 20 nodes with the highest degree are distributed among

the three communities in the ratios {18, 2, 0} for rcomb while

the corresponding ratios for rnorm are {13, 5, 2}.

3.4 The simple random walk and its continuous-time

versions: degree as centrality

Our discussion above leads to the following generalization of

the continuous-time versions of the simple (unbiased) random

walk. When taking the continuum limit, the waiting times at

each node can be weighted by any power of the degree:

dp

dt
Dk〈d−k〉 = −pDk D−k[I −D−1A]

=⇒
dp

dt
= −

1

〈d−k〉
p Lk, (22)

where the notation 〈. . .〉 denotes the average over all the nodes,

i.e., 〈d−k〉 = (1TD−k1)/N , and we have introduced the k-
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scaled Laplacian:

Lk = D−k[I −D−1A]. (23)

The stationary distribution of (22) is then

πk = 1TDk+1/
(

1TDk+11
)

, (24)

and the corresponding k-scaled Markov Stability is:

rk(t;H) = Tr
[

HT
(

Πke
−t Lk/〈d

−k〉 − πk
Tπk

)

H
]

. (25)

The linearized version reads:

rlin
k (t;H) = rk(0;H)− tTr

[

HT

(

L

N〈dk+1〉〈d−k〉

)

H

]

= GSπk
− t

〈d〉

〈dk+1〉 〈d−k〉
Cut, (26)

and, again, the diversity index of the partition is measured as

a function of the stationary distribution πk:

GSπk
= 1−

c
∑

C=1

(

1TDk+1hC/
(

1TDk+11
))2

. (27)

Clearly, k = 0 corresponds to making the waiting time inde-

pendent of the degree and leads to the normalized Laplacian

Markov Stability, while k = −1 corresponds to making the

waiting time inversely proportional to the degree and produces

the combinatorial Laplacian version.

This generalization allows us the flexibility to modulate the

effect of degree centrality in community detection using other

continuous-time dynamics. We could consider a model where

the waiting time is proportional to the degree, i.e., k = 1. This

could be interpreted as the model of a random web surfer,

spending on average more time reading a page with higher

number of links. The community detection on such a system

would then be based on the non-standard Laplacian L1 =
D−1−D−2A and the diversity index (27) will try and balance

communities according to the square of the degree, making it

even more unlikely to group high degree nodes in the same

community. If, on the contrary, we consider a model where

the waiting times have an inverse square dependence on the

degree (k = −2), the diversity index (27) would then be based

on the inverse of the degree, and the community detection

will tend to push neighboring high degree nodes together in a

single community, while low degree nodes stand separated, as

in a core-periphery decomposition. This phenomenon will be

more acute as we make k more negative, whereas, conversely,

a large and positive k will put the emphasis on separating the

few top degree nodes, disregarding almost entirely the effect

of the majority of nodes.

This extended discussion of the simple random walk and

associated Markov processes highlights the connection of

dynamical community detection with concepts of centrality.

Measures of centrality aim at rating how connected nodes

are with the rest of the network. The weighted degree is

perhaps the most elementary concept of centrality—indeed, it

is sometimes referred as ‘degree centrality’. As shown above,

the degree appears as the stationary distribution of the simple

random walk (1), and the optimization of the quality function

for community detection balances the partitions according to

the diversity of degree centrality. In particular, it is optimal to

split apart highly central nodes (i.e., with high degree in this

case) into different communities for short enough Markov time

scales, and to aim towards balanced intra-community edge

centrality. The continuous-time versions are able to modulate,

amplify, attenuate, cancel or even invert the effect of degree

centrality as the power k is varied. We consider the connection

of dynamical community detection with other measures of

centrality in the following section.

4 COMMUNITY DETECTION BASED ON OTHER

NOTIONS OF CENTRALITY: THE RUELLE-
BOWEN RANDOM WALK

4.1 The role of centrality in community detection

In different applications, it might be desirable to employ other

measures of centrality as the linchpin for community detection.

We can achieve this using the random-walk framework dis-

cussed above. Many discrete-time random walks other than the

simple random walk may be performed on a network. We then

may think of the stationary distribution of every random walk

as a centrality measure. Every random walk with transition

matrix M will then be associated with a dynamical Markov

Stability quality function, and the corresponding community

detection will produce optimized partitions which are balanced

according to different measures of centrality. A generic way to

generate random walks is to bias the simple random walk [55].

For instance, one may attribute a positive number bi to every

node i (e.g., a property related to a measure of centrality)

and let a random walker at i jump to j with probability

proportional to biAijbj .

Once the discrete-time random walk (and its associated

centrality) is chosen, different continuous-time processes can

be obtained. Generically, this is done by combining two

ingredients: the transition probabilities of the discrete-time

random walk (i.e., the row-stochastic matrix M ) and the

waiting times of the continuous-time process at each node

(compiled in a node vector w). The resulting process is then:

dp

dt
= −p W−1(I −M) (28)

with W = diag(w). These two ingredients come into play

differently in determining the corresponding Markov Stability

function for community detection. The discrete-time random

walk defined by M determines the stationary distribution πdisc

on nodes. On the other hand, the continuous-time station-

ary distribution on node i, or node centrality, is given by

wiπdisc,i/〈w〉, where 〈w〉 is the normalization constant πdiscw.

As shown in the examples above, the choice of waiting times

can thus modulate the effect of the node centralities. The

centrality of edge ij, on the other hand, is the probability that

an observed transition links i to j, which does not depend

on the time elapsed between transition but rather on the

respective frequencies of transitions given by πdisc,iMij . Edge

centralities are therefore given by ΠdiscM , hence completely

determined by the discrete-time transitions and unaffected by

waiting times. As a result, the discrete-time transitions and

waiting times have a different effect on the resulting Markov



8

Stability function: waiting times have no influence on the edge

centrality but afford complete control over the node centrality

(and on the Gini-Simpson term of the cost function), whereas

the Cut term is completely determined by the edge centralities

(i.e., the underlying discrete-time random walk). At long times,

the optimal split is provided by the sign pattern of the second

eigenvector of the ‘generalized Laplacian’ W−1(I − M),
which depends both on the discrete-time transitions M and

the waiting times W . We now explore a classic discrete-time

random walk with distinctive properties.

4.2 Community detection according to the Ruelle-

Bowen random walk

A particularly interesting example is the random walk intro-

duced by Ruelle, Bowen and others [56]. Consider a graph

with adjacency matrix A = AT , under the usual assumptions

of connected, undirected, and non-bipartite, for simplicity.

An important notion of centrality is associated with v, the

dominant eigenvector of A (i.e., the eigenvector with the

largest eigenvalue):

Av = λ1v. (29)

The eigencentrality [57] of node i is given by vi, its corre-

spondent component of this eigenvector.

The discrete-time Ruelle-Bowen (RB) random walk is de-

fined such that the transition between nodes i and j occurs

with probability viAijvj :

pt+1 = pt

[

1

λ1

∆−1
v

A∆v

]

= pt MRB, (30)

with p the 1×N probability vector and ∆v = diag(v). Under

such assumptions, the unique stationary distribution of the RB

random walk is

πRB = 1T∆2
v
/
(

1T∆2
v
1
)

= 1T∆2
v
, (31)

since
(

1T∆2
v
1
)

= vTv = 1 for the normalized eigenvector.

The stationary distribution πRB can be seen as a centrality mea-

sure, which is called entropy rank (for the unweighted case) or

free energy rank (for the weighted case) [58], thus essentially

equivalent to eigencentrality in terms of ranking (although the

concepts diverge in the directed case, not analyzed here).

This classic random walk has an interesting interpretation in

terms of entropy: it is maximally exploratory in the sense that

its per-step entropy is maximal. More precisely, let h denote

the (Kolmogorov-Sinai) entropy rate of the random walk,

which is the average per-step entropy that is asymptotically

approached for long paths, and let E be the expectation of the

edge transition energies Eij , such that Aij = exp(Eij). Then

the RB random walk maximizes the ‘free energy’ h + E. It

therefore tends to make all paths of same length equiprobable,

with a bias to make high energy paths more probable [59].

Beyond its thermodynamic properties, the Ruelle-Bowen walk

naturally emerges in other contexts, such as the computation

of quasi-stationary distributions [23], [24].

Similarly to the simple random walk, we can associate

continuous-time Markov processes to the RB random walk.

The simplest is given by the homogeneous waiting times:

dp

dt
= −p [I −MRB] (32)

with MRB as in (30). The node stationary distribution of (32)

is given by (31), whereas the edge centralities are given by

the matrix ∆2
v
MRB = ∆vA∆v/λ1. The full and linearized

versions of the RB Markov Stability follow closely the ex-

pressions in (10)–(12). This continuous-time process can be

generalized through the choice of waiting times.

The RB Markov Stability has connections with other heuris-

tics in the literature. For instance, the spectral algorithm

associated with the RB random walk on an undirected graph

makes use of the second eigenvector of the adjacency matrix

A, similarly to the ‘adjacency spectral clustering’ of Sussman

et al. [60]. To illustrate the flexibility of the framework in

designing cost functions associated to different notions of

communities, let us consider waiting times W = D∆−2
v . This

choice makes thenode centralities proportional to the degree,

since the discrete-time RB walk induces stationary probability

on nodes proportional to ∆2
v (see Eq. (31), while the edge

centralities, unaffected by waiting times, are still determined

by the edge entropy rank. The linearized Markov Stability

optimization will now look for communities balanced in terms

of number of edges (through diversity term) while cutting

edges with low entropy rank (through the Cut term).

As a simple example of the impact of such a choice on

the outcome of partitioning, consider the graph A − B − C
composed of two N -cliques A and B and a N -cycle C,

interconnected by single edges. From the point of view of

the simple random walk Markov Stability, cutting the A−B
edge or the B − C edge is indifferent as far as the cut term

is concerned. However, RB Markov Stability favours cutting

the less central B − C edge, thus isolating first the ‘hollow’

module C on the account of cut minimization, while the Gini-

Simpson term tends in this case to keep apart high-degree

nodes, thus inducing non-trivial results [61]. This priming of

eigencentrality in the allocation of community splits could

be desirable for particular applications, e.g., when analyzing

networks with highly heterogeneous eigencentrality across

the nodes. This will be particularly important in networks

whose node eigencentrality is not fully captured by the degree

centrality [62], e.g., when a low-degree individual is connected

to high degree others or in which a high-degree node is only

connected to low degree others.

Finally, an interesting property of the Ruelle-Bowen random

walk is its universality. Any linear dynamics xt+1 = xt A,

where xt is a row vector of real entries over the nodes and A is

a nonnegative primitive matrix, can be transformed to make it

interpretable as a random walk [63]. Hence, besides consensus,

heat diffusion, linearized synchronization, etc, random walks

can also be used to represent a wider class of dynamics on

networks.

5 MARKOV STABILITY FOR DIRECTED

GRAPHS

Another advantage of the dynamical framework for commu-

nity detection introduced above is that it extends naturally to
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directed graphs, whereas the extension of structural quality

functions, such as modularity, to the case of directed graphs

is not trivial. For instance, although it has been argued [64],

[65] that the null configuration model in modularity should

become dind
T
out/2m in order to account for the directionality

of the links, this choice and justification of the null model for

directed graphs is not unique. Under our dynamical viewpoint,

the notion of community becomes that of flow community,

and the relevant centrality is pagerank with its associated null

model, as we show below.

Consider the simple random walk for a directed graph wit

the (non-symmetric) adjacency matrix: A 6= AT . Each node

has an in-degree, collected in the vector din = AT1, and an

out-degree, collected in the vector dout = A1, i.e., the sum

of the weights of the edges directed at and departing from

the node, respectively. The simple random walk in this case

is given by

pt+1 = pt D
−1
out A = pt Mdir (33)

where Dout = diag(dout) and Mdir = D−1
out A. For nodes where

dout,i = 0, we set Dout(i, i) = 1.

For simplicity, consider first the case when the graph is

strongly connected and aperiodic. Then the random walk (33)

is ergodic and has a unique, stationary distribution πdir cor-

responding to the dominant left eigenvector of Mdir. The

stationary distribution πdir is called pagerank, a key measure

of centrality in directed graphs [66]. We can then define the

directed Markov Stability based on the random walk (33),

which has the same form as (4) and (3). This quality function

can be used the same way as the undirected version to extract

multiscale structure in graphs by using the Markov time t as

a resolution parameter. The directed Markov Stability at time

t = 1 which, following (6) above, corresponds to our quality

function most closely related to ‘directed modularity’ :

rdir,1 = Tr
[

HT (ΠdirD
−1
out A− πT

dirπdir)H
]

. (34)

Note that the null model we obtained here corresponds to the

outer product of the normalized pagerank vector πT
dirπdir, in

lieu of in- and/or out-degree vectors [64], [65].

Clearly, using (34) gives different results to structural ver-

sions of directed modularity based on in- and out-degree null

models. While optimization of (34) favours partitions with per-

sistent flows of probability within modules, modularity favours

partitions with high densities of links and is blind to the flow

actually taking place on these links. To illustrate the difference,

consider the toy example given by [16] (Fig. 4), on which

the directed random walk is ergodic. In this case, optimizing

the in/out-degree modularity of this toy network leads to a

partition where heavily weighted links are concentrated inside

communities, as expected. On the other hand, optimization of

directed Markov Stability leads to a partition where flows are

trapped within modules. It is also interesting to stress that the

partition that optimizes (34) also optimizes the map equation

proposed by Rosvall and Bergstrom[16]. For an independent

study of directed modularity based on other arguments, see

Kim et al [67].

Our definition of directed Markov Stability relies on the

condition that the dynamics is ergodic. When the directed

Fig. 4. Directed Markov Stability versus extensions of
modularity. In this toy network [16], the weight of the bold
links is twice the weight of the other links. The partition on
the left (indicated by different colors) optimizes directed Markov
Stability (34), which intrinsically contains the pagerank as a null
model. The partition on the right instead optimizes an extension
of modularity based on in- and out-degrees [64], [65]. Hence
directed Markov Stability produces flow communities, whereas
the extension of modularity ignores the effect of flows.

network is not ergodic, it is common to generalize the standard

random walk by incorporating a random teleportation term

(also known as ‘Google teleportation’). If the walker is located

on a node with at least one outlink, it follows one of those out-

links with probability τ ∈ (0, 1). Otherwise, with probability

1− τ , the random walker teleports with a uniform probability

to a random node. Instead of Mdir, the new transition matrix

of the random walk (33) becomes:

Mdir(τ) = τMdir + [(1− τ)I + τ diag(a)]
11T

N
, (35)

where the N × 1 vector a is an indicator for dangling nodes:

ai = 1 if dout,i = 0 (and the corresponding row of Mdir is

assumed to be zero) and ai = 0 otherwise. Upon visiting a

dangling node, a random walker is teleported with probability

1. It is customary to use the value τ = 0.85. The teleportation

scheme is known to make the dynamics ergodic and to ensure

the existence of a single stationary solution πdir(τ) that is an

attractor of the dynamics. Indeed, teleportation is sometimes

introduced even in the ergodic case to improve the numerical

convergence of pagerank computation.

Finally, we remark that, as for the undirected case, there

are continuous-time versions of directed Markov Stability. The

simplest is given by the corresponding Kolmogorov equation:

dp

dt
= −p [I −Mdir(τ)], (36)

and our discussion above applies to these processes too. An

application to a large graph of airport connections is presented

in the next section. See also [68] for an application to social

network analysis.

6 COMPUTATIONAL METHODOLOGY AND

PRACTICAL CONSIDERATIONS

Given a network, and based on modelling considerations or

other assumptions, we can choose a discrete- or continuous-

time Markov process to scan dynamically the structure of the

graph at all scales. As shown in the toy example of Figure 1,
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the optimization of the chosen Markov Stability across time

leads to a sequence of partitions that are optimal at different

time scales. The extraction of these optimized partitions is the

first step to uncover the multi-scale modular structure of the

network (if present), but the practical application of the method

still involves at least two non-trivial steps, which we now

discuss in conjunction with several larger examples. Although

the examples in this section exhibit a relatively hierarchical

community structure, in Supp.Inf. we illustrate and measure

quantitatively non-hierarchical multi-scale structures.

6.1 Optimization of Markov Stability

Although it has been shown that modularity optimization is

NP-hard [69], several heuristic algorithms have been proposed

to provide satisfactory solutions, in the sense that they ef-

ficiently recover planted solutions in benchmark graphs, or

that they can uncover groups that are clearly meaningful (e.g.

classes in a school social network, etc) [6]. It has also been

shown that in real-world examples the modularity landscape

over partitions tends to exhibit large rugged plateaux, making

it possible to find an approximately optimal partition [70].

We will now show that it is always possible to rewrite

the Markov Stability for any choice of random walk as

the modularity of another symmetric graph. This observation

has important practical implications, as it makes it possible

to use any modularity-maximization algorithm, e.g. spectral

or greedy, for the optimization of any version of Markov

Stability. For example, consider the discrete-time stability

r(t) = Tr
[

HT (ΠM t − πTπ)H
]

, for transition matrix M
and the corresponding centrality π. It is easy to see that this

is the usual modularity for the graph of weighted adjacency

matrix A = (ΠM t + (ΠM t)T )/2, a symmetric matrix of

degree sequence A1 = πT . A similar observation holds in

continuous time (where the exponential can be evaluated by

Padé approximations), and also for the linearized versions of

Markov Stability.

Any modularity maximization algorithm can therefore be

used for Markov Stability optimization. As some of those

algorithms [71] are empirically known to run in O(m logm)
on m-edge graphs, the most expensive step turns out to be

matrix multiplication or computation of the exponential, which

limits the application of full Markov Stability to graphs with

N ∼ 20000 nodes. These overheard costs are spared when us-

ing the linearized version of Stability, which becomes the most

suitable for the multi-scale analysis of very large networks

N > 105. In our applications below, we have used mainly the

Louvain algorithm [71] adapted to the optimization of Markov

Stability2, although spectral bisection methods [72] for the

generation of optimized partitions yields good results [14].

6.2 Robustness of partitions

Once the sequence of optimized partitions is obtained, we

need to select the most relevant scales (partitions) for our de-

scription. This is a well-known challenge for multi-resolution

2. An efficient code, also with a Matlab interface, can be down-
loaded at http://wwwf.imperial.ac.uk/∼mpbara/Partition Stability/ or http://
michaelschaub.github.io/PartitionStability/
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Fig. 5. Selecting robust partitions in the sequence of
optimized partitions across Markov time. (a) The American
football network [4] composed of N = 115 teams is known to
be organized into 12 divisions. (Left) The block structure of the
normalized variation of information (37) between the optimized
partitions at time t and t′ and a long plateau in the number of
communities indicates that the most persistent partition is made
of 12 communities, as expected. (Right) The randomized version
of the network, where links have been reshuffled while preserv-
ing the node degrees, does not exhibit robust communities. (b) A
benchmark hierarchical random network consisting of N = 640
nodes with 3 levels: 64 modules of 10 nodes; 16 modules of
40 nodes; 4 modules of 160 nodes [8]. We use one realization
of the benchmark. Similarly to (a), the long plateaux in the
number of communities and the block structure with low values
of V̂ (P(t),P(t′)) reveal the three levels of the hierarchy (left). No
significant community structure is detected in the randomized
network (right). Both sequences of partitions were obtained
optimizing rnorm(t;H) with the Louvain algorithm [71].

methods. Notions of robustness are usually considered when

dealing with NP-hard optimizations to reflect the ruggedness

of the landscape of the quality function to be optimized [70].

In our approach, we establish the significance of a particular

partition based on its robustness in three different ways [73],

[74], [75], [76], [77], [78]: (i) robust (persistent) across time;

(ii) robust to small perturbations to the graph; and (iii) robust

to the optimization algorithm and the starting point of the

optimization. We now exemplify (i) and (iii).

The basic notion is to evaluate the effect of these perturbing

factors on the optimized partition: a partition is robust if

such perturbations have little effect on the outcome and the

perturbed result remains close to the unperturbed one. A

popular way to compare two partitions P1 and P2 is the

normalized variation of information [79]

V̂ (P1,P2) =
H(P1|P2) +H(P2|P1)

logN
, (37)

where H(P1|P2) is the conditional entropy of the partition P1

given P2, i.e., the additional information needed to describe

P1 once P2 is known assuming a uniform probability on the

nodes. The conditional entropy is defined in the standard way

for the joint distribution P (C1, C2) that a node belongs to

http://wwwf.imperial.ac.uk/~mpbara/Partition_Stability/
http://michaelschaub.github.io/PartitionStability/
http://michaelschaub.github.io/PartitionStability/
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Fig. 6. Hierarchical benchmark and statistical tests. Bench-
mark random network with N = 2560 nodes and 4 hierarchical
levels (with modules of 10, 40, 160 and 640 nodes) [8]. (a)
The long plateaux in the number of communities (blue) and
the dips in the normalized variation of information across time
V̂ (P(t),P(λt)) (green) signal that the four levels of the hierarchy
have been detected. (b) Same as (a) for a randomized version of
the network preserving node degrees: no community structure
is found at any scale. In both cases, λ = 20/19 and the
sequences of partitions were obtained optimizing rnorm(t;H)
with the Louvain algorithm.

a community C1 of P1 and to a community C2 of P2. The

normalized variation of information V̂ (P1,P2) ∈ [0, 1] has

been shown to be a true metric on the space of partitions and

vanishes only when the two partitions are identical.

Within the Markov Stability framework, we use this metric

to evaluate the persistence of partitions across time. By looking

for block-diagonal regions with low values of V̂ (P(t),P(t′)),
as well as plateaux in the number of communities as a

function of time [80], we can detect the relevant partitions and

scales without assuming them a priori. Two examples of this

approach are shown in Fig. 5, where we illustrate the detection

of the relevant scale (12 communities) in a small real-life

network of American football teams (N = 115), as well as

three scales in a hierarchical benchmark random network with

N = 640 nodes. The same notion is evaluated in Fig. 6, where

we detect 4 hierarchical levels in a larger benchmark network

with N = 2560 nodes by comparing partitions across time

using the scaling factor λ to evaluate V̂ (P(t),P(λt)).
In addition to the robustness of partitions based on persis-

tence across time, it is also helpful to evaluate the robustness

of the solution with respect to the optimization. We do this

by repeating the Louvain optimization many times (in excess

of 100 random initial seeds for each Markov time) and

evaluating the average normalized variation of information

within the ensemble of optimized solutions. If a partition is

robust to the optimization, we expect a small value (or a dip)

in the normalized variation of information of the ensemble

of optimized solutions, signaling a relevant partition. This
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Fig. 7. Finding robust communities at multiple scales in
the atomic network of hemoglobin, a protein tetramer.
The atomic network of the protein is generated as detailed in
Refs. [74], [81] using physico-chemical potentials and atomic
X-ray crystallographic data (PDB file: 1GZX). This weighted,
undirected network has N = 8757 nodes (atoms) and 12813
edges (bonds). The multi-scale nature of our method reveals
relevant communities across scales, from small chemical group-
ings to large-scale conformations, signalled by dips of the nor-
malized variation of information. These dips deviate significantly
from chemically-consistent randomized versions of the network
(not shown; see [74], [81]). Note the long plateau and dip of
the normalized variation of information for the 4-way partition,
corresponding to the identification of the four monomers in the
hemoglobin tetramer. Here the combinatorial version of Markov
Stability rcomb(t;H) was optimized, as it is more closely matched
to the vibrational dynamics of the protein network.

robustness to the optimization probes the ruggedness of the

landscape and can be tested for different optimization algo-

rithms [70]. Here we use the Louvain algorithmic heuristic,

which has been shown to perform well both in benchmarks

and real-life examples [78]. In Figures 7 and 8, we show

the application of this approach to two large networks: an

undirected, weighted atomic protein network with N = 8757
nodes; and a directed, weighted network of airport connections

with N = 2905 nodes. In both networks, we find relevant

structure at different resolutions. Of note is that our results

in the protein network are able to identify partitions corre-

sponding to relevant chemical structures (involving only a few

nodes), through secondary structures such as helices (involving

several hundreds of atoms) to large conformational domains

and, importantly, the subunits (involving several thousands of

atoms). In the case of the airport network, the different levels

of resolution reveal geographical and socio-political groupings.

In this case, the directed character of Markov Stability is

able to reveal communities with specific flow characteristics,

including regions with focalized entry points coupled to a local

asymmetric distribution network (e.g., Alaska and Greenland).

The selection of the relevant scales is still an open area

of research in multiscale community methods and has strong

links with non-convex optimization. Our notions of robustness

reveal that the optimized partitions found at peaks of the

variation of information tend to be hybrid combinations of

natural partitions with non-uniform resolution, splitting some

but not all the coarser communities, thereby explaining a
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Fig. 8. Flow communities at multiple scales in an airport network. The airport network [82] contains N = 2905 nodes
(airports) and 30442 weighted directed edges. The weights record the number of flights between airports (i.e., the network does not
take into account passenger numbers, just the number of connections). Representative partitions at different levels of resolution
with (b) 44, (c) 18 and (d) 5 communities are presented. The partitions correspond to dips in the normalized variation of information
in (a) and show persistence across time (see Suppl. Info.).

high sensitivity to the random seed or Markov time. In other

cases, such peaks correspond to the coexistence of a few

‘good’ partitions, which might indicate a tendency to flip

between such outcomes and, hence, a lack of robustness. In

this sense, the peaks in the variation of information tend

to signal the separation between the relevant scales in the

community structure of the network, and can also be related to

the existence of non-hierarchical (yet multi-scale) community

structure (see Supp. Info. for some examples). These topics

will be the object of further work.

7 DISCUSSION

Our work emphasizes the importance of choosing proper

dynamical processes in order to uncover information in net-

worked systems. Here, we have focused on random walk

processes, which are known to be mathematically equivalent to

a broad range of diffusive processes: heat diffusion, evolution

on a (free) energy landscape [25], opinion dynamics on

social networks and other kinds of consensus problems [83],

[52], linearization of synchronization [84], [3] and power

networks [54], among others. Importantly, using the random

walk corresponding to the natural dynamics of the system

allows us to find its central nodes (according to its intrinsic

centrality measure) and to recover dynamically meaningful

communities, i.e., the communities of nodes that best retain the

diffusive flow for a certain time scale. If there is no intrinsic

dynamics in the system, and hence no unique choice for the

exploratory Markov dynamics, our approach provides tools to

understand the effect of the different choices of random walks

and associated centrality measures on the community structure

obtained through Markov Stability optimization.

More generally, our approach provides a unified viewpoint

for a number of existing approaches, as summarized on Fig. 9,

and Our approach paves the way for the development of

metrics and algorithms that exploit real-world non-Markovian

random walks [86] or incorporate non-trivial temporal patterns

into diffusive models [87]. Our work also opens perspectives in

community detection by providing a dynamical interpretation

of quality functions, and by interpreting the standard null-

model paradigm in terms of stationary distributions [85], [4].

The dynamical approach that we advocate here, not only

generalizes the null model paradigm, but can also lead to

fundamentally different quality functions. For instance, even

the simple random walk on a directed graph leads to a Stability

function containing the pagerank, which is not expressible

in terms of combinatorial quantities, hence different from

any null-model-based variant of modularity. The dynamic and

null-model paradigms do overlap in a number of interesting

cases. We have shown that for undirected networks, the two

most common continuous-time dynamics, described by the

normalized and combinatorial Laplacians, correspond to the

two most meaningful null models, i.e., the configuration model

and the Erdös-Rényi model. Through the intuition gained from

the corresponding dynamics, we reinterpret the Erdös-Rényi
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Simple Random Walk Normalized Laplacian Combinatorial Laplacian Ruelle-Bowen

Type Discrete-time Continuous-time Continuous-time Discrete-time

Node centrality Degree Degree Uniform Eigencentrality

Linearized Stability Potts model[47] Potts model[47] Potts model[48], [47]

Time-one (linearized) stability Modularity[85] Modularity[85] Modularity[85]

Null model Configuration model Configuration model Erdös-Rényi

Spectral Algorithm Shi-Malik[72] Shi-Malik[72] Fiedler[41], [42] Sussman[60]

Fig. 9. Summary of the dynamics-based Markov Stability framework and connections with centrality measures, and

other clustering and community detection methods in the literature.

null model (long considered as inferior in the null-model

literature [85], [4]) and show that it is linked to an optimization

that tends to produce node-balanced communities, and can be

more relevant under particular dynamical processes, consistent

with the findings of Traag et al [48]. The exploration of

alternative random walks, such as the Ruelle-Bowen walk, also

highlights the capability of introducing alternative measures of

centrality and extending community detection to include non-

standard Markov processes.
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APPENDIX

Hierarchical versus multiscale organization

Our use of time as a resolution parameter enables Markov

Stability to detect robust partitions at different scales without

imposing a priori the coarseness of the partitions. Although

some of the methods used to optimize Markov Stability can

lead to hierarchical community structure (e.g., the use of

recursive bipartitions via Shi-Malik [14]), we also use opti-

mization heuristics that do not impose such a constraint (e.g.,

the use of the Louvain algorithm [71] optimized independently

at each time). It is then interesting to check whether or not

the sequence of partitions is compatible with a hierarchical

organization. This problem requires the introduction of a

quantity that measures whether the communities at time t′ are

nested into the communities at a subsequent time t > t′. A

well-known information theoretic measure that is particular

adapted for such a purpose is the normalized conditional

entropy:

Ĥ(P(t)|P(t′)) =
H (P(t)|P(t′))

logN
, (38)

which is also constrained to the interval [0, 1] but is now an

asymmetric quantity that vanishes only if each community

of Pt is the union of communities of Pt′ . The combined

knowledge of V̂ and Ĥ therefore allows us to uncover the

significant partitions of the system and to verify if those

partitions are organized in a hierarchical manner. For instance,

the benchmark in Fig. 5b is clearly hierarchical, as can be seen

in Figure 10a, whereas the toy network in Fig. 10b shows

that the sequence of the optimal partitions is not necessarily

hierarchical.

Consistency of robustness measures in the airport

network

As a complement to Fig. 8, Fig. 11 shows that the dips

in the normalized variation of information of the ensemble

of solutions (presented in Fig. 8) are consistent with the

presence of block-structure in the normalized variation of

information between the optimized solutions found across time

V̂ (P(t),P(t′)).

Non-hierarchical networkb)

V̂ (P(t),P(t0))

Hierarchical networka)

b) t

t’

64 

16 
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V̂ (P(t),P(t0))
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Ĥ(P(t)|P(t0))

Ĥ(P(t)|P(t0))

Fig. 10. Lack of hierarchy in a toy network. We optimize

the Markov Stability rnorm(t) of: (a) the hierarchical model

in Fig. 5b, and (b) a toy network (bottom panel) with 6

nodes and links of different strength (thick links of weight

5, thin links of weight 1). (a) The normalized variation

of information V̂ (P(t),P(t′)) (left, same as in Fig. 5b),

indicates the presence of three levels of a hierarchy.

The conditional entropy Ĥ(P(t)|P(t′)) (right) reveals that

the obtained community structure respects a strict hier-

archy, although the Louvain optimization method does

not impose such a hierarchical structure a priori. (b) For

the toy network, the normalized variation of information

V̂ (P(t),P(t′)) and the number of communities (left) reveal

a sequence of partitions with 6, 4, 3, and 2 communities

(shown bottom). The 3-way partition is especially robust.

In this case, however, the sequence of uncovered parti-

tions is not hierarchical since the three-way partition is not

nested into the two-way partition. This is revealed by the

conditional entropy Ĥ(P(t)|P(t′)) (right): there is a region

of t > t′ in which Ĥ(P(t)|P(t′)) > 0.
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Fig. 11. Consistency of two robustness measures: persistence across time and optimization. This figure complements

Fig. 8. (Top) Colormap of the normalized variation of information V̂ (P(t),P(t′)) for the optimized partitions of the

airport network across time. The dark blue blocks indicate plateaux of similar partitions (see Fig. 5 and Figure 10a).

(Bottom) The normalized variation of information of the ensemble of solutions with respect to the random seed of the

optimization (same as in Fig. 8a). The Markov times delimiting the blocks (top) correspond to peaks of the normalized

variation of information of the ensemble of solutions (bottom), while the dips fall within the squares. Some of these

dips have been presented as representative partitions in Fig. 8.


	1 Introduction
	2 The simple random walk and community detection: Discrete-time Markov Stability for undirected graphs
	3 Continuous-time Markov Stability: the dynamical origin of different quality functions
	3.1 Normalized Laplacian Markov Stability
	3.2 Combinatorial Laplacian Markov Stability
	3.3 Normalized vs Combinatorial Markov Stability: some examples
	3.4 The simple random walk and its continuous-time versions: degree as centrality

	4 Community detection based on other notions of centrality: the Ruelle-Bowen random walk
	4.1 The role of centrality in community detection
	4.2 Community detection according to the Ruelle-Bowen random walk

	5 Markov Stability for Directed Graphs
	6 Computational methodology and practical considerations
	6.1 Optimization of Markov Stability
	6.2 Robustness of partitions

	7 Discussion
	References
	Appendix

