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In this article, we present a survey of different types of random walk models with local and non-local
transitions on undirected weighted networks. We present a general approach by defining the dynamics
as a discrete-time Markovian process with transition probabilities expressed in terms of a symmetric
matrix of weights. In the first part, we describe the matrices of weights that define local random walk
dynamics like the normal random walk, biased random walks and preferential navigation, random walks
in the context of digital image processing and maximum entropy random walks. In addition, we explore
non-local random walks, like Lévy flights on networks, fractional transport through the new formalism of
fractional graph Laplacians, and applications in the context of human mobility. Explicit relations for the
stationary probability distribution, the mean first passage time and global times to characterize random
walks are obtained in terms of the elements of the matrix of weights and its respective eigenvalues and
eigenvectors. Finally, we apply the results to the analysis of particular local and non-local random walk
dynamics, and we discuss their capacity to explore several types of networks. Our results allow us to study
and compare the global dynamics of different types of random walk models.

Keywords: random walks; networks; diffusion; Lévy flights.

1. Introduction

Since their introduction as an informal question posted in the journal Nature in 1905 by Rayleigh,
random walks have had an important impact in science with applications in a broad range of fields like
mathematics, biology, physics, chemistry, economics, finance, among many others [1, 2]. The success
of random walk models in different applications lies in their simplicity and generality. Typically, it is
defined as a walker in a particular space that moves randomly, making this characteristic a good candidate
in the description of processes like diffusive transport, chemical reactions, fluctuations in the economy
and even in the foraging of some animal species [1–7]. Despite the mentioned simplicity in the definition,

© The authors 2021. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and

reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

n
e
t/a

rtic
le

/9
/5

/c
n
a
b
0
3
2
/6

3
8
6
4
5
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

file:journals.permissions@oup.com


2 A. P. RIASCOS AND J. L. MATEOS

Fig. 1. Two types of transitions of a random walker on a network. The walker can hop from i to the node j that is one of the
three nearest-neighbours available for a local transition. Also can make a non-local transition to reach the node k. In the non-local
displacement, the length of the shortest path is three as indicated by the dashed line.

the consequences of the dynamics of a random walker are non-trivial and continue to surprise us with
new results and with all the complexity that emerges from its simple rules.

In recent years, much of the interest in random walks have migrated to the study of complex systems
described through networks [8–13]. In this context, the interplay between the topology of the network and
the dynamical processes taking place on this structure are of utmost importance [13–15]. In particular,
random walk models that allow transitions from one node to one of its nearest neighbours on the network
constitutes a paradigmatic case and are the natural framework to study diffusive transport [14, 16–18],
navigation and search processes in networks [19–22], multiplex networks [23], with applications in a
variety of systems like the propagation of epidemics and spreading phenomena [24, 25], the dynamics
on social networks [26], the analysis of information [27], human mobility [28, 29], among others [2, 14].

On the other hand, in different cases full or partial knowledge of the network structure is available
to define a random walk capable of using this information to increase the capacity to visit nodes with
hops to the nearest neighbours but also long-range transitions beyond this local neighbourhood. In Fig. 1,
we illustrate local and non-local transitions in a network. In this case, the walker can visit one of the
nearest-neighbours with a local transition, but there is also the possibility of a non-local transition. By
using this long-range dynamics the random walker can directly contact long-distance nodes without the
intervention of intermediate nodes and without altering the topology of the network. As we will see, some
non-local random walk models consider the shortest path connecting two nodes whereas others include
quantities that contain all the possible paths between nodes.

In addition, random walks with a non-local character have been explored in the literature. This is
the case of Lévy flights on networks where random transitions occur to non-nearest neighbours with a
probability that decays as a power law of the distance separating two nodes [30]; the capacity of this
dynamical process to explore networks has been studied in Refs. [30–36]. Lévy flights on networks
were generalized by Estrada et al. by using a random multi-hopper model defined in terms of decaying
functions of the shortest-path distances; this approach is explored in detail in Ref. [37]. Furthermore,
we also found non-local hops in the fractional transport on networks defined in terms of the fractional
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RANDOM WALKS ON WEIGHTED NETWORKS 3

graph Laplacian [39]. In this case, long-range displacements on the network emerge from a formalism
that was introduced as the equivalent on networks of the fractional diffusion equation in the continuum
[39, 40]. This model is studied in the context of transport on networks and lattices [39–48], in connection
with information analysis [49–51], quantum transport on networks [52], random walks on networks with
stochastic resetting [53, 54] and fractional diffusion in the context of COVID-19 [55]. The fractional
transport is a particular case of a series of dynamics that can be defined in terms of functions of the
Laplacian of a network [56]. In general, the study of random walks with long-range displacements on
networks opens several questions regarding the way in which these large displacements can appear or be
induced in different applications.

In this article, we present a survey of different types of local and non-local random walks on networks.
We describe a general approach to study these processes using the information contained in a symmetric
matrix of weights used to define the probability of transition between nodes. We model the dynamics
as a discrete time Markovian process. In the first part, we describe the matrices of weights that define
local random walks: traditional random walks, biased random walks, random walks in the context of
digital image processing and maximum entropy random walks. In the same way, examples of non-local
random walks are described: Lévy flights on networks, fractional transport and applications in the context
of human mobility. In all these cases, explicit relations for the stationary probability distribution of the
random walker are obtained in terms of the elements of the matrix of weights that defines each model.
After analysing the transition matrix for these different processes, in a second part of the article, a general
formalism to calculate the mean first passage time and global times to characterize the dynamics is
presented. Analytical expressions in terms of eigenvalues and eigenvectors of the transition matrix are
obtained for all these quantities. Finally, we apply the results to the analysis of local and non-local random
walks to discuss and compare their capacity to explore networks.

2. Random walks on weighted networks

In this section, we introduce different concepts about random walks on weighted networks and the notation
implemented to describe this process. We introduce a general random walker with transition probabilities
in a network and a matrix of weights; the respective temporal evolution is modelled as a discrete time
Markovian process for which we find an analytical result for its stationary probability distribution.

We consider undirected weighted networks with N nodes i = 1, . . . , N . The topology of the network
is described by an adjacency matrix A with elements Aij = Aji = 1 if there is an edge between the nodes
i and j and Aij = 0 otherwise; in particular, we consider throughout this article that Aii = 0 to avoid loops
connecting a node with itself. The degree of the node i is the number of neighbours that this node has
and is given by ki =

∑N

l=1 Ail. Additionally to the network structure, we have a N × N symmetric matrix
of weights � with elements �ij = �ji ≥ 0 and �ii = 0. The matrix � can include information of the
structure of the network or incorporate additional data describing characteristics of links and nodes. By
definition, the strength of the node i is given by Si =

∑N

l=1 �il and represents the total weight of the node
i, also called ‘weighted degree’ or ‘node strength’.

In the following, we study discrete time random walks on connected weighted networks with transition
probabilities between nodes determined by the elements of the matrix of weights �. The occupation
probability to find the random walker in the node j at time t, starting from i at t = 0, is given by Pij(t)

and obeys the master equation [7, 16]

Pij(t + 1) =

N∑

m=1

Pim(t)πm→j , (2.1)
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4 A. P. RIASCOS AND J. L. MATEOS

where the transition probability πi→j between the nodes i and j is given by

πi→j =
�ij∑N

l=1 �il

=
�ij

Si

. (2.2)

The transition matrix �, with elements πi→j, in the general case is not symmetric; however, as a conse-
quence of Eq. (2.2) and the symmetry of the matrix �, we obtain Siπi→j = Sjπj→i, a result that establishes
a connection between the transition probabilities πi→j and πj→i. On the other hand, iterating the master
equation (2.1), the probability Pij(t) takes the form

Pij(t) =
∑

j1 ,...,jt−1

πi→j1 · πj1→j2 · · · πjt−1→j (2.3)

and, using Eq. (2.3), we obtain

Pij(t) =
∑

j1 ,...,jt−1

Sj1

Si

. . .
Sj

Sjt−1

πj→jt−1 . . . πj1→i

=
Sj

Si

Pji(t). (2.4)

In this way, the detailed balance condition

SiPij(t) = SjPji(t) (2.5)

is deduced as a direct consequence of the symmetry of �. The relation in Eq. (2.5) allows to obtain
the stationary probability distribution P∞

j = limt→∞ Pij(t), that gives the probability to find the random
walker in the node j when t → ∞. We have

P∞
i =

Si∑N

l=1 Sl

, (2.6)

showing that the stationary distribution P∞
i of the node i is directly proportional to its strength Si. The

stationary distribution P∞
i in Eq. (2.6) is a general result that characterizes the global behaviour of the

random walker. As we will see in the next section, this quantity allows to rank and classify the nodes of
the network with a measure that combines the topological characteristics of the network structure with
their capacity of transport modelled by the master equation (2.1) and the transition matrix �. Furthermore,
it is well known in the context of Markovian processes that the value 1/P∞

i is the average number of
steps required for the random walker to return for the first time to the node i [57, 58]. Diverse types of
random walk models can be explored in terms of the matrix of weights formalism described before. The
only restrictions to this approach are the symmetry of the elements of the matrix of weights �ij = �ji,
the condition �ij ≥ 0 and �ii = 0. In the following, we present particular cases of random walk models
that can be described by using this method. We divide our discussion into local models, for which the
transitions of the random walker are restricted to adjacent sites on the network, and long-range models,
for which the walker can hop with displacements beyond its nearest neighbours.
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RANDOM WALKS ON WEIGHTED NETWORKS 5

3. Local random walk models

In local random walk models, the random walker always hops from a node to one of its nearest neighbours
on the network. As a consequence, the elements of the matrix of weights take the form �ij = gijAij, where,
as we explain in the following part, the value gij is related to quantities assigned to each node or to the
weight of the link that connects the nodes i and j.

3.1 Normal random walk

In this case, the weights coincide with the elements of the adjacency matrix; therefore �ij = Aij. As a
consequence, from Eq. (2.2), the transition matrix is given by [21]

πi→j =
Aij

ki

. (3.1)

By definition, the normal random walker hops with equal probability from a node to one of its nearest
neighbours in the network. In addition, from Eq. (2.6), the stationary distribution is P∞

i = ki∑N
l=1 kl

. Normal

random walks have been extensively studied in different contexts with applications in diverse types of
networks; in particular, lattices [7, 16], general graphs [17, 59], complex networks [22, 60–62], fractal
and recursive structures [63, 64], among others [27].

3.2 Preferential navigation: biased random walk

In the preferential navigation, a random walker hops with transition probabilities πi→j that depend on the
quantity qi > 0 assigned to each node i of the network. The value qi can represent a topological feature of
the respective node (e.g. the degree, the betweenness centrality, the eigenvector centrality, the clustering
coefficient, among other measures [13]) or a value, independent of the network structure, that quantifies
an existing resource at each node. We define preferential random walks with local information by means
of the weights �ij = (qiqj)

βAij, where the exponent β is a real parameter. Then, from Eq. (2.2), we have

πi→j =
Aijq

β

j∑N

l=1 Ailq
β

l

. (3.2)

In Eq. (3.2), β > 0 describes the tendency to hop to neighbour nodes with large values of q, whereas for
β < 0 this behaviour is inverted and the walker tends to hop to nodes with lower values of q. On the other
hand, for β = 0 the normal random walk is recovered. By means of Eq. (2.6), the stationary distribution
for the preferential random walk is

P∞
i =

∑N

l=1(qiql)
βAil∑N

l,m=1(qlqm)βAlm

. (3.3)

As we will see in the next part, the general preferential random walker defined by Eq. (3.2) determines
different types of local random walks depending on the selection of the quantities qi.
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6 A. P. RIASCOS AND J. L. MATEOS

(a) (b)

Fig. 2. Stationary distribution P∞
i as a function of ki for degree biased random walks. The values are obtained by direct evaluation

of Eq. (3.4). We use three values of the parameter β and we study two types of networks with N = 5000 nodes. (a) An ER network
with an average degree 〈k〉 = 50; the dashed lines represent the results obtained by the mean field approximation. (b) A SF network
with 〈k〉 = 6.

3.3 Degree biased random walks

This type of random walk is a particular case of the preferential navigation with qi = ki in Eq. (3.2). The
resulting model is known as degree biased random walk [20, 65]. For this particular case, the stationary
distribution P∞

i takes the form

P∞
i =

∑N

l=1(kikl)
βAil∑N

l,m=1(klkm)βAlm

. (3.4)

Degree biased random walks have been studied extensively in the literature in different contexts as varied
as routing processes [65], chemical reactions [66], extreme events [67, 68], among others [20, 69, 70].
Additionally, mean field approximations have been explored for diverse cases [20, 66, 71]. For example, in

networks with no degree correlations is valid the approximation P∞
i ≈

k
β+1
i∑N

l=1 k
β+1
l

. In Fig. 2, we present the

values of the stationary distribution P∞
i for degree biased random walks on an Erdős–Rényi network (ER)

and a scale-free network (SF) of the Barabási–Albert type, in which each node has a degree that follows
asymptotically a power-law distribution p(k) ∼ k−γ [13, 14]. We calculate the stationary distribution by
direct evaluation of Eq. (3.4), and we depict P∞

i as a function of the degree ki. The results reveal that
in the ER network the mean-field approximation is valid whereas in a SF network, this is only valid for
nodes with high degrees [20].

3.4 Maximal entropy random walks

Maximum entropy random walks (MERW) are a particular model derived from Eq. (3.2) for which
the random walker uses information of the neighbouring nodes. In this case, the transition probability
is defined in terms of the components of the eigenvector centrality ξi of the node i. The value ξi is
determined by the ith component of the normalized eigenvector 	ξ of the adjacency matrix A that satisfies
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RANDOM WALKS ON WEIGHTED NETWORKS 7

A	ξ = χ 	ξ , where χ is the maximum eigenvalue of A. In the study of topological features of networks,
the components ξi of the eigenvector centrality quantify the global influence of the node i in the whole
structure [13].

In this way, MERW are defined in the formalism of weighted networks with the choice of weights
�ij = ξiξjAij. Then, the value of the strength Si is

Si =

N∑

l=1

�il =

N∑

l=1

ξiξlAil = ξi

N∑

l=1

Ailξl = χξ 2
i , (3.5)

where the last result is a consequence of the relation
∑N

l=1 Ailξl = χξi that satisfy the components of the
eigenvector centrality. In this way, by using Eq. (2.2), the transition rule πi→j is given by

πi→j = Aij

ξiξj

χξ 2
i

= Aij

ξj

χξi

, (3.6)

a relation that defines a maximal entropy random walk [72]. Additionally, by using the Eq. (2.6), the
stationary distribution of the maximal entropy random walk is

P∞
i =

χξ 2
i∑N

l=1 χξ 2
l

= ξ 2
i . (3.7)

It is worth to mention that, the MERW defined by the transition probabilities in Eq. (3.6) maximizes the
entropy rate production h of the process given by [72]

h = −

N∑

i=1

P∞
i

N∑

j=1

πi→j log πi→j. (3.8)

Combining this expression with Eqs. (3.6) and (3.7), h = log χ [72]. In this case, the trajectories that follow
the random walker are maximally random [72, 73]. Diverse variations of the MERW and applications of
this process have been explored in Refs. [73–76].

3.5 Random walks for image segmentation

An important application of random walks on networks emerges in the context of the processing and
segmentation of digital images [77]. In this case, the statistical description of the diffusive transport from
seed regions to specific pixels allows to detect and differentiate objects and structures in a digital image
[77]. The network is a square lattice where each node represents a pixel and the normalized intensity Ii

of i is a quantity associated to the norm of the vector 	pi that contains the values RGB (red, green and
blue) of the respective pixel, 0 ≤ Ii ≤ 1. In terms of a matrix of weights �, a local random walker is
defined by [77]

�ij = exp
[
−(Ii − Ij)

2/σ 2
]

Aij. (3.9)

Here, the real parameter σ satisfies σ > 0 and the values Aij give the elements of the adjacency matrix of a
square lattice associated to the pixel positions and interactions between nearest neighbours. The resulting
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8 A. P. RIASCOS AND J. L. MATEOS

0 2 4
Si

σ = 0.05

σ = 0.1 σ = 0.2

(a) (b)

(c) (d)

Fig. 3. Strength Si for random walks in the context of image segmentation. The values are obtained evaluating the sum Si =
∑N

l=1 �il

with the weights given by Eq. (3.9). In (a), we present the original image (#3096 from the Berkeley segmentation database BSD300
[86]). In (b)–(d), we present the results obtained for different values of the parameter σ ; the colourbar denotes the scale of values
for Si. Regions with Si = 4 present little variations in the intensity of a pixel in relation with its nearest neighbours, in these regions
the random walker behaves as a normal random walker.

random walker follows a dynamics given by Eq. (2.2) to visit the pixels; this transition probability gives
high probability to the pass to pixels with the same intensity and σ determines the interaction between
the pixels establishing a characteristic scale for the differences of intensity in the model controlling the
capacity to hop to sites with a different colour. In Fig. 3, we plot the strength Si for each pixel; this
quantity is proportional to the stationary probability distribution for a random walker in a digital image
determined by the weights given by Eq. (3.9). It is observed how with this random walk, Si takes high
values in regions with uniform colour and low values in the boundaries of the object. In this way, the
random walker propagates uniformly in zones with the same colour and with low probability passes
through the boundary of the object. This property makes this type of weights good candidates for image
segmentation algorithms.

In addition to the local dynamics mentioned before, it is worth mentioning that there are different
variations of these models. This is the case of the topological biased random walks for which �ij = eβyij Aij

[78], where the quantity yij describes the properties of the edge that connects i with j. A similar idea is
explored for image segmentation in Ref. [79], showing the vast applicability of random walks in different
scenarios.
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RANDOM WALKS ON WEIGHTED NETWORKS 9

4. Non-local random walk models

Non-local random walks on networks are motivated by the possibility of hopping from one node to
sites on the network beyond the neighbouring nodes in cases where the total structure of the network is
available. Random walks with long-range displacements have shown an unprecedented applicability in
the context of web searching. The PageRank introduced to classify pages on the Web [80] and variations
of this non-local model have been explored to rank the importance of nodes in a broad range of systems.
In this section, we present different non-local strategies on networks in terms of a matrix of weights that
includes global information of the network to define the dynamical process. As particular examples of
this case we have the Lévy flights on networks introduced for the first time in [30], the fractional diffusion
on networks introduced for the first time in [39], the movement of agents visiting specific locations in a
city [28], different dynamics in the context of the random multi-hopper model [37] and the path Laplacian
of a graph [81–85]. In the following, we will discuss in detail some of the non-local random walks and
make a comparison between them with the corresponding local random walks.

4.1 Lévy-like dynamics on networks

The term Lévy flights refers to a random walk with displacements of random lengths l given by a
probability distribution K (l) that asymptotically is described by an inverse power-law relation [87, 88].
For Lévy flights in the n-dimensional space R

n, K (0) = 0 and K (l) ∼ 1
ln+2γ if l �= 0 and 0 <

γ < 1. With this definition, the variance of the displacements diverges; this characteristic differentiates
Lévy flights from Brownian motion, for which the variance is finite [7]. In Fig. 4, we present Monte
Carlo simulations for Brownian motions and Lévy flights in a continuous two-dimensional region. Lévy
flights have a fractal behaviour consisting of trajectories that alternate between groups described by
local movements (similar to the observed in the Brownian motion) interrupted by long-range jumps; this
structure is repeated at all levels. In this way, Lévy flights combine local movements that appear with
high probability, with long-range displacements that emerge with low but non-null probability. These
characteristics are illustrated in Fig. 4(b). Lévy flights constitute an active area of research in different
complex systems. For example, Lévy flights are encountered in the modelling of animal dynamics and
foraging [6, 89–92], human mobility [93–95], among many others [87, 88, 96].

In the context of networks, Lévy-like dynamics were introduced for the first time in Ref. [30]. In this
case, the transitions are defined in terms of the geodesic distance dij, given by the number of links in
the shortest path connecting the nodes i and j. All the information about the distances between nodes is
contained in the distance matrix D with elements dij for i, j = 1, 2, . . . , N . The distance matrix D have
more information about the structure of the network than the adjacency matrix A, and D can be calculated
efficiently from A using several algorithms [13]. In Fig. 5, we depict the relative frequency of distances
in the entries of the matrix D for large-world networks (square lattice and tree) and small-world networks
(ER network and SF network of the Barabási–Albert type). The histograms reveal the marked difference
between the distances in these two types of networks.

A Lévy like dynamics on networks can be described in terms of the weights �ij = d−α
ij for i �= j and

�ii = 0. Here, α is a real parameter in the interval 0 ≤ α < ∞. For the elements of the transition matrix,
we have πi→i = 0 and using Eq. (2.2) for i �= j, we obtained [30]

πi→j =
d−α

ij∑
l �=i d−α

il

. (4.1)
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(a)

(b)

Fig. 4. Monte Carlo simulations of two different types of random walks on a continuous two-dimensional region. (a) Brownian
motion. (b) Lévy flights. We depict 104 steps for each realization. The colourbar codifies the discrete time.

In the following, we refer to this model as ‘Lévy flights’ or ‘Lévy random walk’ on networks. In this
case, the dynamics allows long-range transitions on the network. For a finite non-null value of α the
transitions to the nearest neighbours appear with high probability, but hops beyond these nodes are
allowed generalizing the movement observed in the normal random walker in Eq. (3.1). In the limit
α → ∞ we have limα→∞ d−α

ij = Aij, then πi→j =
Aij

ki
and the normal random walk is recovered. Another

interesting limiting case is obtained when α → 0: here, limα→0 d−α
ij = 1 if i �= j and then we have an

equal probability to reach any node of the network [30].
Thus, for Lévy flights, we have �ij = d−α

ij for i �= j. For this particular model, we denote the strength

Si =
∑N

l=1 �il as D
(α)

i =
∑

l �=i d−α
il and by using the Eq. (2.6), we obtain for the stationary distribution

P∞
i =

D
(α)

i∑N

l=1 D
(α)

l

=

∑
l �=i d−α

il∑
l �=m

∑
m d−α

lm

. (4.2)

This result establishes that P∞
i is proportional to the quantity D

(α)

i . In addition, the value D
(α)

i , can be
expressed as [30]

D
(α)

i =

N−1∑

l=1

1

lα
n

(l)

i = ki +
n

(2)

i

2α
+

n
(3)

i

3α
+ . . . , (4.3)
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Fig. 5. Frequencies ν(dij) of the non-null distances dij in the entries of the distance matrix D. We analyse networks with N = 5000.

(a) Square lattice with dimensions 50 × 100. (b) Tree. (c) ER network with probability of connection p = log N

N
. (d) SF network of

the Barabási–Albert type. The results are expressed as a fraction of the value N(N − 1)/2 that gives the total number of different
non-null entries in the distance matrix D. In these histograms is clear the difference between the large-world networks (a) and (b),
and the small-world networks (c) and (d).

where n
(l)

i is the number of nodes at a distance l of the node i; in particular, n
(1)

i = ki. In this way, by means
of the expression in Eq. (4.3) we observe that D

(α)

i is a generalization of the degree ki that combines all
the information about the structure of the network. This long-range degree emerges from the study of
Lévy flights on networks and was introduced in Ref. [30].

In Fig. 6, we depict the stationary distribution obtained from the analytical result in Eq. (4.2) for an ER
network and a SF network. Also notice that, compared to the normal random walk, Lévy flights represent a
more uniform dynamics in the sense that the probability of visiting sites with many connections decreases
and for sites with a lower degree, this probability increases. Being able to easily reach any node on the
network can offer an advantage if the goal is to explore the entire structure.

Different aspects of Lévy flights and their capacity to explore networks have been studied in Refs.
[32–35], as well as in the context of multiplex networks [31]. A general approach to study the random
walker in Eq. (4.1), as well as other models with different functions of the distances in a network are
analysed in detail by Estrada et al. in Ref. [37]. In that paper, we introduced the exponential random
walk that in terms of our matrix of weights formalism is defined by �ij = e−sdij for i �= j and s > 0. By
following a similar approach to the one presented here in Eqs. (4.2)–(4.3), it can be obtained analytical
expressions for the stationary probability distribution of the exponential case.

4.2 Gravity law, spatial networks and human mobility

In diverse situations networks are embedded in a metric space, then, spatial locations are assigned to each
node. This is the case of spatial networks that describe several real systems like airports and transportation

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

n
e
t/a

rtic
le

/9
/5

/c
n
a
b
0
3
2
/6

3
8
6
4
5
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



12 A. P. RIASCOS AND J. L. MATEOS
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α = 2

α → ∞

100 101 102
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10−4

10−3
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α = 1

α = 2

α → ∞

(a) (b)

Fig. 6. Stationary distribution P∞
i in terms of the degree ki for Lévy flights on networks with N = 5000. The models with α = 1

and α = 2 use long-range displacements in the network. The result for the normal walker (limit α → ∞) is also depicted.

networks, infrastructure networks and many others [32, 97]. In particular, an important instance where
spatial networks become relevant are the recent studies of human mobility in cities [98–101].

It has been suggested that migration and human movements are well described in terms of a ‘Gravity
Law’ that models the number of trips from a location i to a location j as gij = C pipj/lαij . Here pi and
pj denote the population of the respective locations, lij is the geometric (metric) distance between the
nodes i, j, C is a constant and α > 0 is a free parameter [98–100]. This type of model suggests a similar
algorithm for a random walker on networks described by the weights

�ij =
qiqj

dα
ij

(4.4)

for i �= j. Here, the value qi is a quantity associated to the node i in the network and dij is the geodesic
distance in the network. The general formalism in terms of weighted networks also applies to the model
presented in Eq. (4.4), but with geometric (metric) distances lij. In this model, the structure of the network
is absent but mathematically can be equivalent to a weighted network with weights given by Eq. (4.4).

In the gravity law model, the resulting random walker contains characteristics of the biased random
walks determined by Eq. (3.2) and the Lévy flights on networks with transition probabilities given by Eq.
(4.1). Additionally, there are other models, beside the gravity law, like the radiation model described in
[102], that contain more general functions of the distance f (dij) [98–100].

As an example of random walks that take place in a continuous space but can be modelled with
the formalism of random walks defined in terms of a matrix of weights, in Ref. [28], we introduced a
model of a walker, that randomly visit locations in a two-dimensional spatial region, that represents the
human mobility between sites in a city. In this case, N points are located in a two-dimensional region
and the integer numbers i = 1, 2, . . . , N label each location. In addition, the coordinates of the locations
are known, and we denote as lij the distance between the places i and j. The distance lij = lji ≥ 0 can
be calculated by different metrics; for example, in some applications could be appropriated to use an
Euclidean metric, whereas, in other contexts, a Manhattan distance could be more useful. In order to
define a discrete time random walker that at each step visits one of the locations, the transition probability
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RANDOM WALKS ON WEIGHTED NETWORKS 13

π
(α)

i→j(R) to hop from site i to site j is given by [28]

π
(α)

i→j(R) =
�

(α)

ij (R)
∑N

m=1 �
(α)

im (R)
, (4.5)

where the weights �
(α)

ij (R) are defined by the relation [28]

�
(α)

ij (R) =

{
1 for 0 ≤ lij ≤ R,(
R/lij

)α
for R < lij.

(4.6)

Here, α and R are positive real parameters. The radius R determines a neighbourhood around which the
random walker can go from the initial site to any of the locations in this region with equal probability;
this transition is independent of the distance between the respective sites. That is, if there are S sites
inside a circle of radius R, the probability of going to any of these sites is constant. Additionally, for
places beyond the local neighbourhood, for distances greater than R, the transition probability decays as
an inverse power law of the distance and is proportional to l−α

ij [28]. In this way, the parameter R defines
a characteristic length of the local neighbourhood and α controls the capacity of the walker to hop with
long-range displacements. In particular, in the limit α → ∞ the dynamics becomes local, whereas the
case α → 0 gives the possibility to go from one location to any different one with the same probability.
In this limit, we have π

(0)

i→j(R) = N−1. This model is then a combination of a rank model [103–105]
for shorter distances and a gravity-like model for larger ones [98]. It is important to mention that in the
movement defined by the weights in Eq. (4.6), we choose �

(α)

ii (R) �= 0; in this way the walker can stay in
the node i with non-null probability. All the results presented here are also valid for this case, whenever
the value of R is such that the random walker can reach any of the N sites used in the definition of the
transition matrix.

In Fig. 7(a), we illustrate the model for the random walk introduced in Eq. (4.5). In Fig. 7(b), we
present Monte Carlo simulations of the random walker described by Eqs. (4.5)–(4.6). We generate N

random locations (points) on a continuous region [0, 1] × [0, 1] in R
2 and, for different values of the

exponent α, we depict the trajectories described by the walkers. In the case of α → ∞, it is observed
that the dynamics is local and only allows transitions to sites in a neighbourhood determined by a radius
R = 0.17 around each location. In this case, all the possible trajectories in the limit t → ∞ form a
random geometric graph [106, 107]; we can identify features of this structure in our simulation. On the
other hand, finite values of α model spatial long-range displacements such as the results illustrated in
Fig. 7(b) for the case α = 4. We observe how the introduction of the long-range activity improves the
capacity of the random walker to visit and explore more locations in comparison with the local dynamics
defined by the limit α → ∞ [28].

4.3 The Fractional Graph Laplacian

The fractional transport on networks is defined in terms of a power of the Laplacian matrix L with
elements given by Lij = δijki − Aij, where δij denotes the Kronecker delta; in particular, Lii = ki. That
is, the Laplacian matrix is defined as a diagonal matrix, that has the degrees of the nodes as diagonal
elements, minus the adjacency matrix. The graph Laplacian matrix is introduced in graph theory and in
the modeling of diffusion processes on networks [14, 18, 108–114]. In addition, the matrix L is related
with the discrete form of the Laplacian operator (−∇2) that appears in the diffusion equation in the
continuum [13, 113, 114].
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14 A. P. RIASCOS AND J. L. MATEOS

(a)

(b)

Fig. 7. A schematic illustration of the random walk defined in Eq. (4.5). In (a) we depict random locations on the continuous
two-dimensional region (represented by triangles); the probability to go from location i to a different site is determined by two
types of transition probabilities: First, to a site j inside a circular region of radius R centred in the location i, π

(α)
i→j(R), which is

a constant; and second, a transition to a site k outside the circle of radius R, π
(α)

i→k(R) that considers long-range transitions with
a power-law decay proportional to l−α

ik , where lik is the distance between sites i and k. In (b) we show Monte Carlo simulations
of a discrete-time random walker that visits N = 100 specific locations in the region [0, 1] × [0, 1] in R

2 following the random
movement defined by the transition probabilities in Eq. (4.5), with R = 0.17. We depict the results for α → ∞ and α = 4. The
total number of steps is t = 200 and the scale in the colour bar represents the time at each step.

The Laplacian operator that appears in the diffusion equation gives rise to normal diffusion processes,
associated with the normal Brownian motion [115], for instance. However, it is well known that an
extension to the Fractional Calculus of the Laplacian operator leads to a fractional partial differential
equation: the fractional diffusion equation in the continuum. This equation describe anomalous diffusion
and long-range processes, like Lévy flights, among other anomalous processes. There is a vast literature
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RANDOM WALKS ON WEIGHTED NETWORKS 15

of fractional dynamics, see for instance the following books and review papers [87, 96, 116–119]. Thus,
we have in the continuum the usual Laplacian and its counterpart, the fractional Laplacian. On the other
hand, in a graph (network) we do have a normal Graph Laplacian, as described above. However, what has
been lacking, until recently, was a Fractional Graph Laplacian that acts on a network. In 2014, Riascos
and Mateos [39] introduced, for the first time, a Fractional Graph Laplacian on a general network Lγ ,
where the real number γ is the fractional index defined in the interval 0 < γ < 1.

Since the Laplacian matrix L is a symmetric matrix, by using the Gram–Schmidt orthonormalization
of the eigenvectors of L, we obtain a set of eigenvectors {

∣∣
j

〉
}N

j=1 that satisfy the eigenvalue equation
L

∣∣
j

〉
= µj

∣∣
j

〉
for j = 1, . . . , N and

〈

i|
j

〉
= δij, where µj are the eigenvalues, which are real and

nonnegative. Here, we are using the notation of Dirac brackets, as is usual in the literature of physics.
For connected networks, the smallest eigenvalue is µ1 = 0 and µm > 0 for m = 2, . . . , N [15]. We
define the matrix Q with elements Qij =

〈
i|
j

〉
and the diagonal matrix � = diag(0, µ2, . . . , µN). These

matrices satisfy L Q = Q �, therefore L = Q�Q†, where Q† denotes the conjugate transpose of Q.
Therefore, following well-known results of linear algebra (see [120]), Riascos and Mateos define in [39]
the fractional graph Laplacian as:

Lγ = Q�γ Q† =

N∑

m=2

µγ
m |
m〉 〈
m| , (4.7)

where �γ = diag(0, µγ

2 , . . . , µγ

N). It is worth noticing that the diagonal elements of the fractional graph
Laplacian defined in Eq. (4.7) introduce a generalization of the degree ki = (L)ii to the fractional case.
In this way, the fractional degree k

(γ )

i of the node i is given by [39]

k
(γ )

i ≡ (Lγ )ii =

N∑

m=2

µγ
m〈i |
m〉 〈
m| i〉. (4.8)

The fractional random walk is the random walk associated with the fractional diffusion in networks. Here,
we generalize the result in [39] to the case of weighted networks. In the formalism of weighted networks
is defined by the elements �ii = 0 and, for i �= j

�ij = −(Lγ )ij (4.9)

with 0 < γ ≤ 1. On the other hand, the elements of the Laplacian matrix satisfy ki = −
∑

l �=i Lil and, in

the fractional case we have k
(γ )

i = −
∑

l �=i(L
γ )il. As a result, the strength of the node i is given by

Si =

N∑

l=1

�il = −
∑

l �=i

(Lγ )il = k
(γ )

i , (4.10)

then, by using Eq. (2.2), the transition probability πi→j is given by

πi→j = δij −
(Lγ )ij

k
(γ )

i

. (4.11)
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16 A. P. RIASCOS AND J. L. MATEOS

In the limit γ → 1, the normal random walk is recovered. In addition, by using the Eq. (2.6), the stationary
distribution is

P∞
i =

k
(γ )

i∑N

l=1 k
(γ )

l

. (4.12)

This is a generalization of the result P∞
i ∝ ki for normal random walks discussed before and recovered

from Eq. (4.12) when γ = 1.
The fractional random walk is the process associated with the fractional diffusion on networks and

the transition probabilities in Eq. (4.11) define a model with long-range displacements on the network
[39]. The case of infinite n-dimensional lattices with periodic boundary conditions has been addressed in
different contexts [45–47, 121, 122]. For this type of periodic structures, the following analytical relation
is obtained [46]. For a thorough description of the Fractional dynamics on networks and lattices, see the
recent book [48].

πi→j ∼ d
−n−2γ

ij for dij ≫ 1. (4.13)

The result in Eq. (4.13) establishes a connection between Lévy flights on networks [30] and the fractional
dynamics defined by Eq. (4.11). That is, it can be derived from the non-local general formalism of the
Fractional Graph Laplacian.

Let us now discuss a revealing result of the Fractional Graph Laplacian formalism for the particular
case of regular networks. There is an important set of networks, called regular networks, where the degree
of each node is the same, that is, the degree k is constant. Examples of regular networks are lattices in
any dimension, triangular and hexagonal networks, regular trees and many others.

In a regular network with constant degree k, the fractional graph Laplacian can be expressed as [40]

(Lγ )ij =

∞∑

m=0

(
γ

m

)
(−1)mkγ−m(Am)ij, (4.14)

where
(

x

y

)
≡ Ŵ(x+1)

Ŵ(y+1)Ŵ(x−y+1)
and Ŵ(x) denotes the Gamma function [123]. The result in Eq. (4.14) gives

an exact expression of the fractional graph Laplacian as a sum of coefficients and inverse powers of the
degree, and integer powers of the adjacency matrix Am for m = 1, 2, . . .. The matrix element (Am)ij is
the number of all the possible trajectories connecting the nodes i, j with m links [124]. Therefore, the
Fractional Graph Laplacian can be written as a sum of trajectories in the network where each trajectory
has a coefficient that gives a weight in the sum. Notice that the longer the trajectory the smaller the
coefficient that measures the contribution in the sum. In this way, the fractional dynamics, defined by
the transition matrix with elements πi→j in Eq. (4.11), incorporates global (non-local) information about
all the possible trajectories connecting the nodes i and j. This result was obtained for regular networks
in [40].

Here, it is worth mentioning that Lγ for 0 < γ < 1 describes the non-local structure of a network, and
only the normalized version in Eq. (4.11) defines entries that can be interpreted as transition probabilities
to jump or move on the network. This process is associated with the fractional diffusion and Lévy flights
on networks [40, 48]. In continuous-time, fractional diffusive transport is defined by the matrix

L
(γ ) = I − �(γ ), (4.15)
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t=0

t=25 t=50 t=100

Unvisited nodes

Visited nodes

Position at time t

Fig. 8. Monte Carlo simulation of a discrete-time fractional random walker on a tree with transition probabilities given by Eq.
(4.11). The movement starts at t = 0 from an arbitrary node. We show three discrete times t = 25, 50, 100 for three values of
the parameter γ = 1, 0.75, 0.5. The case γ = 1 corresponds to a normal random walker whereas the cases with γ = 0.75, 0.5
correspond to a fractional random walk leading to anomalous transport. We represent with different colours the unvisited nodes,
visited nodes and the position of the random walker at time t.

where I is the N × N identity matrix and �(γ ) is defined by the elements πi→j in Eq. (4.11); see Ref.
[39] for a detailed discussion. In general networks, the dynamics defined by Lγ cannot be interpreted
as hops between nodes or diffusive transport. These types of interpretations can lead to counterintuitive
conclusions, showing that the normalization in Eq. (4.15) is required in a proper analysis of continuous-
time diffusive transport on networks.

In order to illustrate the effect of the fractional dynamics of a random walker on a network, in Fig. 8,
we present Monte Carlo simulations of discrete-time random walks on a tree. The discrete time t denotes
the number of steps of the random walker as it moves from one node to the next node on the network.
Given the topology of the network, we calculate the adjacency matrix and the corresponding Laplacian
matrix L of the network. Then we obtain its eigenvalues and eigenvectors that allow us in turn to get
the fractional graph Laplacian Lγ . Finally, using Eq. (4.11), we determine the transition probabilities
for different values of the parameter γ . The movement starts at t = 0 from an arbitrary node. We show
three discrete times t = 25, 50, 100 for three values of the parameter γ = 1, 0.75, 0.5. Here, we depict
one representative realization of a random walker as it hops from one node to another randomly. The
case γ = 1 corresponds to normal random walk leading to normal diffusion. In this case, the random
walker can move only locally to nearest neighbours and, as can be seen in the figure, the walker revisits
frequently the same nodes and therefore the exploration of the network is redundant and slow. The cases
with γ = 0.75 and 0.5 correspond to a fractional random walk leading to anomalous diffusion. In this
case, the random walker can move in a long-range fashion from one node to another arbitrarily distant
node. This allows us to explore more efficiently the network since the walker does not tend to revisit the
same nodes; on the contrary, it tends to explore new distant regions each time. All this can be seen in the
figure for different times, and allow us to make a comparison between a random walker using regular
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18 A. P. RIASCOS AND J. L. MATEOS

dynamics and a fractional dynamics [40]. A detailed analysis of the fractional graph Laplacian and its
relation with long-range dynamics on networks and applications is presented in Refs. [39, 40, 43–47, 122].

The introduction of the fractional random walks is motivated by the search of an equivalent on
networks of the fractional diffusion and its relation with Lévy flights. Recently, other types of functions
of matrices with local information have shown interesting properties associated with long-range dynamics
and the global structure of networks; this is the case of the communicability [110, 125] and the random
walk accessibility introduced in Ref. [126]. Particular functions of matrices can be used to define different
types of long-range random walks and characterized with the formalism reviewed in this work.

As a generalization of Eq. (4.11), other functions of the Laplacian g(L) can be applied to define random
walk strategies on networks. In order that the functions g(x) properly define random walk models, they
should satisfy the following conditions [56]

• Condition I: The matrix g(L) must be positive semidefinite, that is, the eigenvalues of g(L) are
restricted to be positive or zero. In this way, the property of the Laplacian eigenvalues µi ≥ 0 for
i = 2, . . . , N is preserved by the function g(x).

• Condition II: The elements of the matrix g(L) denoted as gij(L), for i, j = 1, 2, . . . , N , should satisfy

N∑

j=1

gij(L) = 0. (4.16)

Therefore, the function g(x) maintains the property
∑N

j=1 Lij = 0 associated with the elements of the
Laplacian matrix.

• Condition III: All the non-diagonal elements of g(L) must satisfy

gij(L) ≤ 0. (4.17)

For this type of functions, transition probabilities are defined by the relation

πi→j = δij −
gij(L)

Ki

, (4.18)

where we use the generalized degrees Ki defined by the diagonal elements of g(L) that satisfy [56]

Ki = gii(L) = −
∑

l �=i

gil(L) > 0. (4.19)

Examples of functions that satisfy the conditions I, II and III are the fractional graph Laplacian g(L) = Lγ

with 0 < γ < 1, the logarithmic function g(L) = log (I + αL) for α > 0 and the function g(L) = I−e−aL

with a > 0. In all these cases, it is observed that the random walker hops with long-range displacements
on the network [56].

As we commented above, functions g(x) = xγ with exponents 0 < γ ≤ 1 are admissible
to define random walk dynamics. Powers with γ > 1 are not, since they do not fulfil Eq. (4.17).
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RANDOM WALKS ON WEIGHTED NETWORKS 19

From this observation it follows that admissible functions g(x) obey (up to positive multipliers) for
small arguments

g(x) ∼ xγ , x → 0+, 0 < γ ≤ 1. (4.20)

The lowest order in the expansion of an admissible function g(x) either starts with x (type (i)) that is
integer γ = 1, or with xγ (0 < γ < 1, type (ii)) when it is non-integer (fractional). The expansion of
g(x) (up to unimportant positive multipliers) for type (i) functions are of the form g(x) = x + g̃(x) . . .,
whereas type (ii) functions have expansions that write as g(x) = xγ + g̃(x) . . . (0 < γ < 1). The parts
g̃(x) contain only powers greater than 1 in case (i), and greater than γ in case (ii), respectively. The classes
(i) and (ii) are the only two classes of functions that are admissible. In view of the examples considered
above, the functions 1 − e−x and log(1 + αx) are type (i) functions, whereas xγ (0 < γ < 1) is of
type (ii).

In Ref. [56], Michelitsch et al. showed that the lowest power in the expansion of g(L) determines the
dominant asymptotic transition probability for long-range steps on sufficiently large networks N → ∞.
In addition, functions g(L) = L + g̃(L) of type (i) contain an internal length-scale defined by the local
information of Laplacian L. This type of non-locality depends on that length-scale and, by increasing
the size of the network, the Laplacian functions of type (i) become quasi-local and the type (i) random
walk becomes similar to a normal random walk with emerging Brownian motions (normal diffusion) in
the limit of large networks N → ∞ [48, 56].

In contrast, functions of type (ii) define a fractional type of non-locality with g(L) = Lγ + g̃(L)

(0 < γ < 1) which becomes asymptotically scale-free (asymptotically self-similar) in the limit of large
networks N → ∞. The asymptotic scale-free character wipes out, in the limit of infinite networks,
any local information on L and in this sense is universal. In this way, type (ii) non-locality leads to the
asymptotic emergence of Lévy flights (anomalous diffusion) on large networks N → ∞. The type (ii)
non-locality, due to its asymptotic scale-free character cannot be ‘localized’ as in case (i) by increasing
the size N of the network. In this way, the type (ii) non-locality thus remains ‘stable’ when increasing
the size of the network [56].

In terms of the formalism of the matrix of weights, the generalized random walk model in Eq. (4.18)
can be analysed by using the weights �ij = −gij(L) for i �= j and �ii = 0. In this way, as a consequence
of the condition in Eq. (4.17), the weights satisfy �ij ≥ 0; also, the strength of each node is given by the
generalized degree Ki allowing us to write the stationary probability distribution of the process as

P∞
i =

Ki∑N

l=1 Kl

. (4.21)

In the general case described in Eq. (4.18), the values of gij(L) can be obtained by using the spectral
methods described before for the fractional graph Laplacian (see Ref. [56] for details).

Also, it is worth mentioning that different research groups have explored non-local effects in Lévy
flights and fractional transport in the context of data analysis [49, 51], the description of associative
knowledge in semantic networks [127] and the introduction of Lévy Flights Graph Convolutional Net-
works (LFGCN) for semi-supervised learning [50]. In all these cases long-range dynamics allows both
to accurately account for the network topology and to substantially improve classification performance.
As a particular example of the use of the fractional graph Laplacian Lγ , we refer to the work of Bautista
et al. in Ref. [49], where the authors proposed the Lγ -PageRank, an extension of PageRank based on
real powers of the Laplacian matrix. Their findings show that non-locality offers more versatility and this
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20 A. P. RIASCOS AND J. L. MATEOS

Table 1 Diverse types of weights � defining random walk models with transition probabilities πi→j in

Eq. (2.2). For all the random walk models �ii = 0. The non-diagonal elements �ij are presented in the

table with a short description of the quantities and parameters. The detailed description of each random

walk is presented in Sections 3 and 4. The corresponding references are indicated in the table according

to the number at the end of this article

WEIGHTS FOR LOCAL MODELS

Model Weights �ij, i �= j. Parameters References

1. Normal random walk Aij [16, 17, 21]
2. Biased random walk (qiqj)

βAij β ∈ R, qi > 0
3. Degree biased random walk (kikj)

βAij β ∈ R [20]
4. Maximal entropy random walk ξiξjAij [72, 73, 75]

5. Random walks for image segmentation e
− 1

σ2 (Ii−Ij)
2
Aij σ > 0 [77]

6. Topologically biased random walk eβyij Aij β ∈ R, yij = yji [78, 79]

WEIGHTS FOR NON-LOCAL MODELS

1. Lévy-like dynamics d−α
ij 0 ≤ α < ∞ [30, 35, 37, 129]

2. Exponential e−sdij s > 0 [37]
3. Gravity Law qiqj/lαij 0 ≤ α < ∞ [97, 130, 131]
4. Fractional Diffusion −(Lγ )ij 0 < γ < 1 [39, 40, 48]
5. General functions of the Laplacian −gij(L) [48, 56]

new approach can improve the unsupervised classification in the analysis of datasets [49]. In addition,
since the implementations in this case are not limited to diffusive transport, it is possible the use of Lγ

with γ > 1 producing positive and negative non-diagonal entries, this particular feature reinforces the
separability of clusters. The richness of such weighted networks comes from the sign of edges, allowing to
consider similarities but also to emphasize dissemblance between nodes. Thus, while two nodes can only
be disconnected on the initial structure, they can ‘repel’ themselves in non-local weighted topologies (see
Ref. [49] for a discussion of Lγ with γ > 1). Finally, let us mention a very recent paper that compares
the formalism of Path Laplacians, introduced by Estrada et al., with our Fractional Graph Laplacian
formalism as non-local operators on networks [128].

We conclude this section with a compilation of the types of random walk models represented by
specific types of weighted networks. In Table 1, we summarize the matrices of weights that define the
local and non-local dynamics analysed in this section. Each model is presented with the respective
parameters that define the random walker and key references to works analysing these strategies.

5. Mean first passage time and global characterization

In this section, we explore the mean first passage time (MFPT) [4], that is the average number of steps
needed by the random walker to reach a specific node for the first time. We also study global times that
consider the MFPTs for all the nodes in order to quantify and compare the capacity of local and non-local
random walks to explore different types of networks.
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RANDOM WALKS ON WEIGHTED NETWORKS 21

5.1 MFPT

In order to calculate the MFPT for random walks defined in terms of weighted networks, we use a similar
approach to the formalism presented in Refs. [16, 21] where normal random walks are studied. We start
by representing the probability Pij(t) in the master equation in Eq. (2.1) as

Pij(t) = δt0δij +

t∑

t′=0

Pjj(t − t′)Fij(t
′) . (5.1)

The first term in Eq. (5.1) represents the initial condition and Fij(t) is the probability to start in the node
i and reach the node j for the first time after t steps. By definition we have that Fij(0) = 0. Now, by using
the discrete Laplace transform f̃ (s) ≡

∑∞
t=0 e−stf (t), the relation in Eq. (5.1) takes the form

F̃ij(s) = (P̃ij(s) − δij)/P̃jj(s) . (5.2)

By definition, using the quantity Fij(t), the MFPT 〈Tij〉 for a random walker that starts in the node i and
reach for the first time the node j is given by [16]

〈Tij〉 ≡

∞∑

t=0

tFij(t) = −F̃ ′
ij(0). (5.3)

Now, by means of the moments R
(n)

ij of the probability Pij(t) defined as

R
(n)

ij ≡

∞∑

t=0

tn {Pij(t) − P∞
j }, (5.4)

the expansion in series of P̃ij(s) is

P̃ij(s) = P∞
j

1

(1 − e−s)
+

∞∑

n=0

(−1)nR
(n)

ij

sn

n!
. (5.5)

Introducing this result into Eq. (5.2), the MFPT is obtained

〈Tij〉 =
1

P∞
j

[
R

(0)

jj − R
(0)

ij + δij

]
. (5.6)

In Eq. (5.6), there are three different terms: the mean first return time 〈Tii〉 = 1/P∞
i , the quantity

τj ≡ R
(0)

jj /P∞
j , (5.7)

which is a time independent of the initial node and the time R
(0)

ij /P∞
j that depends on i and j. Furthermore,

from the detailed balance condition we obtained
R

(n)
ij

P∞
j

=
R

(n)
ji

P∞
i

, and thus

〈Tij〉 − 〈Tji〉 = τj − τi, (5.8)
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22 A. P. RIASCOS AND J. L. MATEOS

which is a relation that describes the asymmetry of the dynamics [21]. The time τi is interpreted as the
average time needed to reach the node i from a randomly chosen initial node of the network; on the other
hand, the quantity Ci ≡ τ−1

i is the random walk centrality introduced for the analysis of random walks
with local information [21]. The centrality Ci combines information of the network and the random walk
dynamics implemented to visit nodes and gives a high value to nodes that are easy to reach and a small
values to nodes for which the random walker takes, in average, many steps to hit the node for the first
time, starting from any node of the network [21, 30].

Additional to the times 〈Tij〉 and τi, from Eq. (5.6), we have

N∑

j=1

〈Tij〉P
∞
j =

N∑

j=1

R
(0)

jj −

N∑

j=1

R
(0)

ij + 1 =

N∑

j=1

R
(0)

jj + 1. (5.9)

The quantity K ≡
∑N

m=1 R(0)
mm in the context of stochastic processes is called Kemeny’s constant [132, 133].

As a consequence of Eq. (5.9), we have

K =

N∑

m=1

R(0)
mm =

∑

j �=i

〈Tij〉P
∞
j . (5.10)

This result establishes a relation between the Kemeny’s constant of Markovian processes and the
global time obtained by averaging the mean first passage times 〈Tij〉 weighted with the stationary
distribution P∞

j .

5.2 Linear algebra approach

In this section, we explore a general approach that allows us to study random walk models by using the
information in the transition probability matrix � in Eq. (2.2). We deduce expressions for the MFPT 〈Tij〉,
the time τi and the Kemeny’s constant K in terms of the eigenvalues and eigenvectors of the transition
matrix �.

In order to calculate τi and 〈Tij〉, it is necessary to find Pij(t). We start with the matrix form
of Eq. (2.1)

	P(t) = 	P(0)�t . (5.11)

Here, 	P(t) is the probability vector at time t. Using Dirac’s notation

Pij(t) = 〈i| �t |j〉 , (5.12)

where {|m〉}N
m=1 represents the canonical base of R

N .
Due to the existence of a detailed balance condition, the matrix � can be diagonalized and its spectrum

has real values [5]. For right eigenvectors of � we have � |φi〉 = λi |φi〉 for i = 1, .., N , where the set of
eigenvalues is ordered in the form λ1 = 1 and 1 > λ2 ≥ ... ≥ λN ≥ −1. On the other hand, from right
eigenvectors we define a matrix Z with elements Zij =

〈
i|φj

〉
. The matrix Z is invertible, and a new set of

vectors
〈
φ̄i

∣∣ is obtained by means of (Z−1)ij =
〈
φ̄i|j

〉
, then

δij = (Z−1Z)ij =

N∑

l=1

〈
φ̄i|l

〉 〈
l|φj

〉
= 〈φ̄i|φj〉 (5.13)
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and

I = ZZ−1 =

N∑

l=1

|φl〉
〈
φ̄l

∣∣ , (5.14)

where I is the N × N identity matrix.
In different cases, especially when it is necessary to calculate numerically the eigenvalues and eigen-

vectors of the transition matrix, it is convenient to use the symmetry of the matrix of weights �. In this
way, the eigenvectors |φl〉 and

〈
φ̄l

∣∣ can alternatively be deduced from the analysis of the symmetric matrix
M with elements

Mij = �ij/
√

SiSj. (5.15)

From an orthonormal set of eigenvectors |ϕl〉 that satisfy M |ϕl〉 = λl |ϕl〉 for l = 1, . . . , N , it is obtained
|φl〉 = S−1/2 |ϕl〉 and

〈
φ̄l

∣∣ = 〈ϕl| S1/2 where S is the N × N diagonal matrix S = diag(S1, . . . , SN).
Once the spectrum and the left and right eigenvectors of the transition matrix are obtained, we can

deduce different analytical expressions for quantities that characterize the random walker. By using the
diagonal matrix � ≡ diag(λ1, . . . , λN), we obtained � = Z�Z−1, therefore Eq. (5.12) takes the form

Pij(t) = 〈i| Z�tZ−1 |j〉 =

N∑

l=1

λt
l 〈i|φl〉

〈
φ̄l|j

〉
. (5.16)

From Eq. (5.16), the stationary probability distribution is P∞
j = 〈i|φ1〉

〈
φ̄1|j

〉
, where the result 〈i|φ1〉 =

constant makes P∞
j independent of the initial condition. Now, by means of the definition of R

(0)

ij , we have

R
(0)

ij =

N∑

l=2

1

1 − λl

〈i|φl〉
〈
φ̄l|j

〉
. (5.17)

Therefore, the time τi is given by

τi =

N∑

l=2

1

1 − λl

〈i|φl〉
〈
φ̄l|i

〉

〈i|φ1〉
〈
φ̄1|i

〉 , (5.18)

and, for i �= j in Eq. (5.6), the MFPT
〈
Tij

〉
is

〈
Tij

〉
=

N∑

l=2

1

1 − λl

〈j|φl〉
〈
φ̄l|j

〉
− 〈i|φl〉

〈
φ̄l|j

〉

〈j|φ1〉
〈
φ̄1|j

〉 , (5.19)

whereas 〈Tii〉 = (〈i|φ1〉
〈
φ̄1|i

〉
)−1. Finally, from Eqs. (5.10) and (5.17), we obtained the Kemeny’s constant

K =

N∑

m=1

N∑

l=2

1

1 − λl

〈
φ̄l|m

〉
〈m|φl〉 =

N∑

l=2

1

1 − λl

(5.20)

a result that only depends on the eigenvalues of the transition matrix �.
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5.3 Global characterization

In this section, we define global times that quantify the capacity of a random walk to reach any site of
the network. By using these global times it is possible to compare different dynamics defined through
Eq. (2.2). Global quantities like entropy rates [72, 134], the global mean first passage time [22] and the
cover time [14, 16] have been used to study random walks on networks. We use the global quantity [30]

τ ≡
1

N

N∑

i=1

τi , (5.21)

that gives an estimate of the average time to reach any site of the network. The values τi can present a
huge dispersion due to the fact that in some irregular networks there are nodes easily accessible to the
random walker and other sites that are hardly reached; despite this fact, the mean value of the times τi is
an important quantity that characterize the capacity of a random walker to visit the nodes of a network.
In the following section we explore the time τ for different random walk strategies.

In the particular case of random walks on weighted networks for which the value Si =
∑N

l=1 �il is
constant, the stationary distribution given by Eq. (2.6) is P∞

i = 1/N . In this type of regular cases, using
Eqs. (5.18) and (5.21) we have for the global time τ

τreg =
1

N

N∑

i=1

R
(0)

ii

P∞
i

=

N∑

i=1

R
(0)

ii =

N∑

l=2

1

1 − λl

. (5.22)

Then, in regular cases τreg is equal to the Kemeny’s constant. Examples of this simplification are the normal
random walks on a complete graph. This case illustrates the best scenario for the exploration of a network
by means of normal random walks since all the nodes are connected. For a complete graph Aij = 1 − δij

and πi→j =
1−δij

N−1 [15]. The eigenvalues of the matrix � are λ1 = 1 and λ2 = . . . = λN = −(N − 1)−1,
then the Kemeny’s constant given by Eq. (5.22) for unbiased random walks on a complete network is

τ0 =
(N − 1)2

N
, (5.23)

and this τ0 is the lowest value that the time τ can take.

6. MFPTs and global times for particular dynamics

In this section, we apply the results in Eqs. (5.18)–(5.20) that allow to calculate exact values of 〈Tij〉,
τj and K for random walks on weighted networks. In particular, we analyse the global time τ and the
Kemeny’s constant for the preferential navigation, the Lévy flights on networks, the fractional transport
and the model in Eq. (4.5). All these are defined in terms of a matrix of weights through the approach
presented in Sections 3 and 4. Similar methods can be implemented to study different types of random
walks described in Table 1.

6.1 Preferential navigation

The preferential navigation defined in Eq. (3.2) can represent different types of local random walkers; in
particular, degree biased random walkers with transitions described in Section 3.3. In order to characterize

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/c
o
m

n
e
t/a

rtic
le

/9
/5

/c
n
a
b
0
3
2
/6

3
8
6
4
5
1
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2
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(a) (b)

Fig. 9. Time τi vs. ki for degree biased random walks on networks obtained using Eq. (5.18). (a) ER network with N = 5000 and
〈k〉 = 50. (b) SF network with N = 5000, 〈k〉 = 6. We use three values of the parameter β.

this process, in Fig. 9, we depict the values of the time τi for two different networks; the respective
stationary distribution was presented in Fig. 2. The values that we obtained for τi give the average
number of steps needed by a degree biased random walker to reach the node i from a random site
in the network for different values of the parameter β. In the ER network, we observed the validity
of the result τi ≈ 1/P∞

i obtained by a mean field approximation [20]. On the other hand, in the SF
network this approximation is not valid and it is observed that, compared with the case β = 0 that
recovers the normal random walk, any degree biased random walk is a bad choice to reach efficiently
nodes with a lower degree in the SF network. Our findings also reveal that, in comparison with the
result for β = 0, in the ER network the value β = −2 reduces the number of steps needed to reach
nodes with few connections, whereas the parameter β = 2 reduces the value of τi in nodes with large
degree ki.

Now, we calculate the global time τ for different cases of the preferential navigation defined by Eq.
(3.2). We start generating the network and obtaining the transition matrix � for specific values of the
parameter β using the definition in Eq. (3.2). Once we obtained �, we calculate the respective left and
right eigenvectors

〈
φ̄l

∣∣ and |φl〉 by the method described in Section 5.2. Then, we use the Eq. (5.18)
to calculate the values of τi and finally, the mean value of the times τi gives τ . In a similar way, the
Kemeny’s constant is obtained from the spectrum of � by means of Eq. (5.20). This process is repeated
for different types of local models. We study cases for which the value qi in Eq. (3.2) is determined by
common quantities used to describe the role of the node i in each network; we explore the effect of the
following qi choices given by:

• The node degree ki, therefore, the dynamics is the degree biased random walk explored in Figs. 2
and 9.

• The average degree of the neighbours of i given by k
(nn)

i = (
∑N

l=1 Ailkl)/ki. In this case, the transition
probabilities πi→j depend on the average degree of the first neighbours of the node j.

• The closeness centrality gi of the node i given by gi = (
∑

j �=i dij)
−1 where dij is the distance between

i and j [13].
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(a) (b)

(c)

Fig. 10. Preferential random walks on a scale-free network (SF) of the Barabási–Albert type with N = 5000 nodes. (a) Global
time τ vs. β for different types of random walks defined by Eq. (3.2) with qi given by the node degree ki, the average degree
of neighbours k

(nn)
i , the closeness centrality gi and the eigenvector centrality ξi; in the inset we plot the values of the Kemeny’s

constant K vs. β. The continuous lines are used as a guide. In (b) and (c), we present Monte Carlo simulations of the number of
visited sites Nv as a function of time for node biased random walks with β = −2 and β = 2. The average of the number of visited
nodes 〈Nv〉 is obtained from 1000 different realizations of the random walker. The results are expressed as a fraction of the total
number of nodes multiplied by 100.

• The eigenvector centrality ξi of the node i. For the particular case β = 1, the probabilities πi→j are
determined by Eq. (3.6) that defines a maximal entropy random walk.

From the quantities ki, k
(nn)

i , gi and ξi, we analyse the global time τ for the preferential random walk
with different values of the parameter β that modulates the biased random walk. From the numerical
value of τ , we can compare the capacity of the dynamics to visit the nodes on the network. In Fig. 10, we
analyse each of these models in a scale-free network. In Fig. 10(a), we depict the time τ as a function of β.
In this case, we observe that unbiased random walks (β = 0) have the lowest values of τ . In addition, for
the random walk with qi = gi the values of τ do not change significantly with variations of the parameter
β. It is observed that, for a given value of β, the random walk defined by qi = ξi has the largest values
of τ , making this method to visit the nodes of the network inefficient to reach easily any node of the
structure. The results reveal that, in comparison to the unbiased case, some node biased random walks
need much more time to explore the network.

Furthermore, we are interested in the values of K and τ as a measure of the capacity of the random
walker to explore sites on the network. In this way, we use Monte Carlo simulations of each preferential
random walk with the values β = −2 and β = 2. We depict the results in Fig. 10(b, c) for the average
number of visited nodes 〈Nv〉 as a function of time. Based on our findings for τ , we know that in some
cases, for example when qi = ki or qi = ξi, the average time τ is much bigger for β = 2 than the result
obtained for β = −2. These findings, and the behaviour observed in the Monte Carlo simulations, are in
agreement with the predictions that τ gives for the different orders of magnitude of the time needed to
visit any node on the network. In contrast, the Kemeny’s constant (presented in the inset in Fig. 10(a))
does not describe the results obtained with Monte Carlo simulations. In this way, we can infer that, for
the preferential navigation, the eigenvectors of the transition matrix � contain relevant information about
the efficiency of the processes; by considering only the spectrum of � this information is lost. This does
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100 101

ki

104

105

τ i

ER

α = 1

α = 2

α → ∞

100 101 102

ki

103

104

SF

α = 1

α = 2

α → ∞

(a) (b)

Fig. 11. Time τi vs. ki for Lévy flights on networks; the quantities are obtained evaluating numerically Eq. (5.18). We use three
values of the parameter α and we study two types of networks with N = 5000. (a) ER network at the connectivity threshold
p = (log N)/N . (b) SF network with 〈k〉 = 6. Dashed lines denote the value τ0 obtained for α = 0.

not apply in the regular cases for which P∞
i = 1/N , where τreg = K , and as a consequence important

information to describe the efficiency of the process is contained in the spectrum of �.
All the analysis discussed for the preferential random walk in Fig. 10 reveals that the time τ is a

measure that describes globally the activity of random walks. On the other hand, the Kemeny’s constant
is a useful simplification to analyse only regular cases when the strength Si =

∑N

l=1 �il is constant.

6.2 Lévy flights

In this section, we analyse the efficiency of Lévy flights to explore a network. We use the formalism
introduced in Section 5.2, which is valid for all the dynamics represented in terms of the matrix of
weights �. In this way, we have exact analytical values that allow us to evaluate the mean first passage
time 〈Tij〉, the time τi and the global quantity τ by using Eqs. (5.18)–(5.21). In Fig. 11, we present the
results for τi, as a function of ki, for an ER network and a SF network. In a similar way to the results
observed for the preferential random walk in Fig. 9, we obtained that for Lévy flights on these small-world
networks R

(0)

ii ≈ 1 and, as a consequence, τi ≈ 1/P∞
i .

On the other hand, the efficiency of Lévy flights can be explored with the quantity τ . In networks for
which the long-range degree D

(α)

i is a constant for all the nodes on the network. The stationary distribution
is P∞

i = 1
N

, that is, each node has the same probability to be visited in the limit t → ∞. This is the case
of some regular networks like rings, square lattices with periodic boundary conditions, complete graphs,
among others. For this type of networks, τ is the Kemeny’s constant given by Eq. (5.20), a result that only
depends on the spectrum of the transition matrix �, with elements given by Eq. (2.2). In the following
part, we calculate analytically the value of τ for Lévy flights on rings, and we explore numerically other
structures.

First, we study Lévy flights on a ring. In this particular case, the matrix of weights � and the transition
matrix � are circulant matrices [15]. The eigenvalues and eigenvectors of circulant matrices are well
known [15, 135] and, in this way, we can obtain exact analytical expressions for the different quantities
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presented in Section 5. For example, for a ring with an even number of nodes N , the spectrum of the
transition matrix � is

λl =
2

∑N/2−1
n=1 n−α cos [nθl] +

(
N

2

)−α
cos

[
N

2 θl

]

2
∑N/2−1

n=1 n−α +
(

N

2

)−α
, (6.1)

with θl = 2π(l − 1)/N . In a similar way, for an odd value of N , we have

λl =

∑(N−1)/2
n=1 n−α cos [nθl]∑(N−1)/2

n=1 n−α
. (6.2)

Introducing the eigenvalues in Eqs. (6.1) and (6.2) into the relation in Eq. (5.22), we obtain analytically
the value of τ for Lévy flights on a ring. In particular, when α → ∞ we deduce τ for normal random
walks on a ring

τ =

N∑

l=2

1

1 − cos
[

2π

N
(l − 1)

] . (6.3)

In Fig. 12, we analyse the values of τ for Lévy flights on finite rings. In Fig. 12(a), we present the result
for τ/τ0 as a function of the ring size N for different values of α. We observe that, in the limit α → ∞,
the time τ behaves as τ/τ0 ∼ N , therefore τ ∼ N2. In a similar way, the reduction of the parameter α

gradually changes τ to τ ∼ N1+δ , where δ takes values in the interval 0 < δ < 1 for 0 < α < ∞. Finally,
in the limit α → 0, we have τ ∼ N . In addition, in Fig. 12(b), we depict the results for τ/τ0 as a function
of α for different values of the ring size N . In this case, it is observed how the relation τ/τ0 maintains a
similar behaviour for different values of the number of nodes N . In the interval 0 < α < 2, we observed
that τ/τ0 are close to the value τ0 obtained in the limit α → 0 or in a complete graph. Moreover, in the
range 2 < α ≤ 5, τ/τ0 shows an increase that can be of several orders of magnitude. For α > 6, the
results are again constant and close to the limit α → ∞ given by Eq. (6.3).

Once we analysed the Lévy flights on rings, for which the eigenvalues of the transition have the analytic
form presented in Eqs. (6.1) and (6.2), it is important to explore the value of τ for other structures. In
Fig. 13, we present the results obtained for the average number of steps τ as a function of the parameter
α for Lévy flights on different types of networks. In regular networks (ring and square lattice), the value
of τ is obtained from Eq. (5.22). For the tree, the ER and the SF networks, the results are calculated using
Eqs. (5.18) and (5.21). The values obtained for τ suggest that, compared with the normal random walker,
in large-world networks the average number of steps required to reach any node in the network is lower
for the Lévy flight. In small-world networks, the differences are smaller, but even in this case, the Lévy
dynamics improve the results obtained for the normal random walker. This result is reasonable due to the
fact that in large-world networks, Lévy flights define a model that induces the small-world property. In
the case of small-world networks, the nodes in the network are separated by short distances and, in this
way, Lévy flights and the normal random walk explore the network with times τ of the same order of
magnitude [30].

6.3 Fractional transport

In this section, we apply the approach described before for preferential random walks and Lévy flights to
the case of the fractional transport on networks with transition probabilities between nodes given by the
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100 101
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τ
/τ

0

N = 10

N = 102

N = 103

N = 5 × 103

N = 104

101 102 103 104

N

100

101

102

103

τ
/τ

0

α = 1

α = 2

α = 3

α → ∞

(a)

(b)

Fig. 12. Global time τ for Lévy flights to reach any site of a finite ring. The results are expressed in terms of the value τ0 = (N−1)2/N

obtained for a complete graph. The values are calculated using the analytical expressions for the spectra in Eqs. (6.1)-(6.2) and the
Eq. (5.22). In (a) the time τ is presented as a function of N for α = 1, 2, 3 and the limit case α → ∞; these results are complemented
in (b) where the time τ is plotted as a function of α for Lévy flights with different values of N .

Eq. (4.11). In the case of rings with N nodes, the eigenvalues of the transition matrices can be obtained
analytically [40, 56]. For this regular structure, the fractional degree in Eq. (4.10) is a constant k(γ ) given
by [56]

k(γ ) = (Lγ )ii =
1

N

N∑

l=1

(
2 − 2 cos

[
2π

N
(l − 1)

])γ

(6.4)

and the eigenvalues {λi}
N
i=1 for the transition matrix �, with elements in Eq. (4.11), are

λi = 1 −
1

k(γ )

(
2 − 2 cos

[
2π

N
(i − 1)

])γ

. (6.5)
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100
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τ
/τ

0
Ring

Tree

Lattice

0 2 4 6 8 10

α

1.0

1.2

1.4

1.6

τ
/τ

0

SF

ER

(a)

(b)

Fig. 13. Global time τ that gives the average number of steps needed for Lévy flights to reach any site of the network in different
structures; the results are expressed in terms of the value τ0 = (N − 1)2/N . In (a) and (b), we depict the time τ for different values
of α in networks with N = 5000. We calculated the values numerically using the Eqs. (5.18) and (5.21) for large-world networks
(ring, tree and a square lattice of size 50 × 100 and periodic boundary conditions) and small-world networks (ER network in the
connectivity threshold and a SF network of the Barabási–Albert type).

Now, as a consequence of the results in Eqs. (6.4) and (6.5), the time τ that characterizes the random
walk in Eq. (4.11) to explore a ring coincides with the Kemeny’s constant and is given by [56]

τ = k(γ )

N∑

m=2

1

(2 − 2 cos φm)γ , (6.6)

where φi ≡ 2π

N
(i − 1).

In Fig. 14, we represent the numerical values of the global time τ/τ0 obtained for the fractional
transport on rings. The results are calculated by direct evaluation of the result in Eq. (6.6). We explore
the parameter γ that defines the fractional transport for different values of the size of the ring N . In
Fig. 14, we observe that the dynamics with 0 < γ < 1 always improves the capacity to explore the ring
in comparison with a normal random walk recovered in the case γ = 1. This effect is observed in the
reduction of the quantity τ/τ0 for γ = 0.25, 0.5 and γ = 0.75. On the other hand, in the limit γ → 0
the movement is equivalent to a normal random walker on a fully connected network allowing, with the
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101 102 103 104

N

100

101

102

103

τ
/τ

0

γ = 1.0

γ = 0.75

γ = 0.50

γ = 0.25

Fig. 14. Global time τ as a function of the number of nodes N for the fractional transport on rings. We obtain the results for the time
τ by direct evaluation of the Eq. (6.6). We express the time τ in relation to τ0 = (N − 1)2/N for different values of the parameter
γ that defines each random walk. Solid lines are used as a guide.

same probability, transitions from one node to any site of the ring [40]. A similar behaviour to this limit
is also observed for the case γ = 0.25 for all the values of N analysed.

Through the evaluation of the global time τ , we can analyse the fractional dynamics in different
types of large-world and small-world networks. Unlike the previous cases explored for rings, other types
of networks have not the same fractional degree k

(γ )

i for all the nodes i = 1, 2, . . . , N . In this way, the
capacity of the random walker to visit all the nodes of the network is quantified by the time τ given by the
average of the times Eq. (5.18) that depends on the eigenvectors and eigenvalues of the transition matrix
� with elements given by Eq. (4.11).

In Fig. 15, we show the global time τ for networks with N = 5000 nodes. We analyse a deterministic
tree created by an iterative method for which an initial node ramifies with two leaves that also repeat
this process until the size N . The final structure is a large-world network with average distances 〈d〉
between nodes that scale as the size of the network. On the other hand, we analyse random networks
generated with the Watts–Strogatz model for which an initially regular network is generated and then
rewired with probability p taken from a uniform distribution; for values of p → 0 this random network
has the large world property of the original lattice; however, the rewiring introduces shortcuts that reduce
the average path lengths with the increasing of p [136]. In addition, small-world networks generated with
the ER model and a SF network of the Barabási–Albert type are explored [137, 138]. We observe that
the generalized transport defined in terms of the fractional graph Laplacian Lγ with 0 < γ < 1 always
improves the efficiency to explore the networks, the effects are marked in large-world networks with a
significant change in the value τ/τ0, but the dynamics also improves the results for small-world networks.

As we discussed in Section 4.3, the random walk defined in terms of the fractional graph Laplacian
Lγ is a particular case of non-local strategies expressed using functions of the Laplacian g(L). The same
approach presented here applies to other types of dynamics [56]; for example, when we use weights
defined in terms of the logarithmic function log (I + αL) for α > 0 and the function I− e−aL with a > 0.
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0.2 0.4 0.6 0.8 1.0

γ

100

101

τ
/τ

0

Tree

WS p = 0.01

WS p = 0.05

WS p = 0.10

BA

ER

Fig. 15. Global time τ for the fractional transport on connected networks with N = 5000 nodes: a tree, random networks generated
from the Watts–Strogatz (WS) model with rewiring probabilities p = 0.01, p = 0.05, p = 0.1, a SF network of the Barabási–Albert
type and a random network of the ER type with p = log N/N . We obtain the results for the time τ by numerical evaluation of the
Eqs. (5.18) and (5.21). We express τ in relation to the value τ0 = (N − 1)2/N . Solid lines are used as a guide.

6.4 Random walks to visit specific locations

We end this section with an application of the formalism developed in terms of a matrix of weights but
now for a model in the context of human mobility that does not necessarily require the definition of a
network. We analyse the random walk model with transition probabilities defined by Eqs. (4.5)–(4.6)
to visit specific locations in a region. In this case, the matrix of weights with elements �

(α)

ij (R) depends
on the characteristic length R, that defines a local neighbourhood, and the parameter α that controls a
dynamics with similar characteristics to the Lévy flights on networks but now to visit the locations. In
order to quantify the capacity of the random walker to visit the N locations in space, we use the time
τ (α)(R), that gives the average number of steps needed to reach any of the N sites independently of
the initial condition by numerical evaluation of the Eqs. (5.18) and (5.21). In Fig. 16, we present the
time τ (α)(R) for different values of the parameters α and R to visit N = 100 random locations on the
continuous two-dimensional plane. The values are obtained using the exact analytical results in terms
of the eigenvectors and eigenvalues of the transition matrix defined by Eq (4.5). It is observed how, for
α ≫ 1, different values of R define diverse ways to visit the N sites in the plane; in particular, R ≪ 1
characterizes a local movement that requires many steps to reach the locations. Models with α ≤ 1 are
optimal and in this interval the results are independent of the parameter R. The results observed with
the help of the global time τ α(R) suggest that long-range dynamics always improve the capacity of the
random walker to reach any of the N locations [28].

7. Conclusions

In this work, we presented a survey of a general approach to analyse random walks on undirected weighted
networks. These random walks are described as a discrete-time Markovian process with transition prob-
abilities defined in terms of a symmetric matrix of weights. We consider in this survey both local and
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10−1 100 101 102

α

100
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τ
(α

) (
R

)/
N

R = 0.10

R = 0.13

R = 0.15

R = 0.17

R = 0.20

R = 0.30

Fig. 16. Global time to visit N locations. The value τ (α)(R) gives the average number of steps needed to reach any of the N sites,
independently of the initial condition; we use N = 100 random sites in the region [0, 1]×[0, 1] in R

2. The results are obtained from
the analytical expressions in Eqs. (5.18)–(5.21) and the numerical evaluation of the eigenvectors and eigenvalues of the transition
matrix with elements w

(α)
i→j(R).

non-local dynamics: however, the emphasis is on non-local random walks on networks, since this long-
range dynamics is more general and includes the local random walks as a particular case. Besides this, it
is only recently that these non-local stochastic processes on networks have started to being explored in
detail.

We start with an introduction to random walks on weighted networks and briefly point out its relevance
in many fields: mathematics, physics, biology, economics, finance, computer science, among others. Then,
we present a general formalism of random walks on networks based on discrete-time master equations and
transition probabilities. Firstly, we study local random walk models, including the normal random walk,
biased random walks with preferential navigation, random walks for image segmentation, and maximal
entropy random walks. Secondly, we analyse non-local random walk models, starting with a discussion of
Lévy-like dynamics on networks. Then, we discuss an application of the non-local formalism to the case
of spatial networks and human mobility; in particular the gravity law model of mobility and migration.

Finally, we study in detail the important formalism of the fractional graph Laplacian, introduced
by the authors some years ago, that incorporates, for the first time, the ideas of fractional dynamics and
fractional calculus to network science. This formalism is based on the spectral properties of the Laplacian
matrix and is very general and easy to implement. In the last two sections of this survey, we address the
problem of the mean first passage time in networks and the global characterization of the dynamics to
explore the whole network. We summarize in a table the local and non-local dynamics with the different
weighted matrices for each model, including the corresponding references studying each strategy.

We hope that this survey, which does not pretend to encompass the vast literature of random walks
and network science and focuses on the interplay between local and non-local random walks on networks,
can be useful and stimulate further study in this important area of research.
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