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Abstract. Let G be a finite group. Choose a set S of size k uniformly from G

and consider a lazy random walk on the corresponding Cayley graph. We show that
for almost all choices of S given k = 2 a log2 |G|, a > 1, this walk mixes in under
m = 2 a log a

a−1
log |G| steps. A similar result was obtained earlier by Alon and

Roichman (see [AR]), Dou and Hildebrand (see [DH]) using a different techniques.
We also prove that when sets are of size k = log2 |G|+O(log log |G|), m = O(log3 |G|)
steps suffice for mixing of the corresponding symmetric lazy random walk. Finally,
when G is abelian we obtain better bounds in both cases.

Introduction

In the past few years there has been a significant progress in analysis of random
walks on groups with random support. Still for general groups G and small sets of
generators, such as of size O(log |G|), more progress is yet to be made. Our results
partially fill this gap.

Here is a general setup of a problem. Let G be a finite group, n = |G|. For a
given k choose uniformly k random elements g1, . . . , gk ∈ G. Denote by S the set
of these elements. A lazy random walk W = W(G,S) is defined as a finite Markov
chain Xt with state space G, and such that X0 = e,

Xt+1 = Xt · gϵii

where gi = gi(t) are independent and uniform in [k] = {1, . . . , k}; ϵi are independent
and uniform in {0, 1}. By Qm denote the probability distribution of Xm. If S is a
set of generators, then Qm(g) → 1/|G|, i.e. the walk W has a uniform stationary
distribution U , U(g) = 1/n for all g ∈ G.

Key words and phrases. Random random walks on groups, random subproducts, probabilistic

method, separation distance.
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Define the total variation distance d(m) of the walk after m steps as follows:

d(m) = max
A⊂G

|Qm(A)− U(A)| = 1

2

∑
g∈G

∣∣∣∣Qm(g)− 1

|G|

∣∣∣∣
Also define the separation distance

s(m) = |G|max
g∈G

(
1

|G|
−Qm(g)

)
It is easy to see that 0 ≤ d(m) ≤ s(m) ≤ 1. It is also known (see e.g. [AD2]) that
d(m+1) ≤ d(m), s(m+1) ≤ s(m) for all m > 0, and s(2m) < C d(m), a universal
constant C and large enough m, such that d(m) < 1/16.

The general problem is to find the smallest m such that d(m), s(m) ≤ ε for
almost all choices of S. Clearly, if m is small enough, then almost surely S is not
a set of generators and s(m) = 1, d(m) ≥ 1/2. The example of G = Zr

2 shows that
if k < r = log2 n this is the case. Thus it is reasonable to consider only the case
k ≥ log2 n.

Theorem 1. Let G be a finite group, n = |G|. Let ε > 0, a > 1 be given. Then

E[s(m)] → 0 as n → ∞ ,

where the expectation is taken over all choices of S = {g1, . . . , gk} of size

k > 2 a log2 n ,

and where s(m) is the separation distance of the lazy random walk W(G,S) after
m steps, for

m > 2 (1 + ε) a ln
a

a− 1
log2 n

For example, when a = 2, ε → 0, we have m ≈ 2.77 log2 n steps of the lazy walk
is enough to drive the expected separation distance to 0, where the set of generators
has size k > 4 log2 n and is chosen uniformly in G.

Our second result deals with the case when k = log2 n + o(log n). While we
cannot show that m = O(log n) steps is enough (later we show that this is not true
in general), we prove that m = O(log3 n) suffices. For a technical reason, we need
to use a symmetric lazy random walk W◦(G,S) defined as follows :

Xt+1 = Xt · gϵii

where ϵi are independent and uniform in {±1, 0}, and gi are independent and
uniform in S.

Theorem 2. Let G be a finite group, n = |G|. Let ε > 0 be given. Then

E[s(m)] → 0 as n → ∞ ,
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where the expectation is taken over all choices of S = {g1, . . . , gk} of size

k = ⌈log2 n+ (1 + ε) log2 log2 n⌉

and where s(m) is the separation distance of the symmetric lazy random walk
W◦(G,S) after m steps, for

m > (1 + ε) 3 ln 2 (log2 n)
3

Both results are obtained as an application of the Erdős-Rényi results on random
subproducts (see [ER]).

A brief history of the problem. In [AD1] Aldous and Diaconis formulated the
following informal conjecture for the usual (not lazy) random walks :

If both k and logk n are large, then the total variation distance d(m) is small
with high probability for m > (1 + ε) logk n.

In a superlogarithmic case the conjecture was modified and proved by Dou and
Hildebrand in [DH]. They showed that E[d(m)] → 0 as n → ∞ if k > (log n)a,
a > 1, and m > a

a−1 logk n(1+ ε). They also showed that the factor a
a−1 cannot be

lowered for certain classes of groups. A different proof was later found by Roichman
(see [R].)

The case k = O(log n) for general groups was first explored by Alon and Roich-
man in [AR], where authors showed that the second largest eigenvalue λ2 of the Cay-
ley graph Γ(G,S) is bounded by a constant. This immediately impliesm = O(log n)
steps is enough for mixing. Formally, they showed that given 1 > δ > 1/e,
k ≥ (1 + o(1))2e4 ln 2/(δ e − 1) then E(λ2) < δ. Although our results do not
imply these, for the mixing time this gives bounds that are slightly worse than
ours. We shall note that authors work with symmetric sets of generators.

Another approach was introduced by Dou and Hildebrand in [DH, §5]. They
showed that if k = a log n,m > b logn, where a > e2, b < a/4, and b log(eb/a) < −1,
then E[d(m)] → 0 as n → ∞. The result of Theorem 1 is a somewhat stronger
version of a similar result. Particularly, we require just a > 2. Again, the direct
comparison of results is cumbersome since authors use different measures of mixing
(separation vs. total variation distance), different types of walks (1/2 vs. 0 holding
probability), and in addition to that the latter result expresses m = m(k, n) inex-
plicitly. Let us point out, however, that as k/ log2 n → ∞ the result in [DH] gives
an asymptotically better bound on the expected number of steps (m/ log2 n → 0
vs. m/ log2 n → 2). On the other hand our probabilistic method approach seems
slightly more straightforward and easier to generalize.

The case k = log2 n+ o(n) studied in Theorem 2 is also not new in this setting.
In [AR] authors remarked that one can easily get m = O(log4 n) bound using
just the diameter bound. We have all reasons to believe that the power 3 can
be (and should be) brought down to at least 2. However the examples show that
m = Ω(log n log log n) in some cases (see below).

For specific groups, such as abelian groups, the situation is well understood.
Several authors have obtained sharp bounds for these random random walks (see
[G, H, PV, W]). A good guidance for the case k = O(log n) is again Zr

2. It is known
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that m = O(r log r) is necessary and almost always sufficient in case k = r+Const
(cf. Theorem 2, see [D1, PV, W]), while in case k = Const · r we have m = O(r)
is enough (see [W]). This shows that the bound in Theorem 1 is of the right order.
We should also mention that in the case G ≃ Zr

2 the results of Wilson in [W]
give extremely sharp estimates on convergence. The paper also suggests a possible
generalization to all abelian groups, but the results have yet to be published.

An interesting observation is due to Hildebrand (see also [AR, §3]). In [H] he
showed that if G is abelian, k = (log n)a, where a < 1, then for any given ε > 0,
b > 0 and m = (log n)b we have d(m) > 1− ε for sufficiently large n. Thus there is
a phase transition around a = 1. Therefore our results can be interpreted as a look
inside this phase transition.

Although the example above cover only abelian groups, the reader should be
warned that the abelian groups might give an incomplete picture. For example,
besides Zr

2 there are nonabelian groups with the property that they cannot be
generated by less than log2 n generators (cf. [AP]). Random walks on them are yet
to be better understood. The following result, obtained a bonus from the proof of
Theorem 1, is another illustration of the “abelian groups are easier”principle.

Theorem 3. Let G be a finite abelian group, n = |G|. Let ε > 0, a > 1 be
given. Then

E[s(m)] → 0 as n → ∞ ,

where the expectation is taken over all choices of S = {g1, . . . , gk} of size

k > a log2 n ,

and where s(m) is the separation distance of the lazy random walk W(G,S) after
m steps, for

m > (1 + ε) a ln
a

a− 1
log2 n

In other words, we can save a factor of 2 in Theorem 1. This makes the result
tight when G = Zn

2 (cf. [W]). Also, we get an analog of Theorem 2 which gives
much tighter bound in this case.

Theorem 4. Let G be a finite abelian group, n = |G|. Let w be any functions
of n such that w → ∞ as n → ∞. Then

E[s(m)] → 0 as n → ∞ ,

where the expectation is taken over all choices of S = {g1, . . . , gk} of size

k > log2 n ·
(
1 + C

log log log n

log log n

)
,

where C is a universal constant (independent of n), and s(m) is the separation
distance of the lazy random walk W(G,S) after m steps, for

m > log2 n (log log2 n+ w)
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For example, w = log log log n will work. Heuristicly, Theorem 2 corresponds
to a nonexistent case a = 1 in Theorem 3. Roughly, let a = 1 + 1/ log2 n. Then
k = log2 n + 1, and m > (1 + ε) log2 n log log2 n, which is basically what Theorem
4 says.

Finally, let us mention a somewhat relevant conjecture of Babai. He conjectured
in [B2] that there exist a universal constant c such that if G is simple, then the
diameter ∆ of any Cayley graph on G is at most (log n)c. Together with the
standard bound mix < C|S|∆2 log n on a mixing time (see [AF, DSC]), and given
k = |S| = O

(
(log n)c1

)
this gives us m = C ′(log n)c2 steps is always enough for

convergence (assuming S is a set of generators.) On the other hand, it is known
that P = Pr(⟨S⟩ = G) → 1 as n → ∞, where P is the probability of a random
S, |S| = k ≥ 2 generating G. This is a result of Liebeck and Shalev (see [LS]),
conjectured earlier by Kantor and Lubotzky (see [KL]). Therefore we conclude that
Babai conjecture implies that for simple G and random S of constant size k ≥ 2
the mixing time is almost surely polylogarithmic in n.

Note here that the above conjecture of Babai as well as its application to conver-
gence is open even for G = An. The best known result is due to Babai and Hetyei
(see [BH]) who found ∆ ≤ (log n)logn(1/2+o(1)) bound for almost all pairs of even
permutations.

1. Proof of Theorem 1

Let G be a finite group, n = |G|. Throughout the paper we will ignore a small
difference between random subsets S and random sequences J of group elements.
The reason is that the two concepts are virtually identical since probability of
repetition of elements (having gi = gj , 1 ≤ i < j ≤ k) when k = O(log n) is
exponentially small. Thus in the future we will substitute uniform sets S of size k
by the uniform sequences J ∈ Gk, which, of course, can have repeated elements.

Fix a sequence J = (g1, . . . , gk) ∈ Gk. Random subproducts are defined as

gϵ11 · . . . · gϵkk
where ϵi ∈ {0, 1} are given by independent unbiased coin flips. Denote by PJ the
probability distribution of the random subproducts on G. Erdős and Rényi showed
in [ER] that if g1, . . . , gk are chosen uniformly and independently, then :

(∗) Pr

(
max
g∈G

∣∣∣∣PJ (g)−
1

n

∣∣∣∣ ≤ ε

n

)
> 1− δ for k ≥ 2 log2 n+ 2 log2 1/ε+ log2 1/δ

Proofs of Theorems 1, 3 are based on (∗).
Let m > 2 log2 |G|, and let J be as above. Denote by QJ the probability dis-

tribution Qm
J of the lazy random walk W(G,S) after m steps, where S = S(J) is

a set of elements in J . Suppose we can show that with probability > 1 − α/2 we
have sJ(m) = nmaxg∈G(1/n−Qm

J (g)) ≤ α/2, where α → 0 as n → ∞. This would
imply the theorem. Indeed, we have

E[sJ(m)] ≤ Pr
(
sJ ≤ α/2

)
· α/2 +Pr

(
sJ > α/2

)
· 1

< (1− α/2)α/2 + α/2 < α → 0
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By definition, QJ is distributed as random subproducts

gϵ1i1 · . . . · gϵmim

where i1, . . . , im are uniform and independent in [k] = {1, . . . , k}.
Let J = (g1, . . . , gk) be fixed. For a given I = (i1, . . . , im) ∈ [k]m, consider

J(I) = (gi1 , . . . , gim) and RI = PJ(I). By definition of a lazy random walk we have

QJ =
1

km

∑
I∈[k]m

RI

We will show that for almost all choices of J and I, the probability distribution RI

is almost uniform.

Let I = (i1, . . . , im) ∈ [k]m be a sequence. Define an L-subsequence I ′ =
(ir1 , . . . , irl) to satisfy 1 ≤ r1 < · · · < rl ≤ m, and for all j, 1 ≤ j ≤ m, there exist
a unique t, 1 ≤ t ≤ m, such that rt ≤ j and irt = ij . In other words, we read
numbers in I, and whenever we find a new number, we add it to I ′. For example,
if I = (2, 7, 5, 1, 2, 3, 2, 5, 6), then I ′ = (2, 7, 5, 1, 3, 6) is an L-subsequence of length
6. Note that by definition L-subsequence is always unique.

Lemma 1. Let I, J be as above, n = |G|. Let I ′ be a L-subsequence of I. Then
for all α, β > 0 we have maxg∈G |RI′(g)−1/n| ≤ α/n with probability 1−β implies
maxg∈G |RI(g)− 1/n| ≤ α/n with probability 1− β.

Lemma 2. Let β > 0, a > 1, k = a l, and m = (1 + β) k ln a
(a−1)2 . Consider

the probability P (l) a sequence I ∈ [k]m contains an L-subsequence I ′ of length l.
Then P (l) → 1 as l → ∞.

First we deduce Theorem 1 from the lemmas and then prove the lemmas.

Proof of Theorem 1. Let I ′ be a L-subsequence of I of length l > 2 log2 n +
3 log2 1/δ. Since numbers in I ′ are all different, for at least (1 − δ) fraction of all
J = {g1, . . . , gk}, we have

max
g∈G

∣∣∣∣RI′(g)− 1

n

∣∣∣∣ ≤ δ

n

Indeed, this is a restatement of (∗) with ε = δ.
Note here that we do not require the actual group elements gij , ij ∈ I ′ be

different. By coincidence they can be the same. But we do require that numbers
in I ′ are all different, so that the corresponding group elements are independent.

Let l = ⌈2 log2 n + 3 log2 1/δ⌉, k > a l, and m > (1 + ε) a l ln a
a−1 . Denote by

P (l) the probability that a uniformly chosen I ∈ [k]m contains an L-subsequence
of length l. By Lemma 1, with probability > P (I)(1− δ) we have

max
g∈G

(
1

n
−RI(g)

)
≤ δ

n
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where the the probability is taken over all I ∈ [k]m and all J ∈ Gk. Setting
δ = δ(α, ε, n) small enough we immediately obtain sJ (m) ≤ α/2 with probability
> (1 − α/2). where the the probability is taken over all J ∈ Gk. By observations
above, this is exactly what we need to prove the theorem.

Now take δ = α/4, β = ε/2. By Lemma 2, and and since l > log2 n we have
P (I) > 1−α/4 for n large enough. We conclude P (I)(1−δ) > (1−α/4)2 > 1−α/2.
This finishes proof of Theorem 1. �

2. Proof of Lemmas

Proof of Lemma 1. For any x, y ∈ G denote by yx the element xyx−1 ∈ G.
Clearly, if y is uniform in G and independent of x, then yx is also uniform in G.

Let Q be a distribution on a group G which depends on J ∈ Gm and takes values
in G. We call Q (α, β)-good if with probability > (1 − β) it satisfies inequality
maxg∈G |Q(g)− 1/n| ≤ α/n.

Consider the following random subproducts:

h = gϵ11 · . . . · gϵrr · x · gϵr+1

r+1 · . . . · gϵll

where x is fixed, while g1, . . . , gl are uniform and independent in G, and ϵ1, . . . , ϵl
are uniform and independent in {0, 1}. We have

h = gϵ11 · . . . · gϵrr · (gxr+1)
ϵr+1 · . . . · (gxl )ϵl · x

Thus h · x−1 is distributed as RI , I = (1, 2, . . . , l). Therefore if RI is (α, β)-good,
then distribution of h is also (α, β)-good.

Similarly, let x, y, . . . be fixed group elements. Then random subproducts

h = gϵ11 · . . . · x · gϵrr · . . . · y · gϵll · . . .

are distributed as RI · f(x, y, . . . ), I = (1, . . . , r, . . . , l, . . . ). Indeed, pull the right-
most fixed element all the way to the right, then pull the previous one, etc. We
conclude that if RI is (α, β)-good, then distribution of h is also (α, β)-good. Note
that in the observation above we can relax a condition that the elements x, y, . . .
are fixed. Since we do not have to change their relative order, it is enough to require
that they are independent of the elements gi to the right of them.

Now let I = (i1, . . . , im) ∈ [k]m, and let I ′ be an L-subsequence of I. Define
Q(h) to be a distribution of random subproducts

h = gϵ1i1 · . . . · gϵmim

where all the powers ϵj are fixed except for those of j ∈ I ′. We claim that if RI′

is (α, β)-good, then Q(h) is also (α, β)-good. Indeed, pull all the elements that are
not in I ′ to the right. By definition of the L-subsequence, the elements in I ′ to
the right of those that are not in I ′ must be different and thus independent of each
other. Thus by the observation above Q(h) is also (α, β)-good.

Now, the distribution RI is defined as an average of the distributions Q(h) over
all of the 2m−l choices of values ϵs of elements not in I ′ = (ir1 , . . . , irl). Observe
that for fixed g1, . . . , gk and different choices the ϵs, s ̸= rj the distributions of
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subproducts h can be obtained by a shift from each other (i.e. by multiplication
on a fixed group element). Therefore each of these distributions has the same
separation distance. In other words, each of the J is either “good” altogether
or “bad” altogether for all 2m−l choices. Therefore after averaging we obtain an
(α, β)-good distribution RI . This finishes proof of the lemma. �

Proof of Lemma 2. The problem is equivalent to the following question. What
is the probability that in the usual coupon collector’s problem with k coupons,
after m trials we have at least l different coupons? Indeed, observe that if all
m chosen coupons correspond to elements in a sequence I ∈ [k]m, then distinct
coupons correspond to L-subsequence I ′ of length l. Note that in our case k = a l
and m = (1 + β) k log a

a−1 .
Let τ be the first time we collect l out of k possible coupons. Let us compute

the expected time E(τ). By the usual argument (see [F]) we have

E(τ) =
k

k
+

k

k − 1
+

k

k − 2
+ · · ·+ k

k − l + 1
= k (ln k − ln(k − l) + o(1))

The o(1) in the last equality comes from cancellation of the Euler-Mascheroni con-
stant γ when k, (k − r) → ∞, and the formula (see e.g. [WW], §12.1) :

1

1
+

1

2
+ · · ·+ 1

n
= lnn+ γ + o(1)

When k = a l. We obtain

E(τ) = a l

(
log

a

a− 1
+ o(1)

)
Let us compute V ar(τ). We have

V ar(τ) =

l−1∑
i=0

k

k − i

(
k

k − i
− 1

)
≤ l

k

k − l

(
k

k − l
− 1

)
= l

a

(a− 1)2

Now let m = (1 + β)E(τ). The probability P (l) that after m trials we collect l
coupons is equal to Pr(τ ≤ m). Use Chebyshev inequality:

Pr(τ > (1 + β)E(τ)) ≤ Pr(|τ − E(τ)| > β E(τ)) <
V ar(τ)

β2 (E(τ))2
→ 0 as l → ∞

This finishes the proof of the lemma. �

3. Proof of Theorem 2

The proof of Theorem 2 is based on a different result of Erdős and Rényi. In [ER]
along with (∗) they proved that if a sequence J = (g1, . . . , gk) is chosen uniformly
and independently, then :

(∗∗) Pr

(
min
g∈G

PJ(g) > 0

)
> 1− δ for k ≥ log2 n+ log2 log2 n+ 2 log2 1/δ + 5
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Here PJ is a distribution of random subproducts as in (∗).
We will use (∗∗) to prove that with probability > 1−α taken over all choices of

J ∈ Gk we have

sJ ≤ nmax
g∈G

(
Qm

J (g)− 1

n

)
< α

where m > 3 ln 2 k2 and k as above. By the same reasoning as in the proof of
Theorem 1, this implies Theorem 2.

Consider group elements g1, . . . , gk such that every g ∈ G is given by a subprod-
uct

g = gϵ11 · . . . · gϵkk ,

where ϵi ∈ {0, 1}. Denote p(k) the probability of this event given g1, . . . , gk are
chosen uniformly in G.

We will use the subproducts above as paths on a Cayley graph generated by g±1
i .

Note here that every generator occurs in each of the subproducts at most N = 1
time. Also, the diameter ∆ of the Cayley graph above is bounded by maximum
length of subproducts:

∆ ≤ k

Let us use the path arguments (see [DSC, AF]) to compare the reversible Markov
chain (which corresponds to our symmetric random walk) and a trivial Markov
chain which at each step sends a chain to a uniform group element. For the second
largest eigenvalue λ we get :

λ ≤ 1− 1/A

where

A = max
i

1

Q1(gi)

∑
g∈G

∆N
1

|G|
= 3 k∆N ≤ 3 k2

Therefore if m = (1 + β)A lnn, n = |G| we get

s(m) ≤ nmax
g∈G

|Qm − 1/n| ≤ nλm ≤ (1− 1/A)(1+β)A lnnn = 1/nβ → 0

as n → ∞, where the second inequality can be found e.g. in [B1].

Now take k = ⌈log2 n+(1+ε) log2 log2 n⌉. Since ε log2 log2 n−5 → ∞, we obtain
that p(k) → 1 as n → ∞, where p(k) is the probability of choosing J ∈ Gk such
that the left hand side of (∗∗) holds. But in this case sJ(m) → 0 as n → ∞, and
where m = (1+ β) 3 k2 lnn as above. Now take β = ε/2 and express m in terms of
log2 n. This finishes proof of the Theorem. �

4. Proof of Theorems 3 and 4

Proof of Theorems 3, 4 is very much similar to the proof of Theorem 1, so we
will just point out the differences.

When G is an abelian group, we can use a result of Erdős and Hall in [EH]. They
showed that there exist a universal constant C such that for any ε, δ > 0, n → ∞
we have

(∗′) Pr

(
max
g∈G

∣∣∣∣PJ(g)−
1

n

∣∣∣∣ ≤ ε

n

)
> 1− δ for k ≥ log2 n

(
1 + C

log log log n

log log n

)
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Using the arguments from the proof of Theorem 1 we immediately obtain The-
orem 3. �

Similarly, to obtain Theorem 4 we need a proper analog of Lemma 2. Let us
estimate how big the m we need to get l distinct numbers in I. This is just coupon
collector’s problem. If there is a total of k different coupons, k ≥ l, let X be the
time to get l different coupons. Then the the expected time E = E(X) is given by

E =
k

k
+

k

k − 1
+ · · ·+ k

k − l + 1
≤ l

l
+

l

l − 1
+ · · ·+ l

1
= l log l +O(l)

Also, since the variance of the coupon collector’s problem is given by V ar(X) =
O(l2) (see [F, §9.9]) the Chebyshev inequality gives

Pr
(
X > l log l + t l

)
<

(
C1

t− C2

)2

where C1, C2 are universal constants. Thus if

k ≥ l =

⌈
log2 n+ C

log2 n log log log n

log log n

⌉
we have δ → 0. Now take δ = ε is as in the proof of Theorem 1, and let m >
l(log l+w). Proceeding as in the proof of Theorem 1, we finish the proof of Theorem
4. �
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