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Many natural and artificial networks evolve in time. Nodes and connections appear and disappear at various

time scales, and their dynamics has profound consequences for any processes in which they are involved. The

first empirical analysis of the temporal patterns characterizing dynamic networks are still recent, so that many

questions remain open. Here, we study how random walks, as a paradigm of dynamical processes, unfold on

temporally evolving networks. To this aim, we use empirical dynamical networks of contacts between individuals,

and characterize the fundamental quantities that impact any general process taking place upon them. Furthermore,

we introduce different randomizing strategies that allow us to single out the role of the different properties of

the empirical networks. We show that the random walk exploration is slower on temporal networks than it is

on the aggregate projected network, even when the time is properly rescaled. In particular, we point out that a

fundamental role is played by the temporal correlations between consecutive contacts present in the data. Finally,

we address the consequences of the intrinsically limited duration of many real world dynamical networks.

Considering the fundamental prototypical role of the random walk process, we believe that these results could

help to shed light on the behavior of more complex dynamics on temporally evolving networks.

DOI: 10.1103/PhysRevE.85.056115 PACS number(s): 89.75.Hc, 05.40.Fb

I. INTRODUCTION

Many real networks are dynamic structures in which

connections appear, disappear, or are rewired on various

time scales [1]. For example, the links representing social

relationships in social networks [2] are a static representation

of a succession of contact or communication events, which are

constantly created or terminated between pairs of individuals

(actors). Such temporal evolution is an intrinsic feature of

many natural and artificial networks, and can have profound

consequences for the dynamical processes taking place upon

them. Until recently, however, a large majority of studies about

complex networks have focused on a static or aggregated

representation, in which all the links that appeared at least once

coexist. This is the case, for example, in the seminal works on

scientific collaboration networks [3], or on movie costarring

networks [4]. In particular, dynamical processes have mainly

been studied on static complex networks [5].

In recent years, the interest towards the temporal dimension

of the network description has blossomed. Empirical analyses

have revealed rich and complex patterns of dynamic evolution

[1,6–15], pointing out the need to characterize and model

them [9,16–19]. At the same time, researchers have started

to study how the temporal evolution of the network substrate

impacts the behavior of dynamical processes such as epidemic

spreading [13–15,20–22], synchronization [23], percolation

[12,24], and social consensus [25].

Here, we focus on the dynamics of a random walker

exploring a temporal network [26–28]. The random walk is

indeed the simplest diffusion model, and its dynamics provides

fundamental hints to understand the whole class of diffusive

processes on networks. Moreover, it has relevant applications

in such contexts as spreading dynamics (i.e., virus or opinion

spreading) and searching. For instance, assuming that each

vertex knows only about the information stored in each of

its nearest neighbors, the most naive strategy is the random

walk search, in which the source vertex sends one message to

a randomly selected nearest neighbor [5,29,30]. If that vertex

has the information requested, it retrieves it; otherwise, it sends

a message to one of its nearest neighbors, until the message

arrives at its finally target destination. Thus, the random walk

represents a lower bound on the effects of searching in the

absence of any information in the network, apart form the

purely local information about the contacts at a given instant

of time.

In our study, we consider as typical examples of temporal

networks the dynamical sequences of contact between individ-

uals in various social contexts, as recorded by the SocioPatterns

project [10,31]. These data sets contain indeed the time-

resolved patterns of a face-to-face co-presence of individuals

in settings such as conferences, with high temporal resolution:

For each contact between individuals, the starting and ending

times are registered by the measuring infrastructure, giving

access to the timing and duration of contacts.

The paper is structured as follows. In Sec. II we review some

of the fundamental results for random walks on static networks.

In Sec. III we describe the empirical dynamical networks

considered: We recall some basic definitions, present an

analysis of the data sets, and introduce suitable randomization

procedures, which will help later on to pinpoint the role of

the correlations in the real data. In Sec. IV we write down

mean-field equations for the case of maximally randomized

dynamical contact networks, and in Sec. V we investigate

the random walk dynamics numerically, focusing on the

exploration properties and on the mean first passage times.

Section VI is devoted to the analysis of the impact of the finite

temporal duration of real time series. Finally, we summarize

our results and comment on some perspectives in Sec. VII.
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II. A SHORT OVERVIEW OF RANDOM WALKS ON

STATIC NETWORKS

The random walk (RW) process is defined by a walker that,

located on a given vertex i at time t , hops to a nearest neighbor

vertex j at time t + 1.

In binary networks, defined by the adjacency matrix aij

such that aij = 1 is j is a neighbor of i, and aij = 0 else, the

transition probability at each time step from i to j is

pb(i → j ) =
aij

∑

r air

≡
aij

ki

, (1)

where ki =
∑

j aij is the degree of vertex i: The walker hops

to a nearest neighbor of i, chosen uniformly at random among

the ki neighbors, hence with probability 1/ki (note that we

consider here undirected networks with aij = aji , but the

process can be considered as well on directed networks). In

weighted networks with a weight matrix wij , the transition

probability takes instead the form,

pw(i → j ) =
wij

∑

r wir

≡
wij

si

, (2)

where si =
∑

j wij is the strength of vertex i [32]. Here the

walker chooses a nearest neighbor with probability propor-

tional to the weight of the corresponding connecting edge.

The basic quantity characterizing random walks in net-

works is the occupation probability ρi , defined as the steady-

state probability (i.e., measured in the infinite time limit)

that the walker occupies the vertex i, or in other words, the

steady-state probability that the walker will land on vertex i

after a jump from any other vertex. Following rigorous master

equation arguments, it is possible to show that the occupation

probability takes the form [33,34]

ρb
i =

ki

〈k〉N
, ρw

i =
si

〈s〉N
, (3)

respectively, in binary and weighted networks.

Other characteristic properties of the random walk, relevant

to the properties of searching in networks, are the mean first-
passage time (MFPT) τi and the coverage C(t) [26–28]. The

MFPT of a node i is defined as the average time taken by

the random walker to arrive for the first time at i, starting

from a random initial position in the network. This definition

gives the number of messages that have to be exchanged,

on average, in order to find vertex i. The coverage C(t), on

the other hand, is defined as the number of different vertices

that have been visited by the walker at time t , averaged for

different random walks starting from different sources. The

coverage can thus be interpreted as the searching efficiency

of the network, measuring the number of different individuals

that can be reached from an arbitrary origin in a given number

of time steps.

At a mean-field level, these quantities are computed as

follows: Let us define Pf (i; t) as the probability for the walker

to arrive for the first time at vertex i in t time steps. Since in

the steady state i is reached in a jump with probability ρi , we

have Pf (i; t) = ρi[1 − ρi]
t−1. The MFPT to vertex i can thus

be estimated as the average τi =
∑

t tPf (i; t), leading to

τi =

∞
∑

t=1

tρi[1 − ρi]
t−1 ≡

1

ρi

. (4)

On the other hand, we can define the random walk reachability
of vertex i, Pr (i; t), as the probability that vertex i is visited

by a random walk starting at an arbitrary origin, at any time

less than or equal to t . The reachability takes the form,

Pr (i; t) = 1 − [1 − ρi]
t ≃ 1 − exp(−tρi), (5)

where the last expression is valid in the limit of sufficiently

small ρi . The coverage of a random walk at time t will thus be

given by the sum of these probabilities, that is,

C(t)

N
=

1

N

∑

i

Pr (i; t) ≡ 1 −
1

N

∑

i

exp (−tρi) . (6)

For sufficiently small ρi t , the exponential in Eq. (6) can be

expanded to yield C(t) ∼ t , a linear coverage implying that at

the initial stages of the walk, a different vertex is visited at each

time step, independently of the network properties [35,36].

It is now important to note that the random walk process

has been defined here in a way such that the walker performs a

move and changes node at each time step, potentially exploring

a new node: Except in the pathological case of a random walk

starting on an isolated node, the walker has always a way to

move out of the node it occupies. In the context of temporal

networks, on the other hand, the walker might arrive at a node i

that at the successive time step becomes isolated, and therefore

has to remain trapped on that node until a new link involving i

occurs. In order to compare in a meaningful way random walk

processes on static and dynamical networks, and on different

dynamical networks, we consider in each dynamical network

the average probability p that a node has at least one link.

The walker is then expected to move on average once every
1
p

time steps, so that we will consider the properties of the

random walk process on dynamical networks as a function of

the rescaled time pt .

III. EMPIRICAL DYNAMICAL NETWORKS

A. Basics on temporal networks

Dynamical or temporal networks [1] are properly repre-

sented in terms of a contact sequence, representing the contacts

(edges) as a function of time: a set of triplets (i,j,t) where i

and j are interacting at time t , with t = {1, . . . ,T }, where

T is the total duration of the contact sequence. The contact

sequence can thus be expressed in terms of a characteristic
function (or temporal adjacency matrix [37]) χ (i,j,t), taking

the value 1 when actors i and j are connected at time t , and

zero otherwise.

Coarse-grained information about the structure of dy-

namical networks can be obtained by projecting them onto

aggregated static networks, either binary or weighted. The

binary projected network informs of the total number of

contacts of any given actor, while its weighted version carries

additional information on the total time spent in interactions

by each actor [1,8,21,38]. The aggregated binary network is

056115-2



RANDOM WALKS ON TEMPORAL NETWORKS PHYSICAL REVIEW E 85, 056115 (2012)

TABLE I. Some average properties of the data sets under consideration.

Data set N T 〈k〉 p f n �tc 〈s〉

25c3 569 7450 185 0.215 256 91 2.82 0.90

eswc 173 4703 50 0.059 7 2.8 2.41 0.079

ht 113 5093 39 0.060 4 1.9 2.13 0.072

School 242 3100 69 0.235 41 25 1.63 0.34

defined by an adjacency matrix of the form,

aij = �

(

∑

t

χ (i,j,t)

)

, (7)

where �(x) is the Heaviside theta function defined by �(x) =

1 if x > 0 and �(x) = 0 if x � 0. In this representation,

the degree of vertex i, ki =
∑

j aij , represents the number

of different agents with whom agent i has interacted. The

associated weighted network, on the other hand, has weights

of the form,

ωij =
1

T

∑

t

χ (i,j,t). (8)

Here, ωij represents the number of interactions between agents

i and j , normalized by its maximum possible value, that is, the

total duration of the contact sequence T . The strength of vertex

i, si =
∑

j ωij , represents the average number of interactions

of agent i at each time step.

While static projections represent a first step in the under-

standing of the properties of dynamical networks, they coarse-

grain a great deal of information from the empirical time

series, a fact that can be particularly relevant when considering

dynamical processes running on top of dynamical networks

[21]. At a basic topological level, projected networks disregard

the fact that dynamics on temporal networks are in general

restricted to follow time-respecting paths [1,7,12,21,39,40],

meaning that if a contact between vertices i and j took place

at timesTij ≡ {t
(1)
ij ,t

(2)
ij , . . . ,t

(n)
ij }, it cannot be used in the course

of a dynamical process at any time t 	∈ Tij . Therefore, not all

the network is available for propagating a dynamics that starts

at any given node, but only those nodes belonging to its set of

influence [7], defined as the set of nodes that can be reached

from a given one, following time-respecting paths. Moreover,

an important role can also be played by the bursty nature of

dynamical and social processes, where the appearance and

disappearance of links do not follow a Poisson process, but

show instead long tails in the distribution of link presence and

absence durations, as well as long-range correlations in the

times of successive link occurrences [9,10,12,41].

B. Empirical contact sequences

The temporal networks used in the present study describe

the sequences of face-to-face contact between individuals

recorded by the SocioPatterns collaboration [10,31]: In the

deployments of the SocioPatterns infrastructure, each individ-

ual wears a badge equipped with an active radio-frequency

identification (RFID) device. These devices engage in bidirec-

tional radio communication at very low power when they are

close enough, and relay the information about the proximity of

other devices to RFID readers installed in the environment. The

devices’ properties are tuned so that face-to-face proximity

(1–2 m) of individuals wearing the tags on their chests

can be assessed with a temporal resolution of 20 s (�t0 =

20 s represents thus the elementary time interval that can be

considered).

We consider here data sets describing the face-to-face

proximity of individuals gathered in several different social

contexts: the European Semantic Web Conference (“eswc”),

the Hypertext Conference (“ht”), the 25th Chaos Communica-

tion Congress (“25c3”),1 and a primary school (“school”).

A description of the corresponding contexts and various

analyses of the corresponding data sets can be found in

Refs. [10,21,38,42].

In Table I we summarize the main average properties of the

data sets we are considering, that are of interest in the context

of walks on dynamical networks. In particular, we focus on

the following:

(1) N : number of different individuals engaged in interac-

tions;

(2) T : total duration of the contact sequence, in units of the

elementary time interval �t0 = 20 s;

(3) 〈k〉 =
∑

i ki/N : average degree of nodes in the pro-

jected binary network, aggregated over the whole dataset;

(4) p =
∑

t p(t)/T : average number of individuals p(t)

interacting at each time step;

(5) f =
∑

t E(t)/T =
∑

ij t χ (i,j,t)/2T : mean frequency

of the interactions, defined as the average number of edges

E(t) of the instantaneous network at time t ;

(6) n =
∑

t n(t)/2T: average number of new conversations

n(t) starting at each time step;

(7) 〈�tc〉: average duration of a contact;

(8) 〈s〉 =
∑

i si/N : average strength of nodes in the pro-

jected weighted network, defined as the mean number of

interactions per agent at each time step, averaged over all

agents.

Table I shows the heterogeneity of the considered data sets,

in terms of size, overall duration, and contact densities. In

particular, while the data set 25c3 shows a high density of

interactions (high p, f , and n), and consequently a large

average degree and average strength, the others are sparser.

Moreover, as also shown in the deployment time lines in [10],

some of the data sets show large periods of low activity,

followed by bursty peaks with a lot of contacts in few time

steps, while others present more regular interactions between

elements. In this respect, it is worth noting that we will not

1In this particular case, the proximity detection range extended to

4–5 m and packet exchange between devices was not necessarily

linked to face-to-face proximity.
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FIG. 1. (Color online) Distributions of P (�t) (duration of con-

tacts), P (ω) (total contact time between pairs of agents), Pi(τ ) (gap

times of a single individual i), and P (τ ) (global gap times). In the

case of Pi(τ ), we only plot the gap times distribution of the agent

which engages in the largest number of conversation, but the other

agents exhibit a similar behavior. All distributions are heavy tailed,

indicating the bursty nature of face-to-face interactions, for the four

empirical contact sequences considered.

consider those portions of the data sets with very low activity,

in which only few couples of elements interact, such as the

beginning or ending part of conferences or the nocturnal

periods.

The heterogeneity and burstiness of the contact patterns

of the face-to-face interactions [10] are revealed by the study

of the distribution of the duration �t of contacts between

pairs of agents, P (�t), the distribution of the total time in

contact of pairs of agents [the weight distribution P (ω)],

and the distribution of gap times τ between two consecutive

conversations involving a common individual and two other

different agents, for a single agent i, Pi(τ ), or considering

all the agents, P (τ ). All these distributions are heavy tailed,

typically compatible with power-law behaviors (see Fig. 1),

corresponding to the burstiness of human interactions [41].

As noted above, diffusion processes such as random walks

are moreover particularly impacted by the structure of paths

between nodes. In this respect, time-respecting paths represent

a crucial feature of any temporal network, since they determine

the set of possible causal interactions between the actors of the

graph.

For each (ordered) pair of nodes (i,j ), time-respecting paths

from i to j can either exist or not; moreover, the concept

of shortest path on static networks (i.e., the path with the

minimum number of links between two nodes) yields several

possible generalizations in a temporal network:

(1) The fastest path is the one that allows one to go from

i to j , starting from the data set initial time, in the minimum

possible time, independently of the number of intermediate

steps;

(2) the shortest time-respecting path between i and j is the

one that corresponds to the smallest number of intermediate

steps, independently of the time spent between the start from

i and the arrival to j .

TABLE II. Average properties of the shortest time-respecting

paths, fastest paths, and shortest paths in the projected network, in

the data sets considered.

Data set le 〈ls〉 〈�ts〉 〈lf 〉 〈�tf 〉 〈ls,stat〉

25c3 0.91 1.67 1607 4.7 893 1.67

eswc 0.99 1.75 884 4.95 287 1.73

ht 0.99 1.67 1157 3.86 452 1.66

School 1 1.76 853 8.27 349 1.73

For each node pair (i,j ), we denote by l
f

ij , l
s,temp

ij , l
s,stat
ij

the lengths (in terms of the number of hops), respectively,

of the fastest path, the shortest time-respecting path, and the

shortest path on the aggregated network, and by �t
f

ij and �t sij
the duration of the fastest and shortest time-respecting paths,

where we take as initial time the first appearance of i in the data

set. As already noted in other works [21,43], l
f

ij can be much

larger than l
s,stat
ij . Moreover, it is clear that l

f

ij � l
s,temp

ij � l
s,stat
ij ;

from the duration point of view, on the contrary, �t
f

ij � �t sij .

We therefore define the following quantities:

(1) le: fraction of the N (N − 1) ordered pairs of nodes for

which a time-respecting path exists;

(2) 〈ls〉: average length (in terms of number of hops along

network links) of the shortest time-respecting paths;

(3) 〈�ts〉: average duration of the shortest time-respecting

paths;

(4) 〈lf 〉: average length of the fastest time-respecting paths;

(5) 〈�tf 〉: average duration of the fastest time-respecting

paths;

(6) 〈ls,stat〉: average shortest path length in the binary (static)

projected network.

The corresponding empirical values are reported in

Table II. It turns out that the great majority of pairs of nodes are

causally connected by at least one path in all data sets. Hence,

almost every node can potentially be influenced by any other

actor during the time evolution [i.e., the set of sources and the

set of influence of the great majority of the elements are almost

complete (of size N ) in all of the considered data sets].

In Fig. 2 we show the distributions of the lengths, P (ls),

and durations, P (�ts), of the shortest time-respecting path

for different data sets. In the same figure we choose one

data set to compare the P (ls) and the P (�ts) distributions

with the distributions of the lengths, P (lf ), and durations,

P (�tf ), of the fastest path. The P (ls) distribution is short

tailed and peaked on l = 2, with a small average value 〈ls〉,

even considering the relatively small sizes N of the data sets,

and it is very similar to the projected network one 〈ls,stat〉

(see Table II). The P (lf ) distribution, on the contrary, shows

a smooth behavior, with an average value 〈lf 〉 several times

bigger than the shortest path one, 〈ls〉, as expected [21,43].

Note that, despite the important differences in the data sets’

characteristics, the P (ls) distributions [as well as P (lf ),

although not shown] collapse, once rescaled. On the other

hand, the P (�ts) and P (�tf ) distributions show the same

broad-tailed behavior, but the average duration 〈�ts〉 of the

shortest paths is much longer than the average duration 〈�tf 〉

of the fastest paths, and of the same order of magnitude than

the total duration of the contact sequence T .
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FIG. 2. (Color online) (Top) Distribution of the temporal duration

of the shortest time-respecting paths, normalized by its maximum

value T . (Inset) Probability distribution P (ls) of the shortest path

length measured over time-respecting paths, and normalized with its

mean value 〈ls〉. Note that the different data sets collapse. (Bottom)

Probability distribution of the duration of the shortest P (�ts) and

fastest P (�tf ) time-respecting paths, for the eswc data set. (Inset)

Probability distribution of the shortest P (ls) and fastest P (lf ) path

length for the same data set.

Thus, a temporal network may be topologically well

connected and at the same time difficult to navigate or search.

Indeed spreading and searching processes need to follow paths

whose properties are determined by the temporal dynamics of

the network, and that might be either very long or very slow.

C. Synthetic extensions of empirical contact sequences

The empirical contact sequences represent the proper

dynamical network substrate upon which the properties of any

dynamical process should be studied. In many cases, however,

the finite duration of empirical data sets is not sufficient to

allow these processes to reach their asymptotic state [13,44].

This issue is particularly important in processes that reach a

steady state, such as random walks. As discussed in Sec. II,

a walker does not move at every time step, but only with a

probability p, and the effective number of movements of

a walker is of the order T p. For the considered empirical

sequences, this means that the ratio between the number of

hops of the walker and the network size, T p/N , assumes

values between 3.01 for the school case and 1.60 for the eswc

case. Typically, for a random walk process such small times

permit one to observe transient effects only, but not a stationary

behavior. Therefore we will first explore the asymptotic

properties of random walks in synthetically extended contact

sequences, and we will consider the corresponding finite

time effects in Sec. VI. The synthetic extensions preserve at

different levels the statistical properties observed in the real

data, thus providing null models of dynamical networks.

Inspired by previous approaches to the synthetic extension

of empirical contact sequences [1,7,13,22,44], we consider the

following procedures:

(1) SRep: Sequence replication. The contact sequence is

repeated periodically, defining a new extended characteristic

function such that χ
SRep
e (i,j,t) = χ (i,j,t mod T ). This exten-

sion preserves all of the statistical properties of the empirical

data (obviously, when properly rescaled to take into account

the different durations of the extended and empirical time

series), introducing only small corrections, at the topological

level, on the distribution of time-respecting paths and the

associated sets of influence of each node. Indeed, a contact

present at time t will be again available to a dynamical process

starting at time t ′ > t after a time t + T .

(2) SRan: Sequence randomization. The time ordering of

the interactions is randomized, by constructing a new charac-

teristic function such that, at each time step t , χSRan
e (i,j,t) =

χ (i,j,t ′) ∀i and ∀j , where t ′ is a time chosen uniformly at

random from the set {1,2, . . . ,T }. This form of extension

yields at each time step an empirical instantaneous network

of interactions, and preserves on average all the characteristics

of the projected weighted network, but destroys the temporal

correlations of successive contacts, leading to Poisson distri-

butions for P (�t) and Pi(τ ).

(3) SStat: Statistically extended sequence. An intermediate

level of randomization can be achieved by generating a

synthetic contact sequence as follows: We consider the set

of all conversations c(i,j,�t) in the sequence, defined as

a series of consecutive contacts of length �t between the

pair of agents i and j . The new sequence is generated,

at each time step t , by choosing n conversations (n being

the average number of new conversations starting at each

time step in the original sequence; see Table I), randomly

selected from the set of conversations, and considering them

as starting at time t and ending at time t + �t , where �t is the

duration of the corresponding conversation. In this procedure

we avoid choosing conversations between agents i and j which

are already engaged in a contact started at a previous time

t ′ < t . This extension preserves all the statistical properties

of the empirical contact sequence, with the exception of the

distribution of time gaps between consecutive conversations

of a single individual, Pi(τ ).

In Fig. 3 we plot the distribution of the duration of

contacts, P (�t), and the distribution of gap times between

two consecutive conversations realized by a single individual,

Pi(τ ), for the extended contact sequences SRep, SRan, and

SStat. One can check that the SRep extension preserves all the

P (w), P (�t), and Pi(τ ) distributions of the original contact

sequence, the SRan extension preserves only P (w) and the

SStat extension preserves both the P (w) and the P (�t) but

not the Pi(τ ), as summarized in Table III. Interestingly, we
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FIG. 3. (Color online) (Top) Probability distribution Pi(τ ) of

a single individual and P (�t) (inset) for the extended contact

sequences SRep, SRan, and SStat, for the 25c3 data set. The weight

distribution P (w) of the original contact sequence is preserved for

every extension. (Bottom) Probability distribution of gap times P (τ )

for all the agents in the SRep, SRan, and SStat extensions of the 25c3

data set.

note that the distribution of gap times for all agents, P (τ ),

is also broadly distributed in the SRan and SStat extensions,

despite the fact that the respective individual burstiness Pi(τ )

is bounded; see Fig. 3. This fact can be easily understood by

considering that P (τ ) can be written in terms of a convolution

of the individual gap distributions times the probability of

starting a conversation. In the case of SRan extension, the

probability ri that an agent i starts a new conversation is

proportional to its strength si [i.e., ri = si/(N〈s〉)]. Therefore,

the probability that it starts a conversation τ time steps

after the last one (its gap distribution) is given by Pi(τ ) =

ri[1 − ri]
τ−1 ≃ ri exp(−τri), for sufficiently small ri . The gap

TABLE III. Comparison of the properties of the original contact

sequence preserved in the synthetic extensions.

Extension P (w) P (�t) Pi(τ )

SRep Yes Yes Yes

SRan Yes No No

SStat Yes Yes No

distribution for all agents P (τ ) is thus given by the convolution,

P (τ ) =

∫

P (s)
s

N〈s〉
exp

(

−τ
s

N〈s〉

)

ds, (9)

where P (s) is the strength distribution. This distribution

has an exponential form, which leads, from Eq. (9), to a

total gap distribution P (τ ) ∼ (1 + τ/N )−2, with a heavy tail.

Analogous arguments can be used in the case of the SStat

extension.

IV. RANDOM WALKS ON EXTENDED

CONTACT SEQUENCES

Let us consider a random walk on the sequence of instan-

taneous networks at discrete time steps, which is equivalent to

a message passing strategy in which the message is passed to

a randomly chosen neighbor. The walker present at node i at

time t hops to one of its neighbors, randomly chosen from the

set of vertices,

Vi(t) = {j | χ (i,j,t) = 1} , (10)

of which there is a number,

ki(t) =
∑

j

χ (i,j,t). (11)

If the node i is isolated at time t [i.e., Vi(t) = ∅], the walker

remains at node i. In any case, time is increased t → t + 1.

Analytical considerations analogous to those in Sec. II for

the case of contact sequences are hampered by the presence

of time correlations between contacts. In fact, as we have

seen, the contacts between a given pair of agents are neither

fixed nor completely random, but instead show long-range

temporal correlations. An exception is represented by the

randomized SRan extension, in which successive contacts are

by construction uncorrelated. Considering that the random

walker is in vertex i at time t , at a subsequent time step it

will be able to jump to a vertex j whenever a connection

between i and j is created, and a connection between i

and j will be chosen with probability proportional to the

number of connections between i and j in the original contact

sequence [i.e., proportional to ωij ]; that is, a random walk

on the extended SRan sequence behaves essentially as in the

corresponding weighted projected network, and therefore the

equations obtained in Sec. II, namely,

τi =
〈s〉N

si

, (12)

and

C(t)

N
= 1 −

1

N

∑

i

exp

(

−t
si

〈s〉N

)

(13)

apply. In this last expression for the coverage we can

approximate the sum by an integral, that is,

C(t)

N
= 1 −

∫

dsP (s) exp

(

−t
s

〈s〉N

)

, (14)
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P (s) being the distribution of strengths. Giving that P (s) has an

exponential behavior, we can obtain from the last expression,

C(t)

N
≃ 1 −

(

1 +
t

N

)−1

. (15)

V. NUMERICAL SIMULATIONS

In this section we present numerical results from the

simulation of random walks on the extended contact sequences

described above. To measure the coverage C(t) we set the

duration of these sequences to 50 times the duration of the

original contact sequence T , while to evaluate the MFPT

between two nodes i and j , τij , we let the RW explore the

network up to a maximum time tmax = 108. Each result we

report is averaged over at least 103 independent runs.

A. Network exploration

The network coverage C(t) describes the fraction of nodes

that the walker has discovered up to time t . Figure 4 shows the

normalized coverage C(t)/N as a function of time, averaged

for different walks starting from different sources, for the

dynamical networks obtained using the SRep, SRan, and SStat

prescriptions. Time is rescaled as t → pt to take into account

that the walker can find itself on an isolated vertex, as discussed

before. While for SRep and SRan extensions the average

number of interacting nodes p is by construction the same

as in the original contact sequence, for the SStat extension we

obtain numerically different values of p, which we use when

rescaling time in the corresponding simulations.
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FIG. 4. (Color online) Normalized coverage C(t)/N as a function

of the rescaled time pt/N , for the SRep, SRan, and SStat extension

of empirical data. The numerical evaluation of Eq. (13) is shown as

a dashed line, and each panel in the figure corresponds to one of

the empirical data sets considered. The exploration of the empirical

repeated data sets (SRep) is slower than the other cases. Moreover,

the SRan is in agreement with the theoretical prediction, and the

SStat case shows a close (but systematically slower) behavior. This

indicates that the main slowing down factor in the SRep sequence is

represented by the irregular distribution of the interactions in time,

whose contribution is eliminated in the randomized sequences.
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FIG. 5. (Color online) Number of new conversations n(t) started

per unit time in the SRep (black solid dots), SRan (red open squares),

and SStat (green diamonds) extensions of the school data set.

The coverage corresponding to the SRan extension is very

well fitted by a numerical simulation of Eq. (15), which

predicts the coverage C(t)/N obtained in the correspon-

dent projected weighted network. Moreover, when using the

rescaled time pt , the SRan coverages for different data sets

collapse on top of each other for small times, with a linear

time dependence C(t)/N ∼ t/N for t ≪ N as expected in

static networks, showing a universal behavior (not shown).

The coverage obtained on the SStat extension is system-

atically smaller than in the SRan case, but follows a similar

evolution. On the other hand, the RW exploration obtained

with the SRep prescription is generally slower than the other

two, particularly for the 25c3 and ht data sets. As discussed

before, the original contact sequence, as well as the SRep

extension, are characterized by irregular distributions of the

interactions in time, showing periods with few interacting

nodes and correspondingly a small number n(t) of new started

conversations, followed by peaks with many interactions (see

Fig. 5). This feature slows down the RW exploration, because

the RW may remain trapped for long times on isolated nodes.

The SRan and the SStat extensions, on the contrary, both

destroy this kind of temporal structure, balancing the periods of

low and high activity: The SRan extension randomizes the time

order of the contact sequence, and the SStat extension evens

the number of interacting nodes, with n new conversations

starting at each time step.

The similarity between the random walk processes on the

SRan and SStat dynamical networks shows that the random

walk coverage is not very sensitive to the heterogenous

durations of the conversations, as the main difference between

these two cases is that P (�t) is narrow for SRan and broad

for SStat. In these cases, the observed behavior is instead

well accounted for by Eq. (13), taking into account only

the weight distribution of the projected network (i.e., the

heterogeneity between aggregated conversation durations).

Therefore, the slower exploration properties of the SRep

sequences can be mostly attributed to the correlations between

consecutive conversations of the single individuals, as given

by the individual gap distribution Pi(τ ) (see [13,15,22] for

analogous results in the context of epidemic spreading).
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FIG. 6. (Color online) Asymptotic residual coverage 1 − C(t)/N

as a function of p̄t/N for the SRep (top) and SRan (bottom) extended

sequences, for different data sets.

A remark is in order for the 25c3 conference. A close

inspection of Fig. 4 shows that the RW does not reach

the whole network in any of the extension schemes, with

Cmax < 0.85, although the duration of the simulation is quite

long ptmax > 102N . The reason is that this data set contains

a group of nodes (around 20% of the total) with a very low

strength si , meaning that there are actors who are isolated

for most of the time, and whose interactions are reduced to

one or two contacts in the whole contact sequence. Given that

each extension we use preserves the P (w) distribution, the

discovery of these nodes is very difficult. The consequence is

that we observe an extremely slow approach to the asymptotic

value limt→∞
C(t)

N
= 1. Indeed, the mean-field calculations

presented in Secs. II and III C suggest a power-law decay

with (1 + p̄t/N )−1 for the residual coverage 1 − C(t)/N . In

Fig. 6 we plot the asymptotic coverage for large times in the

four data sets considered. We can see that RW on the eswc

and ht data set conform at large times quite reasonably to the

expected theoretical prediction in Eq. (15), both for the SRep

and SRan extensions. The 25c3 data set shows, as discussed

above, a considerable slowing down, with a very slow decay

in time. Interestingly, the school data set is much faster than

all the rest, with a decay of the residual coverage 1 − C(t)/N

exhibiting an approximate exponential decay. It is noteworthy

that the plots for the randomized SRan sequence do not always

obey the mean-field prediction (see lower plot in Fig. 6). This

deviation can be attributed to the fact that SRan extensions

preserve the topological structure of the projected weighted

network, and it is known that, in some instances, random

walks on weighted networks can deviate from the mean-field

predictions [45]. These deviations are particularly strong in

the case of the 25c3 data set, where connections with a very

small weight are present.

B. Mean first-passage time

Let us now focus on another important characteristic

property of random walk processes, namely the MFPT defined

in Sec. II. Figure 7 shows the correlation between the MFPT

τi of each node, measured in units of rescaled time pt , and its

normalized strength si/(N〈s〉).

The random walks performed on the SRan and SStat

extensions are very well fitted by the mean-field theory, that is,

Eq. (12) (predicting that τi is inversely proportional to si), for

every data set considered; on the other hand, random walks on

the extended sequence SRep yield at the same time deviations

from the mean-field prediction and much stronger fluctuations

around an average behavior. Figure 8 addresses this case in

more detail, showing that the data corresponding to RW on

different data sets collapse on an average behavior that can be

fitted by a scaling function of the form,

τi ∼
1

p

(

si

N〈s〉

)−α

, (16)

with an exponent α ≃ 0.75.

These results show that the MFPT, similarly to the coverage,

is rather insensitive to the distribution of the contact durations,

as long as the distribution of cumulated contact durations

between individuals is preserved (the weights of the links in

the projected network). Therefore, the deviations of the results
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FIG. 7. (Color online) Rescaled mean first passage time τi , shown

against the strength si , normalized with the total strength N〈s〉, for

the SRep, SRan, and SStat extensions of empirical data. The dashed

line represents the prediction of Eq. (12). Each panel in the figure

corresponds to one of the empirical data sets considered.
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FIG. 8. (Color online) Mean first-passage time at node i, in units

of rescaled time pt , vs the strength si , normalized with the total

strength N〈s〉, for RW processes on the SRep data set extension. All

data collapse close to the continuous line whose slope, α ≃ 0.75,

differs from the theoretical one, α = 1.0, shown as a dashed line.

obtained with the SRep extension of the empirical sequences

have their origin in the burstiness of the contact patterns, as

determined by the temporal correlations between consecutive

conversations. The exponent α < 1 means that the searching

process in the empirical, correlated, network is slower than

in the randomized versions, in agreement with the smaller

coverage observed in Fig. 4.

The data collapse observed in Fig. 8 for the SRep case leads

to two noticeable conclusions. First, although the various data

sets studied correspond to different contexts, with different

numbers of individuals and densities of contacts, simple

rescaling procedures are enough to compare the processes

occurring on the different temporal networks, at least for

some given quantities. Second, the MFPT at a node is

largely determined by its strength. This can indeed seem

counterintuitive as the strength is an aggregated quantity (that

may include contact events occurring at late times). However,

it can be rationalized by observing that a large strength means

a large number of contacts and therefore a large probability to

be reached by the random walker. Moreover, the fact that the

strength of a node is an aggregate view of contact events that do

not occur homogeneously for all nodes but in a bursty fashion

leads to strong fluctuations around the average behavior, which

implies that nodes with the same strength can also have rather

different MFPT (note the logarithmic scale on the y axis).

VI. RANDOM WALKS ON FINITE CONTACT SEQUENCES

The case of finite sequences is interesting from the point of

view of realistic searching processes. The limited duration of

a human gathering, for example, imposes a constraint on the

length of any searching strategy. Figure 9 shows the normalized

C(t)/N coverage as a function of the rescaled time pt/N . The

coverage exhibits a considerable variability in the different data

sets, which do not obey the rescaling obtained for the extended

SRan and SStat sequence. The probability distribution of the

time lags �tnew between the discovery of two new vertices [46]

provides further evidence of the slowing down of diffusion in
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FIG. 9. (Color online) Normalized coverage C(t)/N as function

of the rescaled time pt/N for the different data sets. The inset shows

the probability distribution P (�tnew) of the time lag �tnew between

the discovery of two new vertices. Only the discovery of the first 5%

of the network is considered, to avoid finite size effects [46].

temporal networks. The inset of Fig. 9 indeed shows broad-

tailed distributions P (�tnew) for all the data set considered,

differently from the exponential decay observed in binary static

networks [46].

The important differences in the rescaled coverage C(t)/N

between the various data sets, shown in Fig. 9, can be attributed

to the choice of the time scale, pt/N , which corresponds to

a temporal rescaling by an average quantity. We can argue,

indeed, that the speed with which new nodes are found by

the RW is proportional to the number of new conversations

n(t) started at each time step t , thus in the RW exploration of

the temporal network the effective time scale is given by the

integrated number of new conversations up to time t , N (t) =
∫ t

0
n(t ′)dt ′. In Fig. 10 we display the correlation between

the coverage C(t)/N and the number of new conversations
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FIG. 10. (Color online) Coverage C(t)/N as a function of the

number of new conversation realized up to time t , normalized by the

mean number of new conversation per unit of time n for different data

sets.
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FIG. 11. (Color online) Rank plot of the coverage Ci obtained

starting from node i in the contact sequence of duration T , averaged

over 103 runs. In the inset, we show a rank plot of the coverage

Ci(�T ) up to a fixed time �T = 103.

realized up to time t , N (t), normalized for the mean number

of new conversations per unit of time n. While the relation is

not strictly linear, a very strong positive correlation appears

between the two quantities.

The complex pattern shown by the average coverage C(t)

originates from the lack of self-averaging in a dynamic

network. Figure 11 shows the rank plot of the coverage Ci

obtained at the end of a RW process starting from node i, and

averaged over 103 runs. Clearly, not all vertices are equivalent.

A first explanation of the variability in Ci comes from the fact

that not all nodes appear simultaneously on the network at

time 0. If t0,i denotes the arrival time of node i in the system,

a random walk starting from i is restricted to T r
i = T − t0,i :

nodes arriving at later times have less possibilities to explore

their set of influence, even if this set includes all nodes. To put

all nodes on equal footing and compensate for this somehow

trivial difference between nodes, we consider the coverage

of random walkers starting on the different vertices i and

walking for exactly �T time steps (we limit of course the study

to nodes with t0,i < T − �T ). Differences in the coverage

Ci(�T ) will then depend on the intrinsic properties of the

dynamic network. For a static network indeed, either binary or

weighted, the coverage Ci(�T ) would be independent of i, as

random walkers on static networks lose the memory of their

initial position in a few steps, reaching very fast the steady

state behavior Eq. (3). As the inset of Fig. 11 shows, important

heterogeneities are instead observed in the coverage of random

walkers starting from different nodes on the dynamic network,

even if the random walk duration is the same.

Another interesting quantity is the probability that a vertex

i is discovered by the random walker. As discussed in Sec. II,

at the mean field level the probability that a node i is visited

by the RW at any time less than or equal to t (the random walk

reachability) takes the form Pr (i; t) = 1 − exp[−tρ(i)]. Thus

the probability that the node i is reached by the RW at any

time in the contact sequence is

Pr (i) = 1 − exp

(

−
pT si

N〈s〉

)

, (17)
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FIG. 12. (Color online) Correlation between the probability of

node i to be reached by the RW, Pr (i), and the rescaled strength

pT si/N〈s〉 for different datasets. The curves obtained by different

dataset collapse, but they do not follow the mean-field behavior

predicted by of Equation (17) (dashed line). The inset shows the same

data on a linear scale, to emphasize the deviation from mean-field.

where the rescaled time pt is taken into account. In Fig. 12,

we plot the probability Pr (i) of node i to be reached by the

RW during the contact sequence as a function of its strength

si . Pr (i) exhibits a clear increasing behavior with si , larger

strength corresponding to larger time in contact and therefore

larger probabilities to be reached. Interestingly, the simple

rescaling by p and 〈s〉 leads to an approximate data collapse

for the RW processes on the various dynamical networks,

showing a very robust behavior. Similarly to the case of the

MFPT on extended sequences, the dynamical property Pr (i)

can be in part “predicted” by an aggregate quantity such as si .

Strong deviations from the mean-field prediction of Eq. (17)

are however observed, with a tendency of Pr (i) to saturate at

large strengths to values much smaller than the ones obtained

on a static network. Thus, although the set of sources of almost

every node i has size N , as shown in Sec. III B (i.e., there

exists a time respecting path between almost every possible

starting point of the RW processes and every target node i),

the probability for node i to be effectively reached by a RW is

far from being equal to 1.

Moreover, rather strong fluctuations of Pr (i) at given si are

also observed: si is indeed an aggregate view of contacts which

are typically inhomogeneous in time, with bursty behaviors.2

Figure 13 also shows that the reachability computed at shorter

time (here T/2) displays stronger fluctuations as a function of

the strength si computed on the whole time sequence: Pr (i)

for shorter RW is naturally less correlated with an aggregate

view which takes into account a more global behavior of i.

2When considering RW on a contact sequence of length T

randomized according to the SRan procedure instead, Eq. (17) is

well obeyed and only small fluctuations of Pr (i) are observed at a

fixed si (not shown).
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FIG. 13. (Color online) Correlation between the probability of

node i to be reached by a RW of length T/2, Pr (i), and the rescaled

strength pT si/N〈s〉 for different data sets, where si is computed on

the whole data set of length T . The inset shows the same data on a

linear scale.

VII. DISCUSSION AND CONCLUSIONS

In this paper we have investigated the behavior of random

walks on temporal networks. In particular, we have focused on

real face-to-face contact networks concerning four different

data sets. These dynamical networks exhibit heterogeneous

and bursty behavior, indicated by the long-tailed distributions

for the lengths and strength of conversations, as well as for the

gaps separating successive interactions. We have underlined

the importance of considering not only the existence of

time-preserving paths between pairs of nodes, but also their

temporal duration: Shortest paths can take much longer than

fastest paths, while fastest paths can correspond to many

more hops than shortest paths. Interestingly, the appropriate

rescaling of these quantities identifies universal behaviors

shared across the four data sets.

Given the finite lifetime of each network, we have consid-

ered as a substrate for the random walk process the replicated

sequences in which the same time series of contact patterns is

indefinitely repeated. At the same time, we have proposed two

different randomization procedures to investigate the effects of

correlations in the real data set. The “sequence randomization”

(SRan) destroys any temporal correlation by randomizing the

time ordering of the sequence. This allows one to write down

exact mean-field equations for the random walker exploring

these networks, which turn out to be substantially equivalent to

the ones describing the exploration of the weighted projected

network. The “statistically extended sequence” (SStat), on the

other hand, selects random conversations from the original

sequence, thus preserving the statistical properties of the

original time series, with the exception of the distribution of

time gaps between consecutive conversations.

We have performed numerical analysis both for the cover-

age and the MFPT properties of the random walker. In both

cases we have found that the empirical sequences deviate

systematically from the mean-field prediction, inducing a

slowing down of the network exploration and of the MFPT.

Remarkably, the analysis of the randomized sequences has

allowed us to point out that this is due uniquely to the temporal

correlations between consecutive conversations present in the

data, and not to the heterogeneity of their lengths. Finally,

we have addressed the role of the finite size of the empirical

networks, which turns out to prevent a full exploration of

the random walker, though differences exist across the four

considered cases. In this context, we have also shown that

different starting nodes provide on average different coverages

of the networks, at odds to what happens in static graphs.

In the same way, the probability that the node i is reached

by the RW at any time in the contact sequence exhibits a

common behavior across the different time series, but it is

not described by the mean-field predictions for the aggregated

network, which predict a faster process.

In conclusion, the contribution of our analysis is twofold.

On the one hand, we have proposed a general way to study

dynamical processes on temporally evolving networks, by the

introduction of randomized benchmarks and the definition of

appropriate quantities that characterize the network dynamics.

On the other hand, for the specific, yet fundamental, case of

the random walk, we have obtained detailed results that clarify

the observed dynamics, and that will represent a reference

for the understanding of more complex diffusive dynamics

occurring on dynamic networks. Our investigations also open

interesting directions for future work. For instance, it would

be interesting to investigate how random walks starting from

different nodes explore first their own neighborhood [47],

which might lead to hints about the definition of “temporal

communities” (see, e.g., [48] for an algorithm using RW

on static networks for the detection of static communities);

various measures of node centrality have also been defined

in temporal networks [1,44,49–51], but their computation is

rather heavy, and RW processes might present interesting

alternatives, similarly to the case of static networks [52].

ACKNOWLEDGMENTS

We thank the SocioPatterns collaboration (Ref. [31]) for

providing privileged access to dynamical network data. M.S.,

R.P.-S., and A. Baronchelli acknowledge financial support

from the Spanish MEC (FEDER) under Project No. FIS2010-

21781-C02-01, and the Junta de Andalucı́a, under Project

No. P09-FQM4682. R.P.-S. acknowledges additional support

through ICREA Academia, funded by the Generalitat de

Catalunya.
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