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RANDOM WALKS ON  COMPACT SEMIGROUPS

A.   MUKHERJEA,   T.   C.   SUN   AND   N.   A.   TSERPES

Abstract. Let ß be a regular Borel probability measure with

support F on a compact semigroup S. Let X¡, X2, ■ ■ ■ be a sequence

of independent random variables on some probability space

(fi, S, P) with values in 5, having identical distribution P(X„ G B) =

ß(B). The random walk Zn = X1X2 ■ ■ ■ X„ is studied in this paper.

Let D be the closed semigroup generated by F. An element x in D

is called recurrent iff PX(Z„ G Nx i.o.) = l for every open set Nx

containing x. This paper characterizes the recurrence of an element

x in terms of divergence of the series 2»=i ß"(Nx) for every open

set Nx containing x. It also shows that the set of recurrent states of

{Zn} is precisely the kernel of D.

1. Let S be a compact semigroup, i.e. a compact Hausdorff space which

is algebraically a semigroup with jointly continuous multiplication. Let

ß be a regular probability measure defined on the Borel subsets of S.

Let Xlt X2, ■ • • be a sequence of independent random variables on some

probability space (Í2, 2, P) with values in S, having identical distribution

P(Xn e B) = ß(B) for Borel sets B in S. For probabilistic considerations,

we will, with no loss of generality, identify the process Xn with the usual

coordinate representation process in the sequence space S™. The sequence

Z„=X1Xt ■ • • X„, «=1, 2, • • • , is called a right random walk on S

generated by ß. The sequence Wn=XnXn_1 • ■ ■ A",, n=l,2, •••, is

analogously called a left random walk on S. The set D = cl(U"=1 Fn), the

closed subsemigroup generated by F={xeS: every open set containing

x has positive ^-measure} = the support of ß, is called the support of the

random walk {Zn} or {Wn}. By the kernel A of D, we mean the minimal

two-sided ideal (which always exists since D is a compact semigroup) of

D. It is well known that A is a completely simple semigroup (i.e. simple

and contains a primitive idempotent) and, for every x g A, xK=xD is a

minimal right ideal of D and contains an idempotent. For these facts, we

refer to [1].

Throughout this paper, we will use the following notations.

y~xB = {xeS: yx e B},

A"1B= (J {y^B-.yeA}    and

Zfc Zn = Xk+1Xk+2 • ■ • Xn.
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Let   ßn   denote   ß*ß* ■ ■ • *ß   («-times).   Then   P(ZkeB)=ßk(B)   and

P(Zn+ke B\Zn=x)=ßk(x~1B).   [Note that implicitly we have assumed

that the ZB's are measurable in the sequence probability space. The meas-

urability of the ZB's is, of course, a fact when S is second countable.]

An element x e D is called a recurrent state for {Zn} if

Px(Zn e Nx i.o.) = P(Zn e Nx infinitely often | Zx = x) = 1

for every open set Nx containing x. A random walk having at least one

recurrent state is called recurrent. Recurrent random walks were studied

recently by Rosenblatt [8], Martin-Löff [6] and Larisse ([3], [4]) in the

case of discrete semigroups and by the authors [10] in the case of compact

abelian and completely simple semigroups. In [10], the authors showed

that the set of recurrent states of the random walk {Z„} on a compact

abelian S is precisely the kernel K of D. The methods in [10] exploited the

abelian property of S and so could not be extended to the nonabelian

case.

The purpose of this paper is to characterize the recurrence of an ele-

ment x e D in terms of divergence of the series 2»Li ßn(Nx) for every

open set Nx containing x and to show that the set of recurrent states of

{ZB} is precisely the kernel K of D, in the case of compact semigroups S.

It is relevant to mention that the same problem of recurrence was first

considered by Chung and Fuchs on the Euclidean «-space in [2] and by

Loynes on locally compact and compact groups in [5] with a little different

definition which is equivalent to our definition on groups. Our definition

of recurrence on semigroups differs from that of Chung and Fuchs or

Loynes since one can easily find compact semigroups where there are

random walks which are not recurrent in their sense; for instance, if

S=ExG, where G={1, a} is a group and E={ex, e2) is a left-zero semi-

group and ß is the normed counting measure on S, then it is easy to see

that, for every x in S, P(Zn=x i.o.)=|<l.

In what follows, S (and hence D) is always compact. We write: (a)

x—>y when y e xD and x, y elements of D (b) x-*y i.o. when

Px(Zn e Ny i.o.) = 1

for every open set Ny containing y, for x, y elements of D.

2. Before we present our main results, we need the following lemmas.

Lemma 2.1. Given x e S and Ny, an open set containing y in S, we can

find open sets Nx and N2 containing x and y respectively such that TVfVVa <=■
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Proof. Suppose first that x~*Ny is empty. Then y $ xS. If for every

open set N' containing y and open set N" containing x, N'C\N"S is

nonempty, then we can find a net yu converging to y and a net xu con-

verging to x such that yu=xusu, where sjs are elements in S. Since S is

compact, we can find a subnet of su converging to some element s in S.

But then y=xs and this contradicts that x~1Ny is empty. Hence, when

x~xNv is empty, there exist open sets Ni and N2 containing x and y

respectively such that N2r\N^S is empty which means that N^N2 is

empty.

Suppose next that x~1Ny is nonempty. Suppose, for every open set N'

containing y and contained in /V„, a compact neighbourhood of y such

that N0<=Ny, and every open set N" containing x, we have N"~1N'n

(x_1/V„)c is nonempty. Then we can find a net xu converging to x and

zu G N"~1N'r\(x~1Ny)c such that xuzu e N0 and xzu $ Ny. Since 5 is com-

pact, we can find a subnet of zu converging to z such that xz e N0 and

xz ^ Ny. This is a contradiction and the lemma follows.

Lemma 2.2.   If"x—»j i.o. and x—>z, then z-+y i.o.

Proof. If z+->y i.o., then there is an open set N containing y such that

Pz(ZneN finitely often)>0. By Lemma 2.1, we can find open sets Nz

and Ny containing z and y respectively such that N~xNy c z_1/V. But then

P(Zn e N71iVB finitely often) > 0   and

(1) PX(Z„ g Nv finitely often) ;> Px(Zk e Nz, Zn e Ny finitely often)

^ Px(Zk e Nz, Z?Zn e N~xNy finitely often)

= Px(Zk e Nz)P(Zn e N^N, finitely often)

>Px(Zk e Nz)P(Zn g z-W f.o.) > 0,

if Zk is such that Px(Zk e Nz)>0. This is a contradiction to the fact that

x—*y i.o. and the lemma follows.

Lemma 2.3. The set R of the recurrent states of{Zn} is a subset of the

kernel A of D.

Proof. Let x e R. Then x g xD. We claim that xD is a minimal

right ideal of D. To prove this, let a e xD. Suppose that x £ aD. Then,

by Lemma 2.1, we can find open sets Nx and Na containing x and a

respectively such that NälNxC\D is empty. Since a e xD, for some positive

integer k, Px(Zk e Na)>0. Now

Px(Zn g Nx finitely often) ^ Px(Zk e Na, Zn+k e Nx finitely often)

^ Px(Zk g Na, Z^Zn+fc g N?NX finitely often)

= Px(Zk e Na) > 0.
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This contradicts that x e R and therefore, x e aD so that xD is a minimal

right ideal of D. Since the kernel K of D is the union of all minimal right

ideals of D, x e K.

Theorem 2.4.    Let y e D. Then the following are equivalent:

(a) y^>-y i.o. with respect to {Zn}.

(b) 2nli ßn(y~1Nv)= co for every open set Ny containing y.

(c) 2«°=i ßn(Ny)= <x for every open set Ny containing y.

(d) y^-y i.o. with respect to {Wn}.

(e) 2»°=i ßn(Nyy~1)= oo for every open set Ny containing y.

Proof. We will prove that (a), (b) and (c) are equivalent. Then by

dual arguments, (c), (d) and (e) also will be equivalent.

First, (a) implies (b), by the Borel-Cantelli Lemma.

Next, we show that (b) implies (c). We assume (b) and that there is an

open set Ny containing y such that 2£Li ßn(Ny)<co. Let N' be a compact

neighbourhood of y such that N' c Ny. Then j_17V' is compact. Noting

that for x ey-^N', yx e N' and so we can find open sets Nx(y) and N(x)

containing y and x respectively such that Nx(y)N(x)^Ny, we can find

(using compactness) an open set N containing y such that jrWcr'AT,

for every z in N. Now for every positive integer k,

2 ßn(Ny) ^       2 ß^i^N
71=1 •>    LB=£_|_1

k(dz)

which means that we can find a set A such that, for every positive integer

k, ßk(A)=0 and, for z$A, 2»=i ßn(z~1Ny)<co. Hence there exists

iveJV such that 2r?=ißn(w~1Ny)<co. Since y^N^w^Ny, this contra-

dicts the assumption of (b).

Finally, we show that (c) implies (a). Let k be an arbitrary positive

integer and Ny be an open set containing y. Then if (c) holds, we have

2¿Li HiZoP(Zj+ik eNy)=co. So we can find an integer m such that

l=«j=A: and yZ0P(Zm+ikeNy) = oo. Now

1 = P(ZB e Ny finitely often)

oo

^ 2 P(zm+ik e Ny, Zn $ Ny for all « ^ m + (i + l)k)
i=0

^ 2 P(Zm^ik e Ny, Z^UZ„ £ JV;X for all « ^ m + (i + l)k)
t=0

oo

= P(ZB £ N^Ny for all n ^ fc) £ P(Zm+tt 6 AT,)

which means that, for any open set Ny containing y and every positive
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integer k,

P(Zn <£ NfNy for all n ^ k) = 0.

Now given an open set N containing y, by Lemma 2.1, we can find an

open set Ny containing y such that N^NyCiy^Ny. Then

Pv(Zn e N finitely often) <| P(Zn e N^Ny finitely often) = 0.

Hence y-*y i.o. and (a) holds.

Theorem 2.5. Let y e D andx e K=the kernel of D. Then the following

are equivalent:

(a) x—»y i.o. with respect to {Zn}.

(b) 2^=i ßn(x~1Ny)= co for every open set Ny containing y.

(c) x—>-j and 2«°=i ßn(Ny)—cofor every open set Ny containing y.

Proof.    First, (a) implies (b), by the Borel-Cantelli Lemma.

Next, we show that (b) implies (c). Suppose that (b) holds. Then by

following the proof of "(c) implies (a)" in Theorem 2.4 and noting that

Px(Zm+ik e Ny, Z^HtZn $ N^Ny for all n ^ m + (i + i)k)

= Px(Zm,_ik e Ny) ■ P(Zn <¿ N-'Ny for all n ^ fc),

we see that, for every open set Ny containing y and each positive integer k,

P(Zn$NyXNy for all n^.k)=0. Then it follows as in Theorem 2.4 that

y^-y i.o. This implies (c), by Theorem 2.4.

Finally, we show that (c) implies (a). Since (c) holds, by Theorem 2.4,

y—»y i.o. Since x—*y, y exD. But xD is a minimal right ideal of D, x

being an element of A. Therefore, x g xD=yD so that y—>-x. By Lemma

2.2, x—>y i.o. The proof of the theorem is complete.

Remark. Using Theorem 2.4, it is now easy to show that the set R

of recurrent states of {Z„} is precisely the kernel A of D. If, for each

y g D, y is not recurrent, then by Theorem 2.4 we can find an open

neighbourhood Ny for each y such that 2^°=i ßn(Ny) is finite. But then

since D is compact, 2™=i ßn(D) ¡s finite, which is absurd. Hence R is non-

empty. Also, A is a left ideal of D. If R' is the set of recurrent states of the

left random walk {Wn}, then, by Theorem 2.4, R = R'. Also, R' is a right

ideal of D. Therefore, A is a two-sided ideal of D and hence contains A.

By Lemma 2.3,.Ac K. Hence R = K. A direct proof of this interesting fact

can also be given independently of Theorem 2.4. This is shown in what

follows.

Theorem 2.6. The set R of recurrent states of{Zn} is precisely the kernel

KofD.
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Proof. Because of Lemma 2.3, suffice it to show that K<=R. We will

use the fact that for any regular probability measure Q on S, the function

x—>Q(x~xU) is lower semicontinuous for open U. Now let x e K. For any

y exD, we have x eyD. For any open neighbourhood U of x, UC\yD

is nonempty. Thus for some «, Ur¡yFn is nonempty. Let

Un = {y e xD: U n yFn is nonempty}.

Then Un is relatively open in the compact set xD. So there is a finite

subcover and, for some finite «,

g(y) = 2F(y~lu)>°
jan

for all yexD. Then by the lower semicontinuity of g(y), there is ap>0

such that g(y)~^p for all y e xD. Let q—pln. For any positive integer k,

the conditional probability that xZm $ U for «rC<«i_«(A:-|-l), given any

conditions on X¡ for/'_«£, is at most 1— q. Hence

P(xZm <jÉ U for nk < m = «TV) = (1 - qf~k

which converges to zero as N approaches infinity. This means that

Px(Zm e U finitely often) = 0

so that x e R. The proof is complete.

Acknowledgement. We are grateful to the referee for showing us the

direct proof of Theorem 2.6.

Added in proof. Theorem 2.5 is true for every x, y e D, if S is com-

pact abelian. For inequality (1) (Proof of Lemma 2.2) (with Px, z, Nz re-

placed by P, x, Nx resp.) shows that if xky i.o., then P(Zn e Ny f.o.)>0,

a contradiction to a result of [10], since for every y in the kernel

P[Zn e Ny i.o.] = 1 for every open set Ny containing y.
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