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1. Introduction

Let X=(X,,X,,...,X,) be a random n-vector with spherical symmetry, that is, a
random variable taking values in Euclidean n-space R" with the property that, if 4 is
any measurable subset of R", and 4’ is obtained from A by rotation about the origin, then

P(Xe€Ad)=P(Xed).
Then the distribution of X is determined by that of its length
3

XX { 5 X?}
=1
and in particular the characteristic function of X is given by
(I)(t) — E(eit-X) :E(eitx cos 0), 1)

where ¢=|t|, and 0 is the angle between the vectors t and X. Clearly § and X are inde-
pendent, § having the distribution which a uniformly distributed unit vector makes with
a fixed axis.

It is readily shown that, when #>2, 1=cos 8 has a probability density

(3n—1)!
(309

fa(d) = A-t (—1<A<)). 2)

Hence, for any complex «,

11 cos fn—1)t [* i n—
Ee .0)=n(;(%n_)%)!f_le A1 — A2y )
=Jyn-1(u) (u)" 1" (e —1)!

by the Poisson integral ([16], 48) for the Bessel function J- ().
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It will be convenient to write
n=2(1+s), 3)
and to recall the Bessel function A (-) defined by

Ay =T ) ot (J)™* = 3 (= 1) (quy"st/o! s + 1) @

0

(cf. [10]). Then equation (1) takes the form
O(t) = E{A,(tX)}. (5)
When n=1, X is simply a real random variable with a symmetric distribution, and so
Oty =E(} "+ Le " ) = E(cos tX),
which is of the form (5) since
A_(u) =cos u. (6)
Now let X,Y be two independent random n-vectors with spherical symmetry, and
let Z=X+Y. Then Z clearly also has spherical symmetry, and since
E(eit Z) = B(eit X) E(eit'Y),
it follows from (5) that
E{A(2)} = BE{A(tX)} E{A(tY)} (7)

for all ¢>0. Thus, if we are considering problems involving the addition of independent,
spherically symmetric random vectors, we can work wholly in terms of the distributions
of length, using instead of the usual characteristic function a radial characteristic function
defined by

W(t) = E{A,(X)}. (8)

- This device has been used by a number of writers; see for instance [12]. We shall see that
the radial characteristic function possesses many of the properties usually associated with
the familiar univariate characteristic function.

It has been pointed out by Haldane [9] that it is possible to work from the beginning
with the lengths of the random vectors by using the following procedure. If Z=X+Y,
then the length of Z is given by

Z:=X2+Y2+2X Y cosh, (9)

where § is now the angle between X and Y. By spherical symmetry, 6 is independent of
(X,Y), and A=cosf has (for n>>2) the probability density (2). Thus, if we know the distri-
butions of X and Y we can use (9) to compute that of Z.
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More generally, let F be any distribution function on [—1,1]. Then, if X,Y are

independent, non-negative random variables, we can construct a new random variable Z by
Z=(X2+Y2+21X7Y)H, (10)

where 4, independent of (X, Y), has the distribution function F. This does not determine
7Z as a random variable (because of the arbitrary choice of A1) but it does determine the
distribution of Z, and indeed the joint distribution of X,Y,Z. A random variable con-
structed in this way will be denoted by

Z=XoY, (11)

where it must be emphasised that the symbol o depends on the choice of the distribution F'.

The lack of definiteness in the definition of the symbol o forces us to make a convention
about the interpretation of an expression containing the symbol more than once. We make
the natural convention that the different 4 used in defining these symbols shall be in-
dependent random variables.

With this procedure a generalisation has been given of the addition of spherically
symmetric random vectors, since if F has the density (2), then XoY can be interpreted
as |X+Y|, where X and Y are independent and spherically symmetric with X =|X|,
Y=]Y|.

With the convention established above, we can construct from three independent non-

negative random variables X, Y, Z the two expressions

Xo(YoZ) and (XoY)oZ.

In the random walk case, these are both representations of | X+Y+Z ] , and therefore have
the same distribution, and indeed the same joint distribution with X,Y,Z. Haldane has
observed that this associativity property does not hold for general F, and has shown
that the assumption that the two expressions have the same distribution gives relations
between the cumulants of F such that exactly one of these can be specified arbitrarily.
(For a rather different, but related, associativity property we refer to [15]).

The object of the present paper is to study the operation o in those cases for which
the associativity property holds. These depend on a single real parameter », and may
naturally be interpreted as describing random walks in a space whose dimension » can take
any real value in 1<n < co. Thus, for instance, we can give a meaning to a random walk
with spherical symmetry in 2} dimensions, and the resulting process will be in a sense
intermediate between those in 2 and 3 dimensions.

It will prove to be possible to construct for these processes analogues of many of the

results known for ordinary random walks. Thus we can consider analogues of the central
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limit theorem, of stable and infinitely divisible distributions, of Pélya’s theorem, and of
Brownian processes. Walks in different numbers of dimensions will be connected by a
projection procedure. As well as being relevant to probability theory, the results obtained
give an interpretation for some well-known formulae involving Bessel functions of general

order.

2. The associativity condition

We shall say that the distribution function F on [ —1, 1] is associative if, whenever

X, Y, Z are independent non-negative random variables, we have
Xo(YoZ)=(XoY)oZ, (12)

where the sign = denotes equality of distribution. The object of this section is to identify

those F which are associative.
LeMma 1. If F is associative then, whatever the constants x,y =20,
Ay +px = p(x? +y2 +24zy)t, (13)

where A,u are independent with distribution function F.

1

If Q(u) = E(e'*?) = f e dF(A), (14)

-1
then G(x) Gly) = fl G{(=®+ y* + 2Azy)}} AF (D), (15)
-1

and, whenever t =0 and X, Y are independent,
E{G(X)} E{G(tY)} = E{G[t(Xo Y)]}. (16)

Proof. In equation (12), take X,Y,Z to be the sure random variables X =z, Y =y,
Z=z. Then

22+ (yz 422 QAyZ) + Qqu(y? +22+ 2/1yz)*
= (22 + g2 + 2hay) + 22 + 2u(a® + g + 2hay)t,

where A,u are independent with distribution function F. Subtracting the constant 2% +y2+
22 and dividing by 2z, we have
Ay +ux(1 +22y[z +y2[22)t = Awyfz +p(x? +y? -+ 2hay)E.
As z-> oo, both sides converge in probability, and hence in distribution. Hence
My +uz = p(a? +y?+24xy)t,

proving (13). Taking characteristic functions,
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(™) B(¢") = B{exp[iu(e*+y? +2iay)},
which is equivalent to (15), and (16) follows at once.

The significance of (16) is that it shows that E{G(¢tX)} plays the role of a characteristic

function for o, (16) being the exact analogue of the formula
E(eitX) E(eitY) — E(eit(X+Y)).

Before using Lemma 1 to identify all the associative F, we note two special cases for
which (13) holds.
Case 1. If the distribution of 4 is concentrated at 4=1, then both sides of (13) are
concentrated at x +y. We have
Gu) = e™.
In this case XoY=X+Y7,

and F is obviously associative.

Case 2. If the distribution of A is concentrated at 1=0, then both sides of (13) are
concentrated at 0. Then

G(u) =1,

and (XoY)2=X2+172,
Again F is clearly associative.

No other degenerate F are associative, since if F concentrates probability 1 at 1=a,
(13) implies that

a(x+y) = a(x? +y2 + 2axy)?,

ie. a(l—a)xzy =0,
so that a=0 or 1.

In the following analysis, we shall assume that Cases 1 and 2 have been excluded. First
consider the equation (15) for fixed positive 2. From (14), the left hand side is the restric-

tion to ¥ >0 of an entire function of the complex variable y. The right-hand side can be

continued to a regular function of y in |y| <z, by taking the branch of
(22 +y2+2Axy)t

which is positive on 0 <y <z and single-valued in |y| <z; this is possible because all the
zeros of

2*+y2+ 22y
lie on |y| =z. It follows that (15) holds for all y in |y| <u.

In particular, if we let y— —x through points in |y| <z, we get
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1 _
G(x) G(—x)= limJ'1 G{(2*+ o + 2Axy)t} dF(2) = J ¢{x(1 ~A)V2} dF ()
-1 -1

because of our choice of the branch of (x?+y2+2Axy)}. This last equation holds for all
positive x, and since both sides can be continued to entire functions of z, it follows that

for all complex «,

G(z) G(—~z)= f ' {x(1—2)V2} dF(2). (17)

Hence the right hand side must be an even function of x, and so, for each odd integer =,

its nth derivative vanishes at x=0. Thus
1
f 281 = "G (0) dF(A) =0,
-1
and so, since if we exclude Case 1
1
f (1—A)"dF(2)>0,
-1

we have @™ (0)=0 for each odd n. Therefore G is an even function.
It follows that, excluding Case 1, all the associative distribution functions F are

symmetric. Notice that all the moments of F are finite, and write

M, =E@A™).
Since we are excluding Case 2, we have

0<M,<1 (18)
for all #». From (13),

E(Ay 4 uz)?" = Eu? E(2* +y% + 2 xy)".
This holds for all z,5>0, and so is a polynomial identity in z,y. Equating coefficients of
x2y2ﬂ—2,
E(}-2n(2n — 1) A2 2u2) = M, E(n + }n(n —1)(24)?),

which simplifies to

@n—1)M,_ , =2M,(3Mi* +n—1).

Because of (18) we can define s by

%M{l =s+1,
and then —3<s< o0 (19)

Then M, =M, i2n—1)/{n+s),
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and so M, =2"2n-1)2n—3)... /n+s)(n+s—1)...(s +1)
= 2-22n)!sl/n! (n+s)l.

Hence G(u) = EMn(iu)z"/(%L)!: >
n=0

s!
nooni{n+ s)!

(— 3u®)" = Ay(u),
where Ag(u) is defined by (4). The Poisson integral
Au) s M 1-23* " dl (s> —3)
W = e (6> —%

(f16], 48) shows that, when s> —}, F is given by

s!

D= T

(1—2%*"¥dl (—1<i<1). (20)

When s= —1, Ay(u) = cosu = e+ fe—,

so that F assigns probability to each of the values +1.
We have now shown that the characteristic function G() of any associative F must

have one of the forms

e, 1, AJu)(—3< s < o).

To complete this section we show that all such F are associative, and to do this we need

the following uniqueness result, which will be used continually throughout this paper.
LemMA 2. If —}<s< oo, and if H,,H, are two (right-continuous) distribution functions
on [0, oo) satisfying

f " A ) dHl(x) = f - A(tz) dH () @1)
0 0

for all t >0, then H,=H,.
Proof. According to a theorem of Weber ([16], 394), we have, for all s> —1, a =0,
>0,

co
Jv t“le(at) e—D’t" dt =a8(2p2)—s-1 e—a’l417”
0
which may be written as

f t23+1As(at) e Py — %S!p—Z(swtl) Pl (22)
0

If we integrate the left hand side with respect to dH {a) (j=1,2) and use Fubini’s theorem,

we get, by (21), an expression independent of j. Hence
2 — 632917. Acta mathematica. 109. Imprimé le 28 mars 1963.
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f e‘“"“”dHl(a)=f e P dH ,(a)
0 0

for all p>0, and hence, by the uniqueness theorem for Laplace transforms, ([17], 63),
H,=H,.
We are now in a position to prove the basic theorem giving necessary and sufficient

conditions for a distribution function F to be associative.
THEOREM 1. F is associative if and only if it is concentrated at O or at 1, or if, for
some 8 in —3 <s< oo,

G(u) = f 1 ¢ dF(A) = Ay(w). (23)

-1

In the latter case, if s= —1, F assigns probability % to each of the values + 1, and if s> —4,
F is given by (20).

Proof. We have already proved that, if F is associative, then one of the above alter-
natives holds. We have also proved that if F is concentrated at 0 or at 1, it is associative.
Hence it suffices to prove that, if ¥ is given by (23), it is associative.

According to a theorem of Gegenbauer ([16], 367) we have, for s> —1,

2(s —})! e () g~ I, (y)

T

= f (2®+ 4® — 2xy cos 0) T {(x*+ y® — 2xy cos )} sin®*6 d.
0

Putting A = — cos 0, this may be reduced to

1

Ay@) Asly) = f

AJ(@®+ g+ 20ay)t} dF (), (24)
-1
where dF(A) is given by (20). If s= —} this still holds, following now from
cosxcosy = dcos(x+y)+4cos(x—y).

As in Lemma 1, (24) shows that, for any independent non-negative random variables
X,%Y,
E{AJHXo ¥)]} = B{A(tX)} E{A,(tT)}.
Hence, if X,Y,Z are independent, and if
W,=Xo(YoZ), W,=(Xo0Y)oZ,
it follows that
E{A(tW,)} = BE{A(X)} E{A(Y)} E{A(tZ)} = E{A(tW,)}.

Hence, by Lemma 2, W, = W,, and the theorem is proved.
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3. Symmetric random walks

It has now been shown that the only operations of the form o which are associative
are those for which F has one of the forms given in Theorem 1. If we exclude for the moment
the two cases in which F is degenerate, then the possible ¥ depend on a single parameter

s taking all real values in —} <s< co. Equivalently, if we write
n =2(1+s),

they depend on the parameter n taking values in 1<% < co. Notice that if » is a positive
integer (1) the distribution function F has the density f, defined by (2).

1
When F is such that f A AR () = Ay(u),

-1

n
we shall denote the operation o by @, and where no confusion arises, we shall sometimes

drop the n. (Whenever n and s are used together, they will always be connected by n=
2(1+s).) When = is an integer, the random variable

XY
can be interpreted as the length of the sum of two independent spherically symmetric

n-vectors whose lengths are given by the random variables X, Y. Thus the operation @

is a generalisation of this procedure to the case when » is no longer an integer. This may
be regarded as a justification for the following terminology.

Any one of the equivalent random variables
XPpY

will be called a radial swm in n dimensions of the two (independent non-negative) random
n

variables X, Y. Since the operation @ is associative, we may define unambiguously (up
to distribution conditional on X, Y,Z) sums like

n n
XPYPZ
{but not sums like XBYPZ

unless m=n).

In particular, let X, X,,... be independent non-negative random variables with the
same distribution, and let

8, =X0X,®..0X,. (25)
Then the process

{8y =0,8,8,,....}
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will be called a symmetric random walk in n dimensions. When n is an integer, this accords
with the usual definition, so long as “symmetric” is taken to mean “‘spherically sym-
metric” and 8, is regarded as the distance from the origin after m steps.

A little care is needed in the formal definition of the process {S,} because of the

random elements implicit in the definition of é We take as sample space Q the Cartesian
product of countably many intervals [0, o) with countably many intervals [—1, 1], the
probability measure P being defined on Q as the product of the distribution of the X;
on each of the first set of intervals together with the distribution F on each of the second
set. If the typical point w of Q has components

X(w), Xy(w),...; Aiw), (w),...,
then 8,,(w) is defined inductively by
So(w) =0,
Sm1(@) = {Stn(@) + X s1(@) + 2An(@) Slw) Xmrr()}H (26)

From this it is evident that {S,(w)} is a Markov process with stationary transition proba-
bilities.

n
It is a consequence of the associativity of @ that we can write

Simar = SpDS™,

where S{™ is defined inductively on r by

8™ =0,

S, = {8 1 X2, 1+ 2 S K st}
Notice that §,, and S are independent. In fact, we can go further and prove that

Spmar={8%+ 8™+ 2y, 8, S}, (27)
where u, ,=pn (®) is independent of S,,S{™ and has the distribution function F. The
proof is elementary but tedious, and will be omitted. If n is an integer,
and Sn=|X+...+ X5,
then the interpretation of u,, , is as the cosine of the angle between the vectors
X+t X, Xpatet X

Before going on to study in detail the properties of symmetric random walks we must
consider the two degenerate cases which have been excluded. Consider first the distribution
function F which concentrates all probability at A=0. If we look at the probability distri-

bution (20), we see that, as s increases, it becomes more and more peaked, and so 1 becomes
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more and more concentrated at zero. The characteristic function A {u) does in fact tend
to 1 as s— oo, as can easily be seen from its power series expansion (4). Thus the degenerate
case' 1=0 can be regarded as a limiting situation as the dimension » tends to infinity. We
shall, however, continue to exclude this case from consideration, because many of the
results which we shall obtain do not apply to it. This is basically because the corresponding
function G(u), being identically equal to 1, is essentially trivial, and the expression E{G(tX)}
contains no information about the random variable X.

The other degenerate F, which concentrates probability at =1, stands apart from
the other associative F' in being asymmetric. This corresponds to the fact that, in more
than one dimension, there is no satisfactory way of defining a random walk with “positive”
steps.

From now on we shall exclude these two degenerate cases, and consider only the ope-

ration é for 1<n< oo. The remainder of this paper is devoted to a study of the main
properties of symmetric random walks in a possibly non-integral number of dimensions.
As might be expected, many of the results are very similar to those that hold in an integral
number of dimensions, but the familiar methods of proof are not always open to us. The
analysis leans heavily on the idea of the radial characteristic function, and the next section

is devoted to its most important properties.

4. The radial characteristic function

If X is a non-negative random variable, and n>1 a finite real number, we define

the radial characteristic function of X in n dimensions by
"We(t) = E{A,(tX)}, (28)

where, as always, » and s are connected by n=2(1+s). This expectation always exists

when ¢ is real, since A (w) is a characteristic function, and so

[As(m)] <1 (ureal). (29)
In fact, "Wy (t) = E(e*), (30)
where 4 is independent of X and has the probability density (20) (unless n =1, when A= 11
with equal probabilities). Since "W (¢) is an even function of ¢, we shall consider it as a
function of £20; we shall not have occasion to consider complex ¢, when the expectation

(28) may or may not exist. Where appropriate, the affixes » and X will be dropped from
the symbol ¥".

According to Lemma 2, a knowledge of "W, (¢) for all >0 determines the distribution

of X, and so (28) defines a (1 —1) correspondence between the set of all distributions on
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[0, oo) and a certain class of functions. We shall now see that, in a sense, this correspondence
is continuous in both directions.

Before doing this, we must make precise the terminology to be used for distribution
functions. The distribution function H(z) of the random variable X will be defined as

H(z) =P(X <x),

so that it is continuous from the right, and zero for  <0. If f,(x), f(x) are functions of totally

bounded variation, we shall follow Loéve [11] in writing

fr—~1
if f,(x)—>f(x) whenever « is a point of continuity of f; and
fr——1
if f,if and if the total variation of f, tends to that of f. If H,, H are distribution functions,
then H,—H
will always mean H . H

TuEOREM 2. Let H, (r=1,2,...) be distribution functions on [0, o), and let
wr(t)=f Af(tx) dH (z),
0

where —1<s< oo, If, as r—co,
Pr(t) >p(t)

for all t0, and if p is continuous at t=0, then there exists a (unique) distribution function
H(x) such that

H,—H,
and zp(t)=f A(tx) dH ().
0
Conversely, if H—~H, then ¥, (t) >p(1)
uniformly in every finite interval.
Proof. The result is well-known for s= —1} (A (u)=cosu), and we therefore restrict

ourselves to the case s> —1. Then A, is the characteristic function of an absolutely conti-

nuous distribution, and so, by the Riemann-Lebesgue lemma,
A(u)—~0 as u—>oo.

According to the “weak compactness theorem” ([11], 179), if X is any subsequence
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of the natural numbers, then there exists a sub-subsequence ¢ €3 and a non-decreasing

function f° of totally bounded variation such that, as r— oo through g,
H, Y. f.
By the Helly-Bray lemma ([11], 181) and since A (u)—0 as u—>co,

fwAs(tx) dH,(m)+fmAs(tx) dff(z) (t>0),
) 0

so that ijs(tx) df°(x) = p(ty (£>0).
0

Now let {0, and use bounded convergence and the fact that y(t)—>y(0)=1 as t—>0, to give

~rodf"(atr:) =1.
0

We are certainly at liberty to redefine f° on its discontinuity set to obtain a right-conti-

nuous function H°, which is thus a distribution function. Hence

w(t) = f A, (tz) dH(2)
0

for all £>0. By Lemma 2, all the H° (for different ¢) are equal (to H, say), and so
H,—H,
To prove the converse, suppose that H,—H. Let F be given by (20), so that

1
Ag(u) = f e dF ().

-1

Then, if we write
¢,(u)=f e dH (), </>(u)=f ¢ dH (x),
0 )

it is well-known ([11], 191) that
é(u)—>p(w)

uniformly in |u| < 4, for any 4. Hence, since
0 1 1
vt~ [ amio) [ emaro- [ gumarm,
0 -1 -1
and since ¢,(Af)—$(Af) uniformly in [t < 4, [A| <1, it follows that

1
vty [ gundarm -y

uniformly in |#| <A4. Hence the theorem is proved.
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Let M be the class of all probability distributions on [0, o), and let F, be the class of
all n-dimensional radial characteristic functions. Then "™V (t) determines a (1 - 1) correspon-
dence "W':MM—>F,, which if distributions of 71 are identified with their distribution func-
tions is given explicitly by

Y- H) (t) = f N Atz) dH(z). (31)
0

n
Notice that we can give M and F, semigroup structures by the operation @ on MM defined
by
(distribution of X) (distribution of Y)= (distribution of X Y), (32)

and by pointwise multiplication in F,. Then "V is a semigroup isomorphism having the
continuity properties given in Theorem 2.

Since the radial characteristic function "¥'4 (t) determines the distribution of X, it is
important to have a method of inverting this transform. If X has a probability density
h(x), then its radial characteristic function is

o0

Wi(t)= f: A (tz) h(z) dx = 3!(%t)_3f0 x % y(tx) h(x) dx.

This is a Hankel transform, and may be inverted under suitable conditions (cf. [12]). For

instance, if h(x) is of locally bounded variation, and if

jw x " h(x) da < oo, (33)
0
then ([16], 456)
25+ -
Hax+0)+h(x—0)}= f—(é}% f 2 (tx) W () dt. (34)
. 0

Now it is easily verified from (4) that

&A@} =20+ D TAG)

and so, integrating (34) formally with respect to x, we get

x23+2 0 2si1
H(x) = P(X < x) = m' fo t As+1(tx) IF(t) dt

This formula is closely analogous to the Lévy inversion formula for ordinary charac-
teristic functions, and it might thus be expected to hold for all random variables X (with

a suitable convention for points of discontinuity of H). This, however, is not so, as may



RANDOM WALKS WITH SPHERICAL SYMMETRY 25

be seen by considering the random variable concentrated at zero, for which ¥'{f)=1. In
this case the above formula for H contains the integral

f 2 A (t) dt,
0

which diverges when s>1.

Thus, in order that an inversion formula be valid, it is necessary that not too much
probability be concentrated at or near the origin. We can expect, however, that it will be
unnecessary to impose any conditions of an analytic nature on H. A sufficient condition

for an inversion formula to exist is given by the following theorem.

THEOREM 3. If X is a strictly positive random variable with

E(X—ir(n—l)) < oo, (35)
then, for all a >0,
a2s+2 —>00
P(X <a)+ %—P(X =q)= m' fo t23+1As+1(at) mFX(t) ds. (36)

Proof. When s= —} (rn=1) (35) is trivially satisfied, and the theorem reduces to the
classical result of Lévy (as applied to symmetric random variables). We thus confine
this proof to the case s> —1. Then, for 4 >0, if H is the distribution function of X,

A 00 2s+1 ] t A4
[Tt wama- [ a2 S0 [0 e
I3 i} 4]

Hence the right hand side of (36) is equal to

lim | x(4,a,y) dH(y),
0

A->00

if the limit exists, where

4
X(4,a,y)= f &’y Jsa(at) J(ty) dt.

0

But it is a classical result ([16], 454) that x(4, a, ) tends, as 4—oo, to 0, 1 or 1 accor-

ding as y <a, y =a or y >a. Moreover using the estimates

Jo(w) =0(w”) (u—>0)
and Jo(w) = (hnu) Hcos (u— dpm— tn)+ O(u™)}  (u—>o0),
it is not difficult to show that

¥4, a, y)
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is uniformly bounded in 4 >1, y >0 for fixed a. Hence the result follows from the domi-
nated convergence theorem.

To conclude this section, we prove a theorem giving some analytic properties of the
radial characteristic function. These will be deduced from the corresponding (and well-

known) results for the ordinary characteristic function.

THEEOREM 4. Let W(t) be the radial characteristic function ™V x(t) of the random variable
X. Then W(t) is uniformly continuous in 0<t< co. If, for some integer m, E(X™)< oo, then,

as t—>0,

. 1\r9—2r
Y= 3 (2778 e g xory 4 oem). (37)

<orem  THr+8)!
Proof. Let A be a random variable independent of X such that
B(e™?) = Au),
(cf. (30)), and set Z=A1X, so that
W(t) = E(e'?).

Thus ¥'(t) is a characteristic function, and hence ([13], 22) is uniformly continuous, If
E(X™) < oo, then
E(|Z|™ < E(X™) < oo,

and so ([13], 30) W(t)= % %E(Z”) +o(t™)
y=0 ¥-
as t->0. But BZ)=EX) E(X"),

and since A has characteristic function A (u), (4) shows that

0 (v odd)
ERX)=1 @ls!

Ar+ 9 (v even, =2r).

This proves (37), and the theorem is established.

Notice that, if E(X™) < oo, we can expand log W(#) in a power series

roy—2r
log W(t) = Z w

2r m 8
o<zrem THr+8)! 6, +o(t"™), (38)

where the 0, are funetions of u;= E(X?) for j<r. The exact functional dependence of the
0, on the y, is given by the formal power series identity
-] 1 -

8! 8!
e T — % r ) 9
2 e xR 2 e i (39)
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Notice that the definition of the 0, depends on the dimension n. The importance of these
quantities lies in the fact that they are additive in the sense that, if

E(X*) <o, B(Y™)<oo,
then, with the obvious notation,
6.(XDY) =0,(X)+6,(Y). (40)

This is, of course, a reflection of the multiplicative property of the radial characteristic
function. ‘

The quantities 0, were originally introduced by Lord [12] under the name of ‘“polar
cumulants” and re-introduced by Haldane [9] as “vectorial cumulants”. The latter author
made a great deal of use of them, and they lie at the root of his discussion of the associativity
of operations of the type o.

Notice that 6, is just E(X?), and that the relation (40) reduces to the obvious, but
useful, identity

EX@Y)2=EXY+EY? (41)

5. The law of large numbers and the central limit theorem

We now return to the random walk in # dimensions defined in § 3. Throughout: this
section the number of dimensions will be kept fixed. Let X be any non-negative random
variable, and write (#) for its radial characteristic funection in 7 dimensions. Let {S,(w)}
be a symmetric random walk in » dimensions whose steps X; have the same distribution

as X. Then the radial characteristic function of S, is given by
Fnt) = {p®)}™ (42)
Now suppose that F(X) < co. Then, according to Theorem 4,
p(t) =1-+o(t)
as t—0. Hence W (tfm) = {L +o(t/m)}"—1
as m—>oo. It follows (using Theorem 2) that
8, jm—>0

in probability as m—>oo. This is the analogue of the weak law of large numbers; the strong

law has an analogue given by the following theorem.

THEOREM 5. If E(X)< oo, then there is probability one that, as m—>oco,

S/ m—>0.
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Proof.

P(X,>m)=

1

R

PXz2m)= > mPm<X<m+]1)
1 m=1

<

iMs S

EX;m<X<m+1)<E(X)< oo,
1

Hence, with probability one, X, <m for all but finitely many m. Now define
X ,(w) = min (X ,(w),m),
and define S,,(w) inductively by
Sp(w) =0,
S s1(e) = {8n(w) + X7r.1(0) + 2An() Sn(@) Xmsa(w)}?,

so that {§,} is obtained from {X,} in the same way, and with the same random variables
Am, that {8,} is obtained from {X,}. It is easy to prove by induction that

Igm - SM| < 21 IXr - Xrl’
and since X, =X, for all sufficiently large r (with probability one) it follows that 3,,— S,
remains bounded with probability one as m—>oco. Hence it suffices to prove that, with pro-
bability one,
S,,/m—0

as m—>co.,
Now
E(S?rwll‘g?m ?n—la ceey S(zl)=E(S$H+X?n+l+2zmsmxm+ll§%m sevy (2))

= S%n + E(X?nﬂ) >S%m

and so {5} is a semi-martingale. Hence, by an inequality of Doob ([5], 314), for any a >0,

m
P(max §,>a)=P(max 82 >a*)<a 2 E(8%)=a"23 E(X?).

Iksm I<ksm r=1

Fix £>0, and let A4, be the event that, for some r in 2 1<r<2’, §,>e¢r.

oY

Then P(4,)< P(max S,> 2" ) <4722 S E(X?),
1<k r=1
oo [~ 2v _
and so S P(4,)<4e232°% 3 KXY
y=1 v=1 r=1

=4e-2§E(X%) S 2%

r=1 2>y
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o0

<6723 r 2E(X?)
r=1

=623 DriBXEm—-1<X,<m)

m=1r=1

<6622 >r % min (m? ) Pm—1<X<m)
m=1r=1 ’

m=1 r=1 r=m+1

=62 ZP(m-—1<X<m){zl+ > m2/r2}

<623 Pm—1<X<m)2m<12e 2E(X +1)< 0.
m=1

Hence, by the Borel-Cantelli lemma, there is probability one that only finitely many of
the events .4, occur, and so §, <er for all sufficiently large . Since ¢ is arbitrary, it follows
that

S,,/m—0

with probability one. This completes the proof.
The next theorem is an analogue of the second fundamental result in the theory of
sums of random variables, the central limit theorem. This follows very simply from the

properties of the radial characteristic function established in the previous section.
THEOREM 6. Suppose that E(X?) < oo, and define
Zy =8/ {mE(X?)}
Then the distribution of Z,, converges, as m—>oo, to that of a random variable Z with probability

density

s+1
g(2) = 2(8*_;'1)— 22 exp {—(s+1) 2%}, (0<z< o). (43)

Proof. We have
B{A(tZ,)} =P H{mE(XY} 1]

= {yl{mE(X?)} "
={1-£/4(s+ 1)m+ o(t*/m)}" (Theorem 4)
—exp { —£#/4(s+1)} as m—>oo.

This function is continuous at ¢t =0, and so, by Theorem 2, the distribution of Z,, converges

to that of a random variable Z with

Wy(t) = exp { —3/4(s +1)}.
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But, by the Weber integral (22),

i s+1 pPoo
“ gs(2) Ay(tz) dz =MJ z2s+1As(tz) PRICEa VIS

v o s! 0

s+1
=2('5'+'1) %s!(s-{-—l)q_]evm“sﬂ)

= lI”‘Z(t).

Now g¢.(z) >0, and the above integral with ¢ =0 shows that
f gs(z)dz=1.
0

Hence g,(z) is a probability density on 220, and hence, by Lemma 2, is the probability
density of Z. Hence the theorem is proved.
The density g,(z) defines the n-dimensional Rayleigh distribution, which plays the role

of the normal distribution for the operation @. It is closely related to the Pearson Type
III and the x2 distributions, (cf. [9]). Notice that the distribution is stable, in the sense that,
if Z, and Z, are independent and have the probability density g,(z), and if a,b are positive,

n
then cYaZ,PbZ,)

also has this probability density, where ¢ = (a2 +b2)}. In the next section we shall characterise

distributions having this property.

6. Infinitely divisible and stable distributions

A probability distribution on [0, oo) will be called infinitely divisible in n dimensions
if, for any integer k, there exist independent, non-negative random variables Y,,Y,,..., Y,
such that

Y,07,0..0Y,

has the given distribution. If this distribution has (n-dimensional) radial characteristic
function y(¢), then it is infinitely divisible if and only if, for each integer k, there exists

an n-dimensional radial characteristic function y,(t) such that

i) = {pil)}". (44)

More concisely, the distribution with n-dimensional radial characteristic function vy is

infinitely divisible in #» dimensions if and only if, for each integer £,

e e, (45)



RANDOM WALKS WITH SPHERICAL SYMMETRY 31

It turns out that much of the classical theory of infinitely divisible distributions in one
dimension (for which see, for instance, t8]) can be carried over to the present situation, and
in particular there is a natural analogue of the Lévy-Khinchin representation.

We denote the class of radial characteristic functions of infinitely divisible distribu-

tions (in # dimensions) by J,, so that

Jn=N1y; p*€ o).
Then we have the following theorem.

THEOREM 7. The function y(t) belongs to J,, if and only if there exists a non-decreasing
right-continuous function G(x) of totally bounded variation in 0 <x < oo such that

log () = f A O(a). (46)

This representation of v is unique.
Proof.

(a) We first prove that any €J, can be expressed in the form (46). If, for each £,
y = ()", where y, € F,, then since, by (30), F,< F,, it follows that v, € F,, and so p€J,.
Hence ({8], § 17, Theorem 1) () == 0 for all £, and so y(¢) >0 for all £. Thus

log y(t) = lim k{yy(t) —1}.

But, for some H,€M (i.e. some distribution function on [0, o)),

=f A(tz) dH\(x),
)
and so, writing G(z)=F f T4y ———dH(y),
1 + 2
we have log y(t) = llmf {A(tx) — 1} dG(z). (47)

Hence, for all k> ky(t), and all ¢,

0<f {1-A tx) (x) < —log p(t)+1

Now the function »(z) defined by

1—cos z

" =T TA )

(z=F0),
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2(0) =2(s+ 1),
is finite, positive and continuous for all z, and
v(z)~1—cosz (2—>o0)

(unless s = —}, in which case v(z) =1). Hence v(z) is bounded, and so there exists C, depend-
ing only on s, such that

1—cosz < C(1 —A2)
for all z. Then

o 2
0<f (1 — cos t2) L% d@z) < C( — log wit) + ).

0 x?

An argument used by Gnedenko and Kolmogorov ([8], § 18, proof of Theorem 1) now
shows that the total variation of G, is bounded as k varies, and that

f “46y @) >0 (T o)

uniformly in %. Hence {G,} has a subsequence {G),} with a limit G in the sense that
GG (i>0).

1+ z?
e

Hence, from (47), log y(t)= Jw{As(tx) -1} d@(x).
0

(b) Conversely, suppose that y(t) has the form (46); then we prove that y € J,. Consider
first the characteristic function A(ct) of the sure random variable concentrated at ¢=>0

The radial sum of » such variables has radial characteristic function
{Ay(ct)}y € F,.

Now it is clear that F, is closed under the formation of mixtures, and so F, contains

oo e~aar
3 —— {As(en)} =exp [a{Al(et) — 11,
r=p 71
for each a>0. If ay, ..., aq, c,, ..., ¢, are any positive numbers, it follows that

I:I exp [a;{A(c;t)—1}]=exp iz a{Ayc;t)—1}€F,.

By Theorem 2, a pointwise limit of functions in F, lies in F, so long as it is continuous at
the origin. Now any function of the form (46) is a pointwise limit of functions in F,, since

the integral is a limit of approximating Riemann sums which are of the form

2 a{Acit) —1},



RANDOM WALKS WITH SPHERICAL SYMMETRY 33

with a;>20, ¢;>0. Moreover, any function of this form is continuous at the origin, since
0 < {1—A,(t2)} (1 +a?)/2? <min (2,222[4(1 +8)) (1 +2?) /22 <2 +[2(1 +3),
which is uniformly bounded in 0<¢<1, >0, and so, by bounded convergence,
logy(t)—>0 (t—0).
Hence any function of the form (46) belongs to F,. But

142, o)
a? k’

log 1pl/k(t) = f:{As(tx) -1}

so that 9% €3F,, and so y(f)€J,.

(c) Finally, we prove that the representation (46) is unique. Suppose that G,,G, are

non-decreasing, right-continuous, and of bounded variation in >0, and that

Jw {1 — Ayt2)}
0

14 22
x

dG(x)

is independent of j =1, 2. Using (22) and the fact that the integrand is non-negative, we
see that

0 2?

L(a)= f oo(1 — e 1+ 2* dGyx) (x>0)

is independent of j. Hence so is
B+3 , ,
L{p)= — %fﬂ 1I,-(ac) da+Li(f+2)
+

= f e~ F%¢=2" (sinh 2% /2% — 1) (1 + 2%) /a® dG, (x)
0

_ f "GN ), (say),

0

where G} is non-decreasing, right-continuous, and of bounded variation in x>0. Since
L(B) =Iy(p) for all >0, it follows that G =67, and so G, =G,.

Thus the proof of the theorem is complete.

The units out of which the infinitely divisible distributions are built are not (as in
the one-dimensional case) Poisson distributions, but are those with radial characteristic
function

expa{A ct)—1} (a,¢>0). (48)

These seem to be the natural generalisation of the Poisson distributions. The expression
(48) is the radial characteristic function of
3 — 632917, Acta mathematica. 109. Imprimé le 28 mars 1963.
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n n  on
X,DX,D...®Xn

where all the X; are equal to ¢ with probability one, and N has a Poisson distribution with

mean a. The distribution has atoms at 0 and at ¢, together with an absolutely continuous

component in x>0. It would be interesting to prove for this distribution analogues of some

of the well-known results (such as Raikov’s theorem, [13], 174) about the Poisson distri-

bution.

It is now possible to develop the theory of infinitely divisible distributions exactly as
in [8]. This will not be done in detail here. Instead we go on to study a subclass of J,, that
of the stable distributions. Because of the intrinsic symmetry of our problem, our defini-
tion of stability is not quite analogous to the usual one.

We shall say that a distribution on [0, o) is stable tn n dimensions if any positive linear
combination under é of independent variables with this distribution is a multiple of a
random variable having this same distribution. Thus a distribution with n-dimensional
radial characteristic function y(t) is stable in % dimensions if and only if, for each a,b>0,
there exists ¢>0 such that

p(tfe) = y(tja)yp(efb). (49)
We write §,, for the class of such functions y(t).

If y€S§,, then p is a radial characteristic function, and so by (30) is the ordinary
characteristic function of a symmetric distribution on (— oo, o). Then (49) is equivalent
to the statement that this latter distribution is sta})le in the ordinary sense. Hence y(?)

is the characteristic function of a symmetric stable distribution, and so

p(t) = exp { —clt|*},
for some ¢>0, 0<x<2.
Now in (46) take G(x) to be defined by

dQ(z) = 2t~ *dx/(1 +x?),
where 0<a<2. Then Theorem 7 shows that J, (and a fortiori F,) contains the function

y(t) given by

log ()= J':{As(tx) ~1}z 1 %da

e f (Ady) -1} yt2dy

I

— Al

say, where 4 >0,
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By taking dG(x) =cA'2' %z /(1 + 27),
we see similarly that
exp { —clf|"} €T, = F,,

for all ¢=0, 0<a<2. By taking G(x) to be equal to 0 for <0 and equal to a constant >0
when x>0, we see that

exp{—c?}€7,S %,

for all ¢>0. But a function p belongs to §, if and only if it satisfies (49) and belongs to F,,

and hence we obtain the following theorem.

THEOREM 8. A distribution is stable in n dimensions if and only if its n-dimensional
radial characteristic function has the form

exp(—ct*) (t=0), (50)
where ¢=0, 0<a<2.

The parameter ¢ is only a scale parameter, and the essentially different stable distri-
butions depend on the value of the number «. When ¢>0, we call « the parameter of the
stable distribution. Notice that although (50) is apparently independent of the number of
dimensions, this number » is implicit in the radial characteristic funetion. Thus the distri-
bution function H(x) whose radial characteristic function in » dimensions is given by (50)
satisfies

J.:As(tx) dH(x) =exp ( —ct%),
which involves s and thus n. However, the theorem does show that the class §,, is independ-
ent of n; it will therefore be denoted simply by §.

It is clear that the stable distribution in » dimensions with parameter « is an analogue
of the ordinary symmetric stable distribution with the same parameter. Thus the Rayleigh
distribution, which is stable with parameter « =2, is analogous to the normal distribution.
The distribution with radial characteristic function e—t, which is stable with a=1, is a
generalisation of the Cauchy distribution. For this case it can be verified that the use of
the inversion formula (34) is justified, so that this distribution has a probability density

25+1

x o0
ky(x)= 2—28(_8!)2 Jl] t23+1As(tx) e”idt

xs+1 o0
=S fo LT (tx) e~ dt
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xs+1

= 3551 23“7!2_%(8 + %)' 2*(1+ xz)—s_%
S!

((6], 182).
Hence the n-dimensional Cauchy distribution has probability density

Ics(x)=2(s+_%)!x""(1+x2)‘*("“’ (x=0). (51)
SV

When =1 this reduces to the usual Cauchy distribution, or more precisely, to the distri-

bution of | Y| where Y has a Cauchy distribution.

For other values of « it does not seem to be possible to express the distribution in
closed form. Notice that, in accordance with the central limit theorem, the only case in
which the stable distribution has finite variance is that in which & =2 (the Rayleigh distri-
bution).

7. Recurrence properties of symmetric random walks

We now return to the process {S,} defined by (25), which we have called a symmetric
random walk in n dimensions. This is a Markov process whose state space is the non-
negative real line, and the present section is devoted to its recurrence properties. Thus, in
geometrical terms, we are interested in the return of the process to a spherical neighbour-
hood of the origin.

More precisely, we consider those values of m for S, is less than some fixed positive k.
There may or may not be infinitely many such values. We say that the random walk {S,}

is recurrent if, for all k>0,
P(8,, <h for infinitely many m) = 1. (52)
We shall see later that the only other alternative is that, for all A>0, the probability (52)

is zero.

LeMma 3. The random walk {S,} is recurrent if and only if, for all h>0,

S P(S, < h) = oo. (53)

Proof (cf. [3]). If, for some k>0, the series (53) converges, then the Borel-Cantelli
lemma shows that, for that value of &, the probability in (52) is zero, and so the walk is

not recurrent. Conversely, suppose that (53) is true. Set
gh)=P(S,=h forallm=1),

r(h) = P(S,, <h for only finitely many m).
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Then, since YPZ>|Y — Z|, and using the notation (27),

1>(h) >

M3

P(S,<h, 8P >2n forall m>1)
1

P(S, < h) ¢(2h).

T8

1

Hence ¢(2h) =0 for all 2> 0. Thus
k)< > S P(Sy<h—1/N, Spim=h forall m>1)+gq(h)
N3 k-1

< 3 SPSc<h—1/NyPEP>1/N for all m>1)+q(h)
N>1/h k=1

2 2 P(8Sy<h—1/N)q(1/N)+q(h) =0.
NiLhE=1
Therefore
P(S,, <h for infinitely many m) =1—r(h) =1.

Hence the walk is recurrent and the lemma is proved.

We now seek to use this lemma to establish a criterion for recurrence in terms of the
distribution of the length X, of the jth step (this distribution being, by hypothesis, in-
dependent of j). As before, we denote by w(¢) the radial characteristic function of X;.

TaEorREM 9. The random walk {S,} is recurrent if and only if the integral

e ] " idt
LA 4
fo 1—g(t) 14+ (54)
diverges.

Proof. Let u(o) (0<1) be a random variable independent of {S,} and having a geo-
metric distribution

P(u(e) =k)=(1—p)¢* (k=0,1,2,..),
and define Zy= 8-

Then, if @, is the radial characteristic function of Z,, we have

P(Zy<h)y=(1- g)mgog'"P(Sm < h),
oo 1 —
and Out)=(1-0) 3 "BALSI} =~
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Hence the walk is recurrent if and only if, for each 2> 0,

P(Zy<h)/(1—g)—>o0 (55)
as o1 1.

Now consider, for >0, the integral
L - [ #0500 (A g
By Fubini’s theorem

LB =B [ 8007 (A

=A(B) ﬂ‘2“‘2Ef cos™ *20d0
0<0<n/2;
sin 6= Zp/28

(cf. 16, §13.46), where A(p) is a positive function of § and s alone. Because the last inte-
gral is zero when Z,>2p, it follows that there exist positive numbers C,(h), Cy(h) inde-
pendent of p such that

(1) L(h) < P(Z, < h) < Cyh) L(2h).

Hence, from (55), the walk is recurrent if and only if

L(B)/(1—g)—>oo
as 011 for all >0, i.e.

f w(l = oy(t)) " 2 A (B} dE—> 0
0

as o } 1. If this integral is written in the form

J‘ + f =T+ I”,
p) >0 p(t)<0

then the integrand of I’ is monotone in g, and that of I” is, for all g (0<g<1) less than the
integrable function £*°**'{A,,(t)}%, and so the limit as p 1 1 can be taken inside the integral,

showing that a necessary and sufficient condition for recurrence is that
o
f (L =) " H{Asa(B)} 2 dt = o
0

for all #>0. Using the fact that, if n > 1, either g(t) =1, or y(t) is bounded away from 1 in
¢>1, this condition is easily seen to be equivalent to the divergence of (54), and the theorem
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is proved. Notice that (54) is only a condition on y(t) in the neighbourhood of =0, since,
f“ 1 " 'a o
s 1—9p(t) 1+ ¢+

CoroLLARY 1. If E(X?%)<oo, and if X >0 with positive probability, then {S,} is

recurrent in n dimensions if and only if

unless p(f) =1,

for all 6>0.

n <2 (56)
Proof. According to Theorem 4, if F(X?)< oo, then
p(t) =1—at>+o(t?)

as t—0, where a = E(X?)/2n>0. Hence there exists >0 such that ¢-%(1 —y(t)) is bounded
away from zero and infinity in 0 <¢<b. Thus (54) diverges if and only if '

b tn—ldt e
R t2(1 +tn+1) - ’

CoRroLLARY 2. If n>2, and if X >0 with positive probability, then {S,,} is not recur-

i.e. if and only if n<2,

rent.

Proof. 1If K(X?) < cothis follows from Corollary 1. If E(X?)= oo, then, since p(f)=
E{A(tX)} = E(¢*%) is the characteristic function of Z=1X, and since

E(Z?) = E()?) B(X?) = oo,
it follows ([13], Theorem 2.3.1) that

(1 —y()/r—> oo,

as —0. It follows at once that, for b sufficiently small,

R S b WL 2
o l—gpt) L+¢" 17 Jo 2 1+

if »>2, and so the walk is not recurrent.

CoroLLARY 3. If {S,} is not recurrent, then, for any h>0,
P(S,<h for infinitely many m)=0, (57)
and there exists my=mg(h) such that

P(8S,, <h for some m = my) <1. (58)
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Proof. If {8,,} is not recurrent, then, for any >0

and hence P(Zy < h) < Cy(h) 1,(2k) = O(1 — g).
Thus, for any »>0, > P(S,<h)< oo,
m=1

The Borel-Cantelli lemma establishes (57). Let m, be such that

oe

S P(S,<h)<l.

m=mq
Then P(S,<h for some m=my(h))< E P(S,<hk)<1,
and the result is proved.

Corollary 1 is the analogue for symmetric random walks of the celebrated theorem of
Pélya [14]. We see that there is a discontinuity in the behaviour of symmetric random
walks with finite mean square as the dimension varies. Thus the walk is recurrent in 2
dimensions, but not in (2 +¢) dimensions for any ¢>0. Corollary 2 shows that the removal
of the condition E(X?)< oo cannot result in an increase in the critical dimension. We
shall see in the next section that, in suitable circumstances, the critical dimension actually
decreases.

The meaning of Corollary 3 is that the walk either returns infinitely often to every
neighbourhood of the origin with probability one, or it returns to any finite neighbourhood
only finitely many times with probability one. The results of this section are very similar
to those obtained by Chung and Fuchs [3] for ordinary random walks, but in their problem
the origin does not have the special place that is implicit in the formulation adopted in
the present work.

To conclude this section, we discuss the problem of finding an invariant measure for
the Markov process {S,,}. Let p(x,4) (x€[0, o), A <0, o)) be the transition probability

p(x,A) =P(8,,,€4|8, =)
=P({2?+ X% 1+ 24, xX, 1}t €A)
=P({z?+ X2+ 2/ X} € 4).

We say that a o-finite measure u on the state space [0, oo) is invariant for the process

considered if, for every measurable subset 4 of the state space,

w(d)= fu(dx) p(x, 4). (59)
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We prove that the measure u defined by
wldz) =2""dx (0 <z <oo) (60)

is invariant for the process {S,}.
Consider first the case n>1. It suffices to prove (59) for sets 4 of the form [0,a) for
a>0. But, if 4=[0,a), then

Jutaa) oo 4) = [ "o | dH(y) dF (D),
0 T2y +2Azy<at

where H is the distribution function of X, and F is given by (20). Hence

Jutaa) o, )= [ “att) mia,
where mla, y)= f f 2" dx dF(A)
2y 2iry<at
8! 7n—-1 2\8—
(=P Jrgromvee

ff 2" 1 sin" 20 dx df.
(s—3% 'Vn T4 Y2400y cosﬁ<a“

<0, 006

Now write { = &+ 45 =ze”. Then

mia, ff 7" %dEd
9= 8~—)'Vn Ic u|<a K

s! ¢
_ _ n 9 2 __ 2%d
(s—%)!l/nfon (=)
=a"/n

on evaluating the Beta function integral. Hence whatever the distribution function H of

the step length X, we have
f(dx)p\w A)“f mia, y) dH(y) f a"/n dH(y) =a"/n=p(4

A similar, but simpler, argument suffices for the case n=1. Hence we have proved the

stated result that the measure u defined in (60) is invariant for the Markov process {8}
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8. Symmetric Brownian processes

In the preceding sections we considered symmetric random walks with a discrete time
parameter; we now turn to the corresponding problem in continuous time. Let us call a
real-valued continuous time stochastic process Z(z) (v >0) with Z(0) =0 a symmetric Brow-

nian process in n dimensions if, whenever
O=1,<1,<..<7

the joint distribution of Z(t,),...,Z(r;) is the same as that of

n n n n
Y, V.07, .., 7,07,® .. 0Y,

where the Y, are independent, and where Y; has a distribution D(z; —7,_,) depending only
on ;- T_y.

For any given family of distributions {D(t);7>0} there will be a stochastic process
Z(z) with the assigned joint distributions if and only if the Kolmogorov consistency condi-
tions ([5], 10) are satisfied. These conditions can easily be seen to be equivalent to the
condition that, for all ¢,7>0,

D(a)év(r) =D(e+1), (61)

where ® is the semigroup operation on M defined in § 4. If y,(-) is the n-dimensional

radial characteristic function of D(t), (61) is equivalent to

"Powr = "/)U-i-'r- » (62)
Thus each y, belongs to J,, and in fact

v, = exp(—1é), (63)
0 2
where Ety=| {1-—Atx)} 1 +2x dG(x), (64)
o x

and G(x) is a non-decreasing function of bounded variation (Theorem 7).

Thus every symmetric Brownian process has joint distributions determined by (63),
(64). Conversely, if G is any non-decreasing function of bounded variation, there is a sym-
metric Brownian process having joint distributions given by (63), (64). There will be many
such processes, but they will all have the same finite-dimensional distributions.

Of particular interest are those processes for which all the distributions D(r) are of
the same type, in the sense that D(c) is obtained from D(r) by a change of scale. In this
case (61) shows that D(r) must be a stable distribution, so that, for some ¢ >0, 0<a <2,

Pt} = exp ( — att®). (65)
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Any process for which y, has this form will be called a symmetric stable process with para-
meter «. In particular, when o =2, so that Z() has a Rayleigh distribution, we call the pro-
cess a symmetric Wiener process.

The recurrence theorem of the preceding section has an analogue for symmetric
Brownian processes which will now be discussed. A process Z(z) will be called recurrent if,
for each h>0, the set

TJh) = {5;Z(z) <h}
is unbounded with probability one.

Observe that, for any 4 >0, the discrete time process
8,(8) =Z(méd) (m=0,1,2,..) (66)

is a symmetric random walk, the radial characteristic function of each step being ;. If,
for some 6 >0, the random walk {S,,(8)} is recurrent, then so is Z(z), since J(h) then con-
tains infinitely many of the points m;.

The converse result is much less trivial, and is, in fact, generally false. Whatever the
joint distributions determined by the D(t), we can find a process Z(t) with these joint
distributions which is recurrent. For, if Z(z) is a symmetric Brownian process with the

given finite-dimensional distributions, then so is the process Z(z) defined by
Z(T) :Z(T) (T:!:Cl’é‘b--')
Zi)=0 (j=12,..),

where the {; are the instants of a Poisson process independent of Z(z). But Z(t) is recurrent,
because J(h) contains the points {,.

Let &(t) be any function of the form (64), and write Z(£) for the class of symmetric
Brownian processes whose finite-dimensional distributions are determined by the radial

characteristic functions

Then Z(£) will certainly contain some recurrent processes. However, if we are seeking
properties which depend only on the finite-dimensional distributions of the processes
studied, what is of interest is whether or not all the processes in Z(£) are recurrent.

With this in mind, we say that £(f) is of recurrent type if all the processes in Z(£) are
recurrent. Then we have seen that if, for some §>0, the symmetric random walk {S,,(8)}
whose steps have radial characteristic function e % is recurrent, then &(f) is of recurrent
type. The next lemma establishes the converse. The proof follows closely that of Chung
([2], 179) for a similar result in the theory of Markov chains.

LeMma 4. If &(¢) is of recurrent type then, for some >0, {8S,(0)} is recurrent.
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Proof. First observe that, as 7—0, D(z) approaches the distribution concentrated at
zero, and so every process in Z(£) is continuous in probability. It follows from theorems
of Doob ([5], § I1.2) that Z(&) contains a process Z(7) which is measurable and which
is separable (relative to closed sets), any dense subset of the real line being admissible as
a separability set. Then, since £(#) is of recurrent type, Z(z) is recurrent.

Let ||4|| denote the Lebesgue measure of the set 4, and let &,7,& be positive numbers.

For any random variable w such that 0<w<1,
Blw) <}-Pw < })+1-Pw>}) =} +Pw > }),

so that Plw>3)=2Ew)— 1.

1
Applying this to w=g lT2R)N(T, T+ 2¢),
and using the measurability of Z(t), we get

P(|TEh)N (T + 26) || > €] Z(x) <)
> e B(||TCRN (T, T + 20)|| | Z(x) <h)— 1

= s“lj%P(Z(r-l- 6)<2h|Z(zr)<h)do—1

0
2¢
= e_lf P(Z(o)<h)do—1=yp(e), say.
0
Then y(e)—1 as e—0, and so, if ¢ is sufficiently small y(¢) >0. Now, for any >0,
P(|F@MN(T, )| > 2)

> 3 P{Z(t+ ) =0 <r<m), Z(z+mn) <h|TR)n(z+ mn,0)|| > e}

0

I8

= y(e) E;GP{Z(‘: + 1) = MO<r<m), Z(t+mn)<h}

=y(e) P{Z(zv + rn) < h for some r>0}.

Now put n=27%, and let k—co through integral values. Using the separability and the

recurrence of Z( ),
P(|F@h)N(z,0)|| > &) = p(e) P{Z(x + 6) < h for some o> 0} =ple).
Hence, letting 7— oo, P(|T(2h)| = =) > p(2),

and so, letting £¢—0, P([|F2h)|| = o) =1.
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o0
Hence f P(Z(r)<2h) dt = oo,
0

It follows from a remark of Chung ([2], 182) and from the evident continuity of P(Z(r) <2h)
that, for all positive é outside a set A(h) of the first category,

S P{Z(md) <2k} = oo. (67)
m=0

Choose ¢ to lie outside the set

=

U A(1/k),

k=1

which is possible since this set is of the first category. Then (67) holds when A=1/k (k
integral), and so, since the left-hand side of (67) is monotone non-decreasing in 4, it holds

for all A>0. Hence, with this choice of d, {S,,(d)} is recurrent, and the lemma is proved.

TrrEorREM 10. A function £(t) of the form (64) is of recurrent type in n dimensions if

and only if the integral
=~} l_ tn—l_d_t
o E@) 141

(68)

diverges. The function &(t) =at* corresponding to the symmetric stable process with parameter

e is of recurrent type if and only if

n<a (69)

Proof. Lemma 4 and Theorem 9 show that £(¢) is of recurrent type if and only if, for
some 6>0,

© ] " dt
—— = 0
o L—ws(t)1+¢"*1

But, since y;(f) =exp { —0&(f)} this integral diverges if and only if (68) does. In particular,
if &(t) =at”, (68) diverges if and only if

0 tn~a:—1 dt
J, e
0
i.e. if and only if = <a. Hence the theorem is proved.
According to (69), the critical dimension for recurrence of symmetric stable processes

is no longer 2 (as in Pélya’s theorem), but is now «, which can be strictly less than 2. The

critical dimension need not of course be an integer.
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9. Projections

If we have a random walk in an integral number of dimensions, then the projection of
this walk onto any linear subspace is again a random walk in the appropriate number of
dimensions. Moreover, if the original process is spherically symmetric, so is the projected
process. If a typical step in the original walk has length X, then the corresponding step ir
the projected walk has length X cosf, where 6 is independent of X, and has the distributior
that a uniformly distributed unit vector makes with the subspace. If the dimension of
the original space is #, and that of the subspace m <n, then it is elementary to show tha
1 =cosf has a probability density

2s! 2r+1 2y8—-7r~1 < n<
—— - <usl
As—r—1tH (=) (O<p<1) (70

where we have written
m=2(1+r), n=2(1+s). (71
This procedure may be generalised to the symmetric random walks considered i
this paper as follows. If m,n are any two real numbers with 1 <m<n< co, and if X is an;

non-negative random variable, then we define a new random variable [ 7, X by
[Tn X =pX, (72

where y is independent of X and has the probability density (70). The interpretation o
[T X is as the length of the projection onto an m-dimensional linear subspace of a randon
vector with length X which has spherical symmetry in # dimensions,

Notice that there is the same ambiguity in the definition of [] as there was in th
definition of é;-) , due to the arbitrary choice of u. We therefore extend the convention mad
in § 1 by saying that, in any expression containing several [] and @ symbols, the randor
variables u and 2 implicit in these symbols are all independent. This corresponds to th
fact, that, in a spherically symmetric random walk, the angles which successive steps mak
with any linear subspace are independent.

The projection operators [ ], tie up in a very natural way with the operation of radie
addition and with the radial characteristic function. The connections are made explici
in the next theorem. It will be convenient to write the radial characteristic functio

"I () in the alternative form ™¥'[X], so that
"[X] = B{A(X)}.
THEOREM 11. For any non-negative random variable X,

"\Ft[X] == "'"F,[HZ X]- (7
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If X and Y are independent and non-negative, then

nEXDY)=(LX)BTLY). (74)

Proof. Sonine’s first finite integral ([16], 373) can be written

251 [ .~
Ay(2)= ® 1)! J‘OAr(luz) /42”'1(1 ___‘uz)s— ld,u,

ri(s—r—
so that, if u has the probability density (70),

Ayz) = E{Ar(;uz)}
Hence E{A(tX)} =E{A,(tuX)},
proving (73). Therefore

" TTXD V)] ="F XD Y] ="F[X] ¥ [ Y]

="V X1 Y] ="YX (I )]
An application of Lemma 2 completes the proof of the theorem.

Now let X, X,, ... be independent and identically distributed, and put X =I1nX,.
Then, if

SN=X1® @XN’ SN=X1® @Xl\h
the theorem shows that 1% Sy = Sy.

Thus, as far as the one-point distributions are concerned, the process {SN} is the projection
of {Sy}. This does not, however, extend to the joint distributions. To see this, consider
the case where m and n are integers, and let X ;= |X,| , where the X, are independent
identically distributed spherically symmetric n-vectors. Then SN is the length of the pro-
jection of Sy onto the linear subspace, but the angles which the different Sy make with
the subspace are correlated with one another.

It is a consequence of Theorem 11 that much of the structure introduced in preceding
sections is preserved under the projection operators. Thus, for instance, if X has an in-
finitely divisible distribution in % dimensions, then the distribution of [] X is infinitely
divisible in m dimensions. The projection operators are useful in that they connect random
walks in different numbers of dimensions; an example of the way they can be used will
be given in the next section. They can also be used to explain, for instance, the reason

why the recurrence conditions (56) and (69) take the form

n < Ny,
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We note in passing the formula
[RIEX)=II% X, (75)
valid in the range 1 <m <n<p< oo,

If we return to the geometrical picture of a symmetric random walk in an integral
number of dimensions, we see that instead of projecting the walk onto a single linear sub-
space, we could project it simultaneously onte two (or more) orthogonal subspaces. The
two (or more) projections will not, of course, be independent in general. Thus, if X is the
length of a symmetric random n-vector X, we can consider the projections &, £, of X onto

two orthogonal subspaces of dimensions m,,m,. Clearly we have
& =Xcosacosf, &,=Xcosasinf,

where « is the angle which X makes with the join of the two subspaces, and § the angle
which the projection of X onto this join makes with the first of these subspaces. Because
of the spherical symmetry « and 8 are independent, « having the distribution which a
uniformly distributed unit n-vector makes with an (m, +m,)-dimensional subspace, and
B the distribution of the angle which a uniformly distributed (m, +m,)-vector makes with
an m,-dimensional subspace.

Now, if Y is a random unit vector in N dimensions having a uniform (i.e. spherically
symmetric) distribution, then the angle which Y makes with an M-dimensional linear
subspace (M <N) has probability density

Cy.ycos M1 gsin® M 1¢ (0<p<in), (76)
where the constant Cy, y is given by

2(AN—1)!
(M~ 1IN~} - 1)!

Cu.n= W
Now (76) defines a probability distribution whenever M and N are real and 1 <M <N < oo;
this distribution will be denoted by D(M,N). We shall extend the definition by taking
D(N,N) to be the distribution concentrated at ¢ =0

It follows that the projections &,, &, of the random n-vector X satisfy

(&1, &) = X cosa(cosf, sinff), (78)

where «,f are independent, «€D(m;+myn), BED(my, m,+m,). (The notation x€D
means that o has the distribution D). More generally, if &,,...,&, are the projections of the
spherically symmetric random n-vector X onto a set of £ mutually orthogonal subspaces

of dimensions m,, ...,m,, then it is not difficult to see that
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(E15 vy k) = X (cos x cosp, cosa sing cosy, cosa sinf siny cosd, ...,

cosa sin8 siny ...sinf), (79)
where X, «,8,...,0 are all independent, with
o €ED(my + ... +my, n),
BED(my, my+ ... +my),

yED(my, my+ ... +my), (80)

0 € D(my..1, my_1 + my).

So far we have discussed the case in which n,m; are integers. It is, however, natural

to extend the definition to the case when n, m, are any real numbers with
m; =1, mytmy+..+my <n.

Then, if X is a non-negative random variable, we define the simultaneous projection of

X from » to (my,...,m,) dimensions to be the vector
E=(&, .-, &) =X (cos o cos B, cos o sin § cos p, ...) (81)

as in (79), where X, «,...,f are independent, the distributions of «,...,6 being given by (80).
Thus § is given by

£=Xt, (82)
where € is a random k-vector distributed over |§] <1.Ifm, +m,+...+m,=n, then |§| =1

and X =|§|. In this case the components of € can be looked upon as generalised coordinates
of X.

It is easy to see that Sonine’s second finite ihtegral ([16], 376) implies that, if
$ED{2(1 +0), 2(1+0)+2(1+a)},
then E{A(ucos d) Ayfvsin @)} = A,y qpa{(u?+ 0%} (83)
Now consider the simultaneous projection of X from = to (my, ...,m,) dimensions, and put
n=2(1+s), m;=2(1+r).
Then repeated application of (83) yields the formula
"Wx(t) = B{A, (t,&1) .. A (t€i)}, (84)

where # =8+ ... + .
This formula is analogous to the formula (for # an integer)

"Wx(t) = E {exp(it, X,)...exp(it, X,)}
4 — 632917, Acta mathematica. 109. Tmprimé le 28 mars 1963
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which lies at the basis of the use of the radial characteristic function. It shows that the
concept of simultaneous projection has a symmetry which is not apparent from its defini-
tion. Thus, if 7z is a permutation of (1,2,...,k), and if (#,,...,7;) is the simultaneous projec-

tion of X from n to (m,,,...,m,,) dimensions, then

(7]1’ "'snk) = (E:us wees Enk)-

As an illustration of the use of simultaneous projections, we obtain a characterisation
of the Rayleigh distribution, which is the analogue of the property of the symmetric normal
distribution that its components are independent. Let £>2 be an integer, m; (j=1,....k)
any real numbers not less than 1, and n>> m,. Let X be a non-negative random vari-
able, and let € be its simultaneous projection from = to (my,...,m;) dimensions. Now
suppose that &,,...,&, are independent. We show that this implies that X has an n-di-
mensional Rayleigh distribution. In fact, it follows easily from (84) that the radial charac-

teristic function yp(t) of X satisfies

PlE+ .+ =) - w(t),
and this together with the continuity of y(f) shows that y(t) = e~ *' for some a.

To conclude this section, we remark that, when X is concentrated at ¢, (84) takes

the form

Aylct) = fArl(ct1§1) cor Ag (b L) 9(m, my; §) AT (85)

where the function g can be written down. This gives a whole family of integrals, which

are generalisations of the finite integrals of Sonine.

10. The class of radial characteristic functions

In this section we consider briefly the problem of deciding which functions can be
radial characteristic functions. We recall the notations F,,J, and §,(=S$) for the class of
n-dimensional radial characteristic functions and its subclasses corresponding to infinitely
divisible and stable distributions. The problem is to identify F,, J, and §,. As far as §,

is concerned, the answer is given by Theorem 8; §, consists exactly of the functions

exp( —ct%)
for ¢=0, 0<a<2.

The following inclusion relations hold trivially for any =;

S<J,cF. (86)
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(These inclusions are strict; weak inclusions are here denoted by <.) Further inclusion

relations are given by the following theorem.
THEOREM 12. The sequences {F,}, {J,} are strictly decreasing in n>1, and their limits
Foo =nr;13n, Joo =ng117n (87)
are non-empty with

§$S V0 S Fw- (88)
Proof. Let m<n. Then, if p€JF,, there exists X with

and so pit) ="V [ [ X]1€F,.

Hence F, < F,. If X is infinitely divisible in » dimensions, then so is []% X in 7 dimensions,
and so J,< J,.

Now consider the generalised Poisson distribution for which
() =exp{AH)—1} (m=2(1+r).
Then y(t) € J,, < F .. Now suppose that (t) €F,. Then
p(t) =" [ InX],

and since []n X=uX where u has an absolutely continuous distribution, uX can have

no atoms except possibly at zero. But y(f) =¥ ,[Y], where Y has atoms at 0 and 1. Thus

we have a contradiction, showing that J,, is not a subset of J,. It follows that the two
inclusions

FuSFn TS Tn
are strict.
The inclusions (88) follow at once from (86), and since § is non-empty, so are F., and
J.. Hence the theorem is proved.
The classical criterion for a function to be a characteristic function is given by Bochner’s
theorem, which can be made to characterise J, when = is an integer. Thus (cf.[7]), w(t)€ F,

(n integral) if and only if it is continuous, y(0) =1, and the matrix
(wldy); 4,5=12,..,N)

is positive-semi-definite whenever there exist points A4,,...,4y in Euclidean n-space R"
such that d;; is the distance from 4, to 4,.
Thus the main condition for y(f) to belong to F,, when » is an integer, is that the

matrix (p(d;;)) be positive-semi-definite whenever the d;; satisfy a certain condition, and
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this condition is the only point at which the dimension » enters. As the dimension increases,

this latter condition weakens, so that F,,, < F, in accordance with Theorem 12.
Unfortunately, it does not seem to be possible to modify the condition on the d;;

so that it becomes meaningful when n is not an integer. In fact, for any given N, the condi-

tion allows exactly

2N -n—1) n<N-1)

of the d;; to be assigned freely, and this alone seems to make it unlikely that the condition
can be so modified. Hence it may not be possible to obtain a simple characterisation of the
Bochner type for F, when n is not an integer. The best we can do is to say that it lies
between ¥, and F,,,,, where m is the integral part of =.

The class F., can be written in the alternative form
-]
g 0= n :; ns
n=1

and we can appeal to a known theorem ([7], 24) to show that y€ F, if and only if there
exists a distribution function G on [0, o) such that

p(t) = f we‘c“dG(c). (89)
1]

Equivalently, ¢(t) € F., if and only if (t) is continuous in ¢ >0 and infinitely differentiable
in £>0, 9(0) =1, and y(x?) is a completely monotonic function of . In particular, since the
function

exp(—#) (0<a<2)

belongs to § and hence to F., it follows that the function
exp(—a#) (0<B<1)

is completely monotonic, a result due to Bochner [1]. Notice that (89) shows that F., is
exactly the (pointwise) closed convex hull of §, and that the extreme points both of F

~¢® (¢=0). In fact, a number of the results obtained in this

and of § are the functions e
paper can be placed within the context of the extreme-point theory of convex sets.

It is possible to sharpen the inclusions (88) to give
$CJnE Fe (90)

The details are straightforward and will be omitted.
I am indebted to Professor D. G. Kendall for many helpful comments, and to the

Department of Scientific and Industrial Research for financial support.
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