Randomization Analysis of Experimental Data:

The Fisher Randomization Test
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R.A. Fisher’s classic text on the design of experiments is the prin-
cipal source of inspiration for a mode of data interpretation that is
usually characterized as randomization analysis. In Chapter IIT
of this text, Fisher briefly commented on how to make a randomiza-
tion test on some data generated by a Darwin experiment. Two
variants of this randomization test are discussed in this article.
The variant that is discussed in Section 4 may be regarded as the
forerunner of all nonparametric tests. The original variant of the
test is discussed in Section 6. The author concludes that the Fisher
randomization test is not logically viable.
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1. INTRODUCTION

Randomization is widely recognized as a basic prin-
ciple of statistical experimentation. Yet we find no
satisfactory answer to the question, Why randomize?
In a previous paper (Basu 1978) the question was
examined from the point of view of survey statistics.
In this article we take an uninhibited frontal view of a
part of the randomization methodology generally known
as the Fisher randomization test.

R.A. Fisher’s classic text The Design of Experiments
(DE) is the principal source of inspiration for a mode
of data interpretation that may be characterized as
randomization analysis of data. In Chapter III of DE,
while discussing Galton’s analysis of a Darwin experi-
ment with 15 pairs of self-fertilized and cross-fertilized
sceds, Fisher cursorily mentioned how one can take
advantage of the physical act of randomization to make
a test of significance that needs no assumption of nor-
mality for the error terms. This idea of Fisher’s was
immediately generalized by Pitman (1937) and then
pushed to its natural boundary by Kempthorne (1952)
and many others. T'wo variants of the Fisher random-
ization test are discussed in this article. The variant
that is discussed in Section 4 may be regarded as the
forerunner of all nonparametric tests. The original
variant that is discussed in Section 6 may be regarded
as one of the two supporting pillars (the other one
being the famous case of the “lady tasting tea’) of the
complex theory of randomization analysis of experi-
mental data. In between the two sections, I have in-
serted a scetion entitled: “Did Fisher Change His
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Mind?” 1 speculate that in 1956 Fisher had lost a great
deal of his carly enthusiasm for randomization analysis.
Whether Fisher changed his mind is not the present
issue. What 1 am asking is whether, in the specific
instances discussed in this article, it makes sense to
compute a significance level (P value) in the manner
of the Fisher randomization test. Can any evidential
meaning be attached to a P value so computed?

Let us postpone the debate on significance testing
in general and nonparametric tests in particular. Let us
keep the issuc sharply in focus and ask, Can the Fisher
randomization test pass the test of common sense?

2. RANDOMIZATION

Let us define randomization as the incorporation of
a fully controlled bit of randomness in the process of
data gencration. Randomization is usually carried out
in the manner of items 1 and 2.

1. Prerandomization. This is the most common form
of randomization. As the name suggests, the data-
generation process begins with a fully controlled ran-
domization exercise that determines the actual experi-
mental {or observational) layout. Typical examples arc
random allocation of treatments in experimental designs
and random selection of units in survey sampling.
Along with replication and local control (blocking),
prerandomization was characterized by Fisher (1960)
as one of the three basic principles of statistical
experimentation.

2. Postrandomization. Abraham Wald (1950) was one
of the earliest to consider this kind of randomization
as a statistical tool. After data z has been obtained,
postrandomization is the generation of a further random
entity y whose randomness characteristics may depend
on z but are completely known to the randomizer.
The statistician’s conclusions or decisions are then based
on the extended data (z, y). The average performance
characteristics of a postrandomized decision rule & are
evaluated by taking into account all possible values
of (z, y). With postrandomization, the statistician has
a wider choice of attainable risk functions.

3. Unrecorded randomization. Occasionally, randomiza-
tion is allowed to enter into the experimental process in
a form quite different from the forms 1 and 2 discussed.
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For instance, in a randomized-response survey the sub-
jects may be instructed to respond to the question
“Did you truthfully report your gross income in your
1977 tax return?’’ in the following manner. Each sub-
ject tosses a supposedly unbiased coin twice and then
answers the question with a “Yes” if the coin yields
two heads, with a “No” if the coin yields two tails,
or with a truthful “Yes” or “No” if the coin yields
a head and a tail. In this data-generation process the
statistician may prerandomize to choose his or her
sample subjects but has no control over the response
randomizations done by the subjects. The statistician
can only speculate about the outcomes of the response
randomizations but cannot observe them. It may be
argued that response randomization need not be classified
as a form of experimental randomization. We shall not
discuss this kind of randomization in this article. Warner
(1965) proposed this kind of survey technique for elimi-
nating evasive-answer bias.

3. TWO FISHER PRINCIPLES

As we said in the introduction, our primary concern
is the so-called randomization analysis of data generated
by a statistical experiment that has a large measure
of prerandomization incorporated in it. It will, how-
ever, be useful to clear the deck with a short discussion
of postrandomization and the two sides of the suffi-
ciency prineciple.

Postrandomization injects into the data an element
whose randomness characteristics are fully controlled
by the experimenter. Let z be the initial data (sample)
and let y be the postrandomized variable whose proba-
bility distribution, given z, depends only on z. In terms
of the extended sample (z, y), the statistic z is suffi-
cient and, as Fisher would put it, summarizes in itself
the whole of the relevant information available in (z, ¥).
To incorporate y in the inference-making process will
be a violation of

The sufficiency principle: If T is a sufficient statistic
then any conclusion that can be validly drawn from a
statistical analysis of the data ought to depend on the
data only through the statistic T

In accordance with the sufficiency principle the data
should be reduced to the minimal sufficient statistic.
Not to reduce the data to the minimal sufficient sta-
tistic is to keep open the possibility of being influenced
by irrelevant data characteristics such as, say, a post-
randomization variable. In this connection it is inter-
esting to read Fisher’s (1956, pp. 96-98) comments on
a postrandomization test proposed by Bartlett.

According to Fisher, a principal difference between
the deductive and the inductive modes of inference is
that in the former case valid conclusions (theorems)
can be drawn from a partial use of the data (the primary
postulates), whereas in the latter case no conclusion
can be validly drawn from an examination of only a
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part of the relevant information core of the data. Fisher
was quite concerned with the fact that the maximum
likelihood estimator is not always a sufficient statistic.
This led him to the conditionality principle and the
celebrated recovery-of-ancillary-information method. The
Fisher concern about using the whole of the relevant
information in the data may be loosely stated as

The insufficiency principle: If the statistic T, is not
sufficient then an inference-making procedure that de-
pends on the data only through 7' is insufficient, that is,
lacking in substance.

It is not at all surprising, therefore, that Fisher took
a rather dim view of nonparametric methods, especially
those that make use of only the rank-order statistics.
We shall revert to this theme with a Fisher quotation
in Section 5.

4. THE FISHER RANDOMIZATION TEST

In Chapter III (Sec. 21) of DE, Fisher introduced
his randomization test in the following terms: “In these
discussions it seems to have escaped recognition that
the physical act of randomization, which, as has been
shown, is necessary for the validity of any test of sig-
nificance, affords the means, in respect of any particular
body of data, of examining the wider hypothesis in
which no normality of distribution is implied.” Fisher
then gave a brief description of his randomization test
as an alternative to the Student’s ¢ test. In this section
we consider a popular variant of the test that may be
regarded as the original permutation test. This is how
the test is described in Kempthorne and Folks (1971,
p. 342).

Let z1, 3, ..., . be n independent observations on
a random variable z. The problem is to test the null
hypothesis Hy that E(z) = 0. Under the parametric
model that z is normally distributed, the test is usually
carried out in terms of the studentized sum 7 = Y ;.
Under the wider hypothesis (nonparametric model) that
the distribution of z is continuous and is symmetric
about its mean, the null hypothesis Hy may be tested
in terms of the criterion T = 3 x; as follows:

Write é; = sgnz;, 1 = 1,2, ..., n; that is, §; is —1
or 1 according as z; is negative or positive. Note that
T=%Yaz=2X|xls

and that the sample (zi, 2o, ..
the two parts

., Tn) may be split into

(81, 83, ..., 8,) .

Making the standard pretense that we are dealing with
random variables and not particular observations, we
recognize at once that the [z;|’s are iid and that so
also are the §/s. Under the null hypothesis, the two
parts of the sample are stochastically independent and
cach §; is uniformly distributed over the two-point set
{—1, 1}.

(lz1], |®2], .-, |za]) and
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The distribution of the test criterion T is not well
defined even under the null hypothesis. If we fix the
|@:]'s at their observed values and rcgard the §/s as
random variables, however, then the conditional null
distribution of T gets well defined. Although the actual
computatioh may become somewhat tedious, the con-
ditional probability

Pr(T > i Hy, |21], |22], .., [Z2])

can be worked out. Thus, we can carry out one-sided
or two-sided tail area tests in terms of the conditional
null distribution of 7.

The conditional test just described bears the dis-
tinctive hallmark of Sir Ronald. It was Fisher who
amazed and mystified the statistical world with his
sensational 2 X 2 conditional test of independence, and
it was he who taught us how to set up a conditional test
for the equality of two Poisson means.

In order to find the attained significance level of data
vis & vis a null hypothesis Ho, we have to search for
an appropriate test criterion 7' and then refer it to an
appropriate sample space (the reference set) for de-
termining the tail-ares probability under the null hy-
pothesis. In the present case the criterion is the sample
total T and the reference set is the set of all samples
of the type

(E|xl, £z, ..., £lza])

where |x1{, |22, ..., |za] are fixed at their observed
values. Before we turn the searchlight of careful scrutiny
on this mystifying conditional test, it will be useful to
compare it with two familiar nonparametric tests of the
null hypothesis p = 0. (See Kempthorne and Folks
1971, pp. 340-345.)

The sign test: Choose as the test criterion the number S
of positive signs among &; =sgnwz;, ¢ = 1,2, ..., n
The null distribution of S is bin (n, }). One-sided or
two-sided tests can then be made in terms of S.

The Wilcoxon signed-rank test: Instead of the sample
total T = ¥ |11]8,, choose the statistic W = 3 7:5; as
the test criterion, where 7; is the rank of |xz;[ among
lz1], |#2], ..., |@a]. Observe that the range of varia-
tion of W is the set of alternate integers in the interval
[—n(n 4+ 1)/2, n{n + 1)/2]. Under the null hypothe-
sis Hy, the two vectors (ry, s, ..., 7») and (51, 82, ..., &8a)
are stochastically independent and the 8/s are iid 1
variables with equal probabilities. The conditional dis-
tribution of W, given (ry, 72, ..., ra), can, therefore,
be easily worked out under H,. Since (ry, 7y, ..., 72
is always a permutation of (1,2, ..., n), it is clear that
the null distribution of W is the same for all possible
realizations of (ry, re, ..., 7a); in other words, the
Wilcoxon statistic W is stochastically independent of
the rank vector if the null hypothesis is true. Thus,
the Wilcoxon test is not a conditional test in the sense
the Fisher randomization test is. The sign test and the
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Wilcoxon test are typical examples of nonparametric,
distribution-free, marginal tests.

Commenting on the three tests, Kempthorne and
Folks (1971, p. 344) wrote: “Since the sign test uses
only the signs of »;, the Wilcoxon test uses only the
signs and the ranks of |z;|, and the Fisher test uses
the z; without condensation, the Fisher test is superior
as & significance test.” Thus, it seems that Kempthorne
and Folks are giving poorer ratings to the sign test
and the Wilcoxon test on the score that they violate
the insufficiency principle to a greater extent than does
the Fisher test. But how to measure the extent of such
violations! Do any of these tests violate the sufficiency
principle? Let us examine the question.

In the context of our nonparametric statistical model,
the set of order statistics xqy, 2y, + .+, Z(ny 1S minimal
sufficient. Fach of the three test criteria 7, S, and W
can be written as a function of the order statistics,
for example

T=%Xzn=2%2xlbw ,
S HE 8w + ),
W= radw »

I

where 8, = sgn () and 7y is the rank of |z(,| among
2w, 2@ |, - -+, [T |- Since the sign and the Wilcoxon
tests are based on the marginal distributions of S and W,
respectively (and, of course, on their observed values),
there is no violation of the sufficiency principle in these
cases—only the insufficiency principle is at stake.

In the case of the Fisher test, it may appear on the
surface that the sufficiency principle has been violated
in view of the fact that the conditioning statistic
(lz1], |22, ..+, |Za]) is not a function of the minimal
sufficient statistic (zqy, Zey, - .-, Tmy). If we carefully
examine the conditional distribution of T given
(11}, 2], ..., {z]), then it will be clear that the
conditional distribution depends on the sample
(z1, @2, + .., Ts) only through the order statistics. The
sufficiency principle is sometimes interpreted as a re-
quirement that the data ought to be first reduced to
the minimal sufficient statistic (thus sieving out all the
postrandomization impurities) and then the reduced
data interpreted in terms of the marginal distribution
of the minimal sufficient statistic. To satisfy the statis-
tical intuition of such a purist we have only to point
out that the Fisher test will remain unaltered if the
conditioning statistic is chosen to be the ordered re-
arrangement of |z, [z@], .., |Z@m]|. The Fisher
test does not violate the sufficiency principle.

The choice of the test criterion T = Y z; and the
choice of the conditioning statistic (|21, |22, ..., |Za])
are arbitrary elements in the Fisher test. For instance,
we may want to condition T with respect to the sta-
tistic (21 + za + ... + 2|, [Zes1], - - -, |@a]) for some
chosen & (1 < k < n). It is easily seen that any such
conditioning will make the null distribution of 7 dis-
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tribution free. For instance, if k = n, then the condi-
tional null distribution of T, given |z1 + ... + Z.| = d,
is uniform over the two-point set {—d, d}. With such
a conditioning the one-sided test of the null hypothesis
will result in a significance level of 3 whenever the
observed value of T is positive! Suppose we somehow
convince ourselves that the only reasonable choice of
a conditioning statistic is the one that corresponds to
k = 1, the Fisher choice. (If 1 < k < n, then the test
procedure violates the sufficiency principle. The case
k = n is too ridiculous to deserve any serious con-
sideration. And so on for any other conditioning statistic
that one can think of.) Even then the question about
the choice of the test criterion remains. Instead of
T = n&, why not choose the sample median & as the
test criterion? With the Fisher conditioning with respect
to (1], |#2], .-+, [%a]), the null distribution of z is
also distribution free. In our nonparametric setup, the
sample median # seems to be as reasonable a choice
(as a test criterion) as the sample mean. Now, let us
try to evaluate the significance level attained by the
sample
(1’1, Ty, T3, T4y 1}5) = (4y 7r 21 37 1)

The Fisher reference set consists of the 32 points
(=4, £7, =2, £3, £1).

The observed sample mean is 3.4 and the median is 3.
In the reference set there is only one point (viz., the
sample itself) whose mean is at least as high as 3.4.
In the same reference set, however, there are four points,
namely, (4,7, +2, 3, &=1) with median as high as 3.
Therefore, with Z as the test critcrion the significance
level (SL) of the data will be evaluated as 1/32, whereas
with & as the test criterion the data will be deemed to
have attained SL = 3. Note that every sample of five
positive observations, irrespective of how far out or
how scattered they are on the positive half-line, will be
judged as significant (SL = 1/32) if £ is the test cri-
terion and not significant (SL = 1/8) if % is the test cri-
terion. With a sample of seven positive observations
the SL will be 1/128 or 1/16 depending on whether £
or & is chosen as the test criterion. Consider the two
samples (—5, —4, —1, 6, 7, 8, 9) and (62, 63, 64, 65, 66,
67, 68). Does it make any sense to say that, with respect
to the null hypothesis ¢ = 0 with one-sided alternatives,
the two samples are equally significant with 8L = 1/16?
But that is exactly what the Fisher test will do if & is
chosen to be the test criterion.

Let us take a short break from this ruthless cross-
examination of the Fisher test with some speculation
on Sir Ronald’s later thoughts on the subject. The
cross-examination will continue in Section 6.

5. DID FISHER CHANGE HIS MIND?

In all fairness to Sir Ronald we have to admit that,
apart from making a passing reference to the random-
ization test method in Chapter III of DE, Fisher did
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not have much else to do with this kind of test procedure.
Twenty-one years later, when Fisher came out with his
last testament on statistics—Statistical Methods and
Scientific Inference (SI)—he had apparently forgotten
all about his randomization test method. In the winter
of 1954-55, Fisher visited the Indian Statistical In-
stitute for a couple of months and gave an extensive
series of lectures based on the manuseript of SI. Those
lectures profoundly influenced my own thinking on
statistics. In S7, Fisher discussed the logic of inductive
inference, his new outlook on significance testing, fiducial
inference methods, likelihood methods of inference, and
conditioning and recovery of ancillary information, but
nowhere do we find any mention of randomization
analysis of data. Randomization as an ingredient of
statistical designs was mentioned only once, and that
appeared in the following passage (Fisher 1956, p. 98):

.. . whereas in the Theory of Games a deliberately randomized
decision (1934) may often be useful to give an unpredictable
element to the strategy of play; and whereas planned ran-
domization (1935-53) is widely recognized as essential in the
selection and allocation of experimental material, it has no
useful part to play in the formation of opinion, and conse-
quently in the tests of significance designed to aid the forma-
tion of opinion in Natural Sciences. [Note: The year 1934
refers to a Fisher article on randomization in eard play and
1935-53 refers to DE.]

On the suggestion of an associate editor of JASA
this passage is quoted in full so that the readers of the
article can make up their own minds on the following.

Questions: Isn’t it surprising that Fisher had no more
to say about randomization in 1956? Was Fisher dis-
associating himself from the randomization test by not
mentioning the method in S7? Does the remark about
“formation of opinion” refer to postrandomization only?

It should be recognized that Fisher’s views on sig-
nificance testing underwent a major change during the
period 1935-1956. On p. 77 of SI he made a clear dis-
tinction between tests of significance as used in natural
sciences with tests for acceptance as in quality-control
theory. According to him the dissimilarities (between
the two methods) lie in the population, or reference set,
available for making statements of probability. Let us
quote Fisher (SI, p. 77) on this point:

Confusion under this head has on several occasions led to
erroneous numerical values; for, where acceptance procedures
are appropriate the population of lots of one or more items,
which could be chosen for examination, is unequivocally de-
fined. The source of supply has an objective empirical reality.
Whereas, the only populations that can be referred to in a
test of significance have no objective reality, being exclusively
the product of the statistician’s imagination . . .. The demand
was first made, I believe, in connection with Behrens’ test of
. . . significance . . ., that the level of significance should be
determined by repeated sampling from the same population,
evidently with no clear realization that the population in
question is hypothetical, that it could be defined in many
ways . . .; or, that an understanding, of what the information
is which the test is to supply, is needed before an appropriate
population, if indeed we must express ourselves in this way,
can be specified. (Italics ours)
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Again, on p. 91 of 8I, Fisher quoted himself (from
a 1945 Sankhya article dealing with the fiducial argu-
ment) as follows:

In recent times one often repeated exposition of the tests of
significance, . . ., seems liable to lead mathematical readers
astray, through laying down axiomatically, what is not agreed
or generally true, that the level of significance must be equal
to the frequency with which the hypothesis is rejected in
repeated sampling of any fixed population allowed by hy-
pothesis. This intrusive axiom, which is foreign to the reasoning
on which tests of significance were in fact based seems to be
a real bar to progress. . ..

It seems clear to me that, in 1956, Fisher’s views on
significance testing were somewhat close to the Bayesian
position that the evidential content of data cannot be
judged in sample space terms. Indeed, the 1945 quota-
tion from Fisher might very well have been written
by De Finetti himself. I am, therefore, not surprised
at all that in SI Fisher mentioned neither the ran-
domization test nor the lady-tasting-tea—type data
analysis. For these are very extreme types of non-
parametric data analysis in which the evidential meaning
of the data is sought to be evaluated by referring it to
a sample space that is formed by the statistician in
his or her mind by imagining all the possible outcomes
of the planned randomization input of the experiment.
This will be made elearer in the next section.

Many of our contemporary statisticians are unaware
of the fact that in the seventh edition of DE (1960),
Fisher added what looks like a disclaimer in the form
of a short section (Sec. 21.1; “Nonparametric” Tests)
at the end of Chapter III. We quote this section in full.

In recent years, tests using the physical act of randomization
to supply (on the Null Hypothesis) a frequency distribution,
have been largely advocated under the name of Nonparametric
tests. Somewhat extravagant claims have often been made on
their behalf. The example of this section, published in 1935,
was by many years the first of its class. The reader will realize
that it was in no sense put forward to supersede the common
and expeditious tests based on the Gaussian theory of errors.
The utility of such nonparametric tests consists in their being
able to supply confirmation whenever, rightly or, more often,
wrongly it is suspected that the simpler tests have been ap-
preciably injured by departures from normality.

They assume less knowledge, or more ignorance, of the ex-
perimental material than do the standard tests, and this has
been an attraction to some mathematicians who often discuss
experimentation without personal knowledge of the material.
In inductive logic, however, an erroneous assumption of igno-
rance is not innocuous; it often leads to manifest absurdities.
Experimenters should remember that they and their colleagues
usually know more about the kind of material they are dealing
with than do authors of textbooks written without such per-
sonal experience, and that a more complex, or less intelligible,
test is not likely to serve their purpose better, in any sense,
than those of proven value in their own subject.

Note Fisher’s use of the phrase “physical act of
randomization.” The same phrase appears in the Fisher
quotation in the opening paragraph of the previous
section. Where is the physical act of randomization in
the Fisher randomization test? The random entities
81, 83, ..., 8, can hardly be called randomization vari-
ables. It is only under the null hypothesis that the
8’s can be regarded as iid uniform =1 variables. The
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nonnull distribution of the 8,s depends on the parameter
of interest p in a rather complex fashion. We should
recognize the fact that in Section 21 of DE (1935)
Fisher was not really concerned with the particular
test situation that we have discussed in the previous
section. He was talking about the problem of com-
paring two treatment effects under a wider hypothesis
and was suggesting & (nonparametric) randomization
analysis of data generated by paired comparisons on
the basis of a physical act of randomization. In the
next section we discuss this matter in some detail.

6. RANDOMIZATION AND PAIRED COMPARISONS

A scientist wants to test whether a so-called improved
diet (treatment) is in effect superior to the standard
diet (control). The scientist has 30 animals (subjects)
with which to experiment. The scientist carefully pairs
(blocks) the subjects into 15 homogeneous pairs. Let
{(s15, 82): 1= 1,2, ..., 15} be the set of 15 subject
pairs. The subjects in each pair are of the same sex,
come from the same litter, and so on. From each pair
the scientist selects one subject for the treatment and
the other one for control. The 30 responses (weight
gain in so many weeks) are laid out as {(f;,¢):
1 =1,2,...,15}, where t; and ¢; are the responses of
the treated subject and the control subject, respectively.

The scientist observes that

T=Yu-To
is a large positive number and also notes that
di=1t; —c; >0 foralli .

The scientist, therefore, concludes that he or she has
obtained very strong evidence in favor of the hypothesis
H, that the improved diet is really superior to the
standard diet. For measuring the strength of the evi-
dence the scientist consults a statistician.

The statistician decides to make a one-sided test of
significance of the null hypothesis H, (that the two
diets are the same in their short-term weight-gain
effects) on the basis of the scientist’s data. The statis-
tician also thinks that T = 3 d; is an appropriate test
criterion in this case. For finding the significance level
of the observed value of 7T, the statistician has to find
the null distribution of 7. So what the statistician needs
now is a nice reference set.

The response difference d; between the 7th pair of
subjects can be explained in terms of a possible treat-
ment difference and other possible nuisance factors like
subjeet differences (which the scientist tried his or her
best to control by blocking), virus infection, loss of
appetite, and many such uncontrollable factors that
may have acted differently on the two subjects in the
7th pair. If hypothesis H, is true, then there is no treat-
ment difference; so the response difference d; must be
presumed to be caused by the previously mentioned
nuisance factors. As Fisher explained in DE, randomiza-
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tion enables the statistician to eliminate all these
nuisance factors from the statistical argument. Let us
see how this elimination is achieved in the present case.

Suppose the scientist had made 15 independent ran-
dom decisions (on the basis of 15 tosses of a fair coin)
as to which subject in the sth pair gets the improved
diet (¢ = 1,2, ..., 15). Having recorded the 15 re-
sponse differences di, da, ..., dis and having computed
T = ¥ d;, the scientist can speculate about a hypo-
thetical rerun of the experiment in which all but one
of the experimental factors (controllable or uncontrol-
lable) are supposedly held fixed at the level of the last
experiment—the same 30 animals exactly as they were
at the commencement of the last trial, paired the same
way into 15 blocks, exactly the same set of animals
coming down with the same kind of virus infections
with the same effects on them, and so forth. The only
thing that is allowed free play in the hypothetical rerun
of the experiment is the random allocation of treat-
ment—the fair coin has to be tossed again 15 times.
If H, is true, then the response difference d; = t; — ¢:
for the ith pair must have been caused by the nuisance
factors (subject differences, virus infection, etc). In the
hypothetical rerun of the experiment all such nuisance
factors are supposedly held fixed at the past level
Therefore, in the new experiment the response dif-
ference for the sth pair can take only two values d;
or —d;, depending on whether the treatment allocation
for the 7th pair is the same as in the past experiment
or is different. If we denote the response differences for
the hypothetical experiment by (d'y, ds, ..., d’1s) then
it is clear that, under the null hypothesis H,, the sample
space (for the response differences) is the set R of 2%
points (vectors)

R = {(&dy, £ds, ..., £dis)} ,

with all the points equally probable. This is the reference
set that the statistician was looking for. Let 7" = 3 d'.
The significance level of the data

SL = Pr(T" > T|Ho)

is now computed as follows.

The statistician looks back on the data and notes
that d; > 0 for all 5. Therefore, 7" > T if and only if
d’; = d; for all . Hence, SL = '5. This is randomiza-
tion analysis of data in its classical form.

The rest of this section is devoted to an evaluation
of this particular data analysis. The evaluation is laid
out in the form of a hypothetical sequence of remarks
and counterremarks by the statistician, the scientist,
and the author.

Statistician: Observe that the randomization test
argument does not depend on any probabilistic assump-
tions. The randomization probabilities are fully under-
stood and are completely under control. I do not have
to assume that the treatment-allocation process was
like a sequence of 15 Bernoulli trials with p = 3. Surely,
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I can regard that as demonstrably correct. In this
argument there is no mention of a population. The
experimental animals do not have to be regarded as a
random sample from a population of animals. This test
is an ultimate nonparametric test. Not only do we not
have to deal with model paramecters, we do not have
to contend with even a statistical model. There is no
mention of a sample space X cquipped with a o-field A
of events and a family P of probability measures, no
measurement crrors, no mention of a sequence of iid
random variables with an unknown distribution function.

Scientist: I am greatly puzzled by your data analysis.
Your analysis sccms to depend only on the randomiza-
tion probabilities and the observed fact that d; > 0 for
all 7. The fact that the test criterion T = Y. d; attained
a rather large value in this case does not seem to enter
into the probability evaluation of 3'5.

Awuthor: Supposce we choose the median of dy, dy, . . ., dis
to be the test criterion instead of T' = 3 d;. The sig-
nificance level of the data will then be evaluated as .
How can we cxplain the big difference between 315
and 38?7

Scientist: I do not understand the relevance of the
randomization probabilitics. Why is it so crucial that
the coin with which I made the treatment allocation
be a fair coin? Suppose I had used a biased coin with
p = 1. Suppose for the ith pair (si;, $.;) of experimental
animals my treatment allocation was (, ¢) or (¢, t)
depending on whether the ith toss of the biased coin
resulted in a head or a tail. How significant would my
present data have been then?

Awuthor: Let me answer the question. The hypothetical
rerun of the experiment will be defined as before, but
this time the biased coin will define the randomization
scheme. The reference set for (d'y, d's, ..., d’'ys) will
still be the same set R. Note that in this case Pr{d’; = d,)
= 4 or § depending on whether, in the original experi-
ment, the response difference d; was associated with
the (¢, ¢) or the (¢, ¢) treatment allocation. Therefore,
the level of significance will be evaluated as

SL = Pr(T" > T|Hy = )@,

where m is the number of (¢, ¢) allocations in the origi-
nal experiment. The larger the value of m is, the more
significant are the data.

Scientist: This is patently absurd. How can the SL
depend so largely on such an irrelevant data charac-
teristic as m? It is relevant to know that the 30 animals
have been paired into 15 homogeneous blocks. The
manner of my labeling the two animals in the sth block
as (81, $2;) does not seem to be of much relevance.
The number m of treatment allocations of the type (¢, ¢)
seems to be of no consequence at all. I have not been
asked about all the background information that I have
on the problem. For instance, I happen to have made
a nutrition analysis of the two diets. I know that the
improved diet has a much higher protein content and
is very rich in vitamins C and D. I know the results
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of several past experiments on the same set of animals
when they were fed the standard diet. I know that
six animals came down with virus infections during the
experiment and that five of them were fed the improved
diet. I am amazed to find that a statistical analysis
of my data can be made without reference to these
relevant bits of information.

Statistician: You are trying to make a joke out of an
excellent statistical method of proven value, a method
that originated in the mind of one of the two (Fisher
and Einstein) really outstanding men of genius that
the world has seen in this century. Your criticisms are
based on an extreme example and then on a misunder-
standing of the very nature of tests of significance.
Tests of significance do not lead to probabilities of
hypotheses. I do not believe in “belief probabilities.”
1 do not believe that any useful purpose can be served
by trying to quantify your knowledge in the form of
a belief probability. Go to a Bayesian if you wish to
make any input of your subjective beliefs in the data
analysis process. It does not make much sense to set up
a statistical model for the purpose of analyzing experi-
mental data. The randomization analysis of data is so
simple, so free of unnecessary assumptions that I fail
to understand how anyone can raise any objection
against the method. In the case of the present experi-
ment you have in effect tossed a fair coin 15 times,
have you not? So why confuse the issue by bringing
in the case of an absurdly biased coin with p = §?
Note that the probability of 1'* that I have computed
for you is a gambler’s probability, a frequency proba-
bility, a propensity measure of a well-defined physical
system. A belief probability it is not.

Scientist: Your probability of ' is defined in terms
of a hypothetical experiment, a rerun of the original
experiment with everything (repeat everything) but the
randomization part fixed at the level of the original
experiment. But how can you even think of such an
utterly impossible experiment? My experimental ani-
mals have changed—one of them died last week—the
weather has changed, the virus epidemic is gone. I do
not see how you can claim any objective reality for
the randomization probability of 315. In any case, I knew
all along that the null hypothesis could not possibly
be true. So any probability computed under the sup-
position that the null hypothesis is true cannot have
much of an objective reality.

Awuthor: The computation SL = 35 was based on the
supposition that in the hypothetical rerun of the experi-
ment all the 2!* treatment-allocation patterns are equally
probable. It is not clear from the argument that the
scientist had to make all the 215 possible allocations
equally probable in the original experiment.

Scientist: This is a good time for me to confess that
in fact I did not randomize over the full set of 2!5 pos-
sible allocations. As a scientist I have been trained to
put as much control into the experimental setup as
I am capable of, to balance out the nuisance factors as
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far as possible. After carefully blocking the 30 subjects
into 15 nearly homogeneous pairs, I could still detect
differences within the subject pairs. There were dif-
ferences in weight, height, some relevant blood charac-
teristics, and a few other relevant features. I wanted
the set of 15 treated subjects to be nearly equal to the
set of 15 control subjects in some group characteristics
like average weight, average height, and so on. I worked
very hard on the project of striking a perfect balance
between the treatment and the control groups. Finally,
I found two such complementary groups and then
decided on the treatment/control allocation to the two
groups by a mental process that may be likened to the
toss of a fair coin. I wonder what the significance level
of my data is going to be in the light of this confession.

Statzstician: Had I known about this before, I would
not have touched your data with a long pole. Now
the reference set for (d’y, d's, ..., d’1s) consists of only
the two points

(dy, d, ..
and the significance level

SL = Pr(T" > T|Hy)

o dis) and (—dy, —dy, ..., —dis) ,

works out to be 2 if T >0 and 1 if T < 0. Your data
is not significant at all.

Scientist (utterly flabbergasted): But my experiment
was better planned than a fully randomized experiment,
was it not? With my group control (in addition to the
usual local control) I made it much harder for 7'
= 3t — 3 ¢ to be large in the absence of any treat-
ment difference. In spite of this careful global control,
I found that T is a large positive number and that
every t; > ¢;. And you are telling me that, under the
null hypothesis, it is as easy to get a result as significant
as mine as it is to get a head from a single toss of a
symmetric coin!

Statistician: My good man, you must realize that
your experiment is no good. The prerandomization that
you had carried out was not wide enough; the ran-
domization sample space has only two points in it with
a uniform probability distribution under the null hy-
pothesis. Thus, the only attainable significance levels
are 3 and 1. Your cxperiment is not informative enough.
I wish you had consulted me before planning your
experiment. It appears that you do not have a clear
understanding of the role of randomization in statistical
experiments.

7. CONCLUDING REMARKS

So the randomization argument foundered on the
rocks of restricted and unequal probability randomiza-
tion. The statistician had the last word but lost the
argument. The statistician was clearly wrong in charac-
terizing the scientist’s one-toss randomized experiment
as uninformative. During the last 15 years, I have heard
three very eminent statisticians characterizing the one-
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toss experiment as uninformative on the score that the
sample space has only two points in it. That this cannot
be so is easily seen as follows.

An urn contains two balls that are either both white
or both black. The draw of a single ball from the urn
is then fully informative, although the sample space
has only two points in it. If this example seems to be
too artificial, then consider the case of an urn in which
the proportion of white balls is either } or }. Consider
the sequential sampling plan that requires drawing of
balls one at a time and with replacements until the
likelihood ratio either exceeds 100 or falls below 1/100.
Suppose the outcome of this experiment is recorded as
“below 1/100” or “above 100.” This is a highly in-
formative experiment with only two sample points in it.

It should be noted that the sample space of the ex-
periment performed by the scientist had a huge number
of points in it. The statistician took a thin cross-section
of the sample space (after holding fixed all the relevant
factors like subjects, treatment effects, recognizable
nuisance factors, and error terms) and then found only
two points in it. No wonder the scientist failed to
understand the argument.

The scientist was correct in questioning the relevance
of randomization at the data analysis stage. Prerandom-
ization injects an element of uncertainty about the
actual experimental layout. But that uncertainty is
removed once the scientist goes through the random-
ization ritual early in the game. At the data analysis
stage, why is it still necessary to find out about the
details of the actual randomization process? The ran-
domization exercise cannot generate any information
on its own. The outcome of the exercise is an ancillary
statistic. Fisher advised us to hold the ancillary sta-
tistic fixed, did he not?

Our statistician is & most ardent admirer of R.A.
Fisher. But he does not like the postfiducial (1936-62)
Fisher. During the last 27 years of his astonishing
career, we find Sir Ronald entertaining such counter-
revolutionary thoughts as the conditionality and the
likelihood principle and toying with the half-baked
Bayesian idea of fiducial probability distribution.

DAVID V. HINKLEY*

Journal of the American Statistical Association, September 1980

We have noted earlier how the sufficiency principle
rejects postrandomization analysis of data. Similarly,
the conditionality principle (see Basu 1975 for more on
this) rejects prerandomization analysis of data. In view
of Fisher’s postfiducial rethinking on statistical in-
ference, it was almost inevitable for him finally to insert
that astonishing short section on nonparametric tests in
the seventh edition of The Design of Experiments.

[Received March 1979. Revised October 1979.]
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Comment

Basu has provided us with an interesting and pro-
vocative critique of significance tests related to ran-
domized experiments. It does seem to be true that
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there is not a unified Fisherian mathematical theory of
significance tests. This should not be surprising, how-
ever, since Fisher was wont to warn of the dangers of
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routine, formal application of mathematical statistics
without very careful regard for scientific context and
operational meaning. Indeed, one might view Basu's
paper as an illustration of Fisher's warning.

In terms of Fisher and randomization, the first four
sections of the paper require little comment, since they
deal with the separate topic of permutation and rank
tests. Nevertheless, it is important to point out a fallacy
in Basu’s criticism of nonunique significance level (SL)
in Section 4: The data as such do not possess an SL,
which instead attaches to a particular statistic. More-
over, it is important to recognize that in Section 4 there
is only an abstract null probability model—not a gen-
eral model—so that the statistician has no basis for
choice of statistic: The scientist must specify the rele-
vant statistical measure. The role of the statistician
here is to ensure that a valid, operational interpretation
of the chosen statistic can be, and is, made.

After confessing to a “‘ruthless cross-examination” of
the wrong topic—the non-Fisherian nonparametric tests
of Section 4—Basu suggests that Fisher's silence in 1956
may be used to condemn the randomization test. This
speculation seems unwarranted on two counts. First,
I do not think that Fisher ever did recommend the
randomization test for analysis of data, but rather that
he introduced it as a device for demonstrating that
randomization validates the usual normal-theory methods
of analysis. This notion seems clear in Yates (1933),
for example. Unfortunately, Basu has not chosen to
discuss the connection between randomization and the
validity of mathematical models. The second point is
that Fisher's views on randomization would have been
s0 widely known and accepted after 25 years that it
would not have seemed necessary to repeat them in a
book on statistical inference for parametric probability
models. Fisher did repeatedly assert that randomization
could guarantee the relevance of such abstract models—
including the seemingly innocuous model in Section 4—
but he realized that randomization was ‘‘sufficient”
(CP 204)! rather than necessary, since often “Nature
has done the randomization for us” (CP 212). These
last remarks should be borne in mind when reading
the amusing developments in Section 6.

What are we to make of the Statistician and the
Scientist? They are certainly an entertaining addition
to the literature, but hardly enlightening or enlightened.
The first serious issue seems to be that of the biased-coin
design, for which the author provides the SL. Surely
the SL given is an appropriately cautious evaluation in
the worst case in which the experimenter knowingly
takes advantage of the bias—cheats, that is. But ap-
parently the Scientist did not cheat (“my labeling . . .
does not seem to be of much relevance”), so that in
effect the treatments were allocated at random within
each pair: Nature has done the randomization for us.

! Fisher's papers are referred to by their numbering in the Col-
lected Papers (Fisher 1974).
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Thus the usual analysis is presumably valid, and if a
randomization SL were computed it would still be ',
The Statistician has apparently mistaken Fisher's “suf-
ficient" for “necessary.”

What follows after the biased-coin episode is a series
of irrational remarks and misunderstandings. The Sta-
tistician’s dogmatic attitude is hardly characteristic of
the statistician who inspired the Rothamsted song
“Why! Fisher can always allow for it” (Box 1978,
pp. 138-139).

What was Fisher's position on randomization and the
induced distribution of statistics? While this is not
entirely clear down to the last detail, I think it clear
enough to suggest that Basu has missed the point.
For a brief introduction to the relevant parts of Fisher’s
work, see the lectures by Holschuh, Picard, and Wallace
in Fienberg and Hinkley (1980). Highly informative
and balanced accounts of the issues may be found in
Yates (1970), particularly the 1965 Berkeley Symposium
paper reviewing experimental design. As I see it, the
purpose of randomization in the design of agricultural
field experiments was to help ensure the validity of
normal-theory analysis. Nature was not in the habit
of doing the randomization. Studies by Tedin (1931)
and others on uniformity trial data showed that for
systematic designs (such as that finally described by
Basu's Scientist) the usual properties of ¢t and F tests
did not hold in an operational sense. Thus standard
significance tests were invalidated. “Student,” among
others, correctly pointed out that effects could be more
precisely estimated from carefully chosen systematic
designs. But, said Fisher, this was of no use if the
estimated precision were too high, higher even than
the valid estimates obtained from randomized experi-
ments. Thus, for some systematic designs, the com-
puted normal-theory SL corresponding to a theoretically
precise effect was in fact appreciably larger than the
‘“real” SL. This is exactly what could happen in the
case of the two-point design of Basu’s Scientist, although
it probably did not if nature has randomized. With the
limited information given us by Basu, we cannot give
a reliable standard error for the Scientist’s accurate
estimate d, at least not one with a clear operational
meaning. The apparently silly SL values (} and 1) are
a warning of possible difficulty, surely, nothing more.

The empirical evidence confronting Fisher certainly
suggested the necessity of randomization in most field
experiments, if the standard methods of analysis were
to be used. In recent years it has become apparent
that relatively simple spatial models can often account
for some of the effects that randomization was designed
to overcome ; see Bartlett (1978), for example. Complete
or partial failure to randomize can have adverse effects
in other areas too, for example, in survey sampling in
which systematic grids are randomly positioned on a
sampling frame. In such a case systematic effects can
accidentally (or purposely) change the variation, as
I have seen myself. Cochran (1977, Ch. 8) discussed
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this problem in detail. For informative accounts of the
importance of randomization in medical and public-
policy studies, respectively, see Chapters 9, 10, and 11
of Bunker, Barnes, and Mosteller (1977) and Gilbert,
Light, and Mosteller (1977). In all areas, the randomiza-
tion distribution literally induced by the experimental
randomization is of value in assessing the validity of
a standard analysis. This, I think, is Fisher's message.

The final substantial issue of Basu’s paper is that
of the ancillarity of the design outcome. Technically
Basu is quite correct, if the randomization has validated
a parametric model—the design outcome is then ancil-
lary by design! It would, however, be as well not to
forget the purpose of an ancillary statistic, since other-
wise we are merely playing with abstract mathematical
definitions. An ancillary statistic indicates the set of
comparable cases against which to judge the observed
sample and the statistical summary thereof. Usually
“comparable cases” is taken to mean “equally informa-
tive samples” in some appropriate sense, as in Fisher's
brief comments on the 2 X 2 table (CP 205). Ad-
mittedly this is not mathematically precise, but it
seems to have the merit of common sense. It is often
unnecessary, and sometimes plain foolish, to take an
infinitesimal slice through an abstract space as the set
of comparable cases, although the mathematical defini-
tion of ancillarity would require this. Lest Basu think
that Fisher has been caught with his conditional pants
down here, let me suggest that Fisher implicity invoked
conditionality in his criticism of Knut-Vik Squares,
which in Tedin’s (1931) analyses correspond to an
ancillary set of real import.

For a more constructive use of design ancillarity,
consider a randomized block design (RBD) with four
replicates of four treatments. Suppose that in the
particular physical layout the selected design coincides
with a 4 X 4 Latin Square and that the accidental
block structure corresponds to a noticeable effect not
due to the treatments. Here my qualitative notion of
ancillarity would suggest that we analyze the experi-

OSCAR KEMPTHORNE*

Journal of the American Statistical Association, September 1980

mental data as coming from a Latin Square design,
that is, treat the 4 X 4 Latin Squares as that subset
of RBD’s that constitute the set of comparable cases.
The Latin Square analysis would be exactly equivalent
to using a covariate-adjusted RBD analysis with aceci-
dental block totals as covariates. (There is of course
a question as to whether randomization validates the
latter analysis.)

This short discussion has necessarily focused on my
major misgivings with Basu’s interesting paper. As to
whether randomization tests are logically viable, I think
Basu has not made a case. There may be no case in
logic if, with John Clerk Maxwell, we believe that “the
true logic for this world is the caleulus of Probabilities.”
What we need to know is: Which probabilities?

[Received December 1979.]
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Comment

Basu states that we have no satisfactory answer to
the question, “Why randomize?”’ Various workers have
attempted to give “satisfying” partial answers to this
question. Surely, Fisher (7th ed., 1960) did so, with

extensive exposition in his The Design of Experimenis.
Then we can examine various writings of the 1930’s.

We can cite Greenberg (1951) with the question as
the title, as also was the title of the cited Kempthorne
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(1977). It would be useful to have an attempted ex-
haustive bibliography of the topic.

It is obvious that expositions that some regard as
carrying some real force are not so regarded by Basu
and, for example, by Harville (1975). Is there any
possibility that discussion will resolve the disagreement?
I believe not. But I do believe that discussion is useful.
All of us surely subscribe to the absolute necessity of
critical examination of our ideas.

My discussion consists of two parts: (a) reactions of
Basu's essay and (b) a few comments on the nature
and role of randomization.

Basu writes entertainingly, perhaps, but not informa-
tively. He poses the question, “Can the Fisher ran-
domization test pass the test of common sense?’ We
must, I suggest, force Basu to be explicit and clear.
What is this “common sense’” that Basu refers to?
Presumably, it is Basu’s “‘common sense.” The philoso-
phy of statistics is plagued with writers who talk about
“the probability” only to tell us that they mean ‘“my
probability” ; now we have “common sense,” but it is
“Basu’s common sense."”

Section 2 given us prerandomization, postrandomiza-
tion, and unrecorded randomization. This discussion is
irrelevant. But it is useful, perhaps, to make a remark.
It is ludicrous that Basu, a keen bridge player, does
not, it seems, give a role to postrandomization. Let
Basu play poker with significant (to him) payoff. Then
if he does not use some sort of postrandomization,
maybe very informal, he will be “cleaned out.” I speak
from past personal experience of playing social, but
nontrivial (it now bores me!) poker. I regret that
I surmise that many of those who write about gambling
do not practice it. Section 2 is a red herring.

Section 3 discusses the sufficiency principle. As he
has written, and others too numerous to cite, this is
a data-reduction principle. It was used by Fisher in his
(inadequate) formulation of tests of significance and
reached its summit for Fisher in his fiducial inversion
(which I shall not discuss). Problems with both of these
led to the also inadequate formulation of use of ancil-
laries. The Fisher preseription, “The (Basu-titled) In-
sufficiency Principle,” reached its summit only with
fiducial inference, which was, in fact, the only real
inference that Fisher espoused. It is in these terms,
I suggest, that the later Fisher must be examined.

Section 4 discusses the Fisher randomization test on
the basis of the cited Kempthorne-Folks presentation.
My only regret here is that Basu did not examine, it
seems, an article by Kempthorne and Doerfler (1969).
I found Basu’s remarks on the test not violating the
sufficiency principle interesting and possibly a justifica-
tion of the quoted remark of Kempthorne and Folks
about condensation. Also, it was comforting that Basu
seems to conclude that k = 1 gives “the only reasonable
choice of a conditioning statistic.”” On the choice of test
criterion, the naive idea I had was that the alternative
is a uniform shift so that the sample total contains,
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perhaps, the maximum total shift. Here, there surely
is a question. To this I add that my own use of the
randomization test is in the experimental setting in
which the alternative hypothesis is that a treatment
adds some quantity A to each and every unit to which
it is assigned. Also on a technological level, a question
of interest is whether the treatment gives a gain when
applied to all the experimental units.

Section 5 discusses whether Fisher changed his mind.
This has perplexed others, including me (Kempthorne
1966, 1974, 1975). I have commented (1975) on what
appeared to me to be outright inconsistencies in Fisher's
whole output. It serves no useful purpose to try to
psychoanalyze this phenomenon, I suggest. I do sug-
gest, however, that we frankly admit the oceurrence
of these inconsistencies. Clearly, Fisher (1956) was
writing in part a polemic against acceptance procedures.
In connection with one quotation, it is obvious that
the population in a randomization test of a randomized
experiment is ““the product of the statistician’s imagina-
tion.” (Why Fisher should include “exclusively,” I do
not know.) It is not clear to me that in 1956 Fisher
had the position that “evidential content of data cannot
be judged in sample space terms.” On the matter of
the “lady tasting tea’” and randomized experiments,
Fisher (1956) is, I judge, entirely silent, and that is
surely a mystery. I have to state my opinion that
I do not find Basu’s psychoanalysis clear or convincing.
On the Fisher (1960) quotation, Fisher is merely po-
lemic, for some unknown reasons. In fact one can use
Fisher’s words against Fisher. One does not have knowl-
edge of distribution. If one did, one would not be
involved in transformation search, for instance. Any
supposed statistician who believes he or she knows the
model, for example, of normality and independence, is
not a real statistician; that is surely obvious. The only
interpretation of this is that Fisher was polemicizing,
against what we can guess, but with no profit.

With respect to Basu's writing on “the physical act
of randomization,” I believe Basu is merely plain wrong.
In a randomized experiment, the §s have a known
distribution whether or not the null distribution holds.

Section 6 gives in the first part what is, or should be,
routinely taught on the randomized pair trial. This has
been known for decades and an elementary substan-
tively oriented exposition is that of Kempthorne (1961).

In the second part Basu gives a hypothetical inter-
change of a statistician and a scientist and the author.
I suggest that this serves no useful purpose. Comments
on sentences of this interchange follow.

1. Scientist: “The fact that . . . T = X d; attained
a large value . . . does not seem to enter.”

Comment: Precisely! When is T large? With reference
to what is T large? If one has external information on
the possible magnitude of T, then one will have an idea
of what values of T are large. If one is a Bayesian,
one claims to know the possible distribution of T'. Clearly,
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if one is in this situation, one does not randomize.
I believe Basu has no familiarity with the problems
of evaluating drugs for human illnesses, of evaluating
diets on humans or mice or whatever. He does not see
the variability among humans “treated alike.” Why, is
a mystery to me. Basu seems to say: If you are an
expert on cancer, then you know a probability model.
Otherwise, you should withdraw from the field. I regret
that I find the lack of knowledge that underlies Basu’s
thesis rather surprising, incongruous, and deplorable.
I would like Basu to take up a “very small” branch
of investigative science, learn all the available back-
ground, and then design and conduet, with aid, of
course, his own research program. Because Basu is
highly competent, I believe, in the game of bridge,
I would like him to make a comparative trial of two
bridge systems. How would he do this? He surely has
as good a background as any bridge player or writer.
It is the absence of any effort on a problem outside
the WFFing (constructing well-formed-formulas) of
mathematical statisties that concerns me. As I have
said before, we must be skeptical of individuals who
write books on cooking but have never made a meal
in a kitchen.

2. Scientist: “Why is it crucial that the coin . . .
be a fair coin?”

Comment: From Basu’s viewpoint, this is obviously
irrelevant. From the viewpoint of the investigator who
is not a Bayesian, the situation is different. If one does
not regard experimentation as a process of investiga-
tion, with the value of the process being determined,
partly at least, by its operating characteristics, the
question is irrelevant. But a scientist who does not
care about the operating characteristics of his or her
observation procedure is a “pretty poor” scientist. This
is my opinion, of course, but one that is shared by
the great bulk of scientists, I am totally sure. Indeed,
the question with respect to any substantive experi-
mental outcome is whether other scientists can duplicate
the results. This is all very elementary, and I will not
waste valuable journal space discussing it. The question
is irrelevant to Basu, because one should not use any
coin. But for the person who accepts the idea that
operating characteristics of a procedure are important
and who regards significance tests as evidential, the
answer is obvious. If one uses a collection of plans,
of which one plan has probability .99, then the signifi-
cance level regardless of outcome and regardless of
whether there is a real treatment difference will be
equal or exceed .99 with probability .99. One then
has to discard the idea of significance tests—at least
as they are used at present. If there are M plans, then
using these with equal probability gives the possibility
with huge treatment effects of obtaining a significance
level of 1/M. 8o, for the significance tester, there is
value to equal probabilities, or the “fair coin.” From
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another point of view, the use of equal probabilities
gives estimates with nice properties, an analysis of
variance with nice properties, and, surely, a valid use
of the central limit theorem for the distribution of the
test criterion in comparative trials of reasonable size,
The reply of the author does not consider, I think,
operating characteristics.

3. Scientist: “This patently absurd . . ..”

Comment: 1 can say, equally as Basu, that his writings
on randomization are ‘“‘patently absurd”’—but, of course,
this does not lead to improved understanding. Basu
credits the scientist with all sorts of “background in-
formation.” The scientist ‘“knows etc.” The scientist
and Basu are entitled to ‘“be amazed to find that a
statistical analysis of my data can be made without
reference to these relevant bits of information.” Why?
Because if the scientist really has these “bits of infor-
mation” a decent statistician will attempt to take them
into account. No one claims that the randomization test
of significance is the beginning, middle, and end of statis-
tical analysis. Finally, I must ask the question, “Has
Basu worked intimately with any scientists with a real
problem (as opposed to a circus trainer with 10
elephants)?”

4. Scientist: “But how can you even think of such
an utterly impossible experiment ?”

Comment: I, Kempthorne, can! A very simple answer!
I follow this with a question to Basu, related to the
very interesting arcane mathematics he sometimes does.
““How can you, Basu, even think of observing a real
number exactly?’ Each of us has a mental problem.
Let us rest the matter there.

5. Scientist: . . . I did not randomize over the full
set . ...”

Comment: For me as a randomizing significance tester,
that presents no problems. Tell me what your random-
ization frame was, and I can proceed. I may well find
that to interpret your results a repeated sampling
principle is useless. I, or rather you, have to supply
a prior and a probability distribution. This is, perhaps,
no problem for you. But it is for me, because now
I have to assess for myself how much belief to hold
with respect to your opinion. That is the rub!

6. Stalistician: “Your data are not significant at all.”

Comment: Right on! Your data are not significant
to me. They may be to you, of course.

7. Basu: “So the randomization argument founders
on the rocks of restricted and unequal probability
randomization.”

Comment: I do not see the claimed foundering.

8. Basu: “The one toss experiment (is) uninforma-
tive . . .."

Comment: It is uninformative to me in the absence
of forcing relevant and supported prior or external
information. With such information, the actual ex-
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periment is only a part of the total information. What
is there to argue about?

9. Basu: “The outcome of the (randomization) exer-
cise is an ancillary statistic.”

Comment: Yes and no. This outcome does not depend
on the probability model, but if one does not know
the probability model, one cannot (or should not)
characterize the randomization outcome as ancillary.
Furthermore, Basu’s own work (not cited, but very well
known) shows that there are huge difficulties in strict
formulation of ancillary statistics.

I have one final comment about Fisher (1956). It is
clear from Chapter IIT that Fisher envisaged various
forms of inference from tests of significance to dis-
tributions on unknown parameters. He did net, then,
reject tests of significance in 1956. Furthermore, there
is no evidence that he rejected his “lady tasting tea”
example.

I close with the statement (which will be unknown
to most readers of this journal) that Basu and I are
very deep friends. The argumentation and the com-
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ments I make in this article must be interpreted with
that background.

[Received December 1979.7]
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Comment

The scientist’s experimental results contain evidence
bearing on the superiority of the improved diet. He
asks the statistician to evaluate this evidence. The
statistician answers by computing a significance proba-
bility, 4!%, by means of Fisher's randomization test.
The scientist is baffled :

How can the evidence in his results be measured by
a computation that ignores so much relevant informa-
tion: the magnitude of the difference in weight gain
between the two groups of animals, the ingredients of
the two diets, previous experience with the standard
diet, knowledge of the experimental animals gathered
before and during the experiment, the mechanisms of
the growth process, and so forth?

The statistician's computation refers to a biologically
irrelevant feature of the experiment, the physical prop-
erties of the device determining the assignment of
animals to diet; how can such a computation connect
to the biological problem of the superiority of the
improved diet?

The answer to the first question is clear: The statis-
tician's significance probability cannot summarize com-

*David A. Lane is Assistant Professor, School of Statistics,
University of Minnesota, Minneapolis, MN 55455.

pletely the evidence in the scientist’s experiment. The
scientist cannot get something for nothing. If the scientist
wants to assess what his experimental results imply
about the effects of his improved diet and the nature
of the growth process, he must analyze them in terms
of a statistical model that describes as much as pos-
sible of what he knows about the biology of the ex-
periment. But there are rhetorical as well as inferential
issues involved in discussing an experiment. One of the
scientist’s goals is to obtain public confirmation for the
superiority of the improved diet. If this can be accom-
plished with a minimum of fuss and assumption, pre-
liminary to the detailed, model-based analysis, and
without contradicting explicitly or implicitly the results
of that analysis, so much the better. Here, the ran-
domization test may be of use.

The randomization test addresses the question: Might
the two diets really be equally effective and the ap-
parent superiority of the improved diet be attributed
to chance variability? The success of the test depends
on the relevance of the interpretation it requires for
the notions of “equally effective diets” and ‘“‘chance
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variability.” According to the Fisherian foundation of
the test, two treatments can be considered equally
effective only if they would each elicit exactly the same
response from each experimental unit. The experimenter
may, however, be interested in a weaker notion of
equality between two treatments: Their distributions
for the responses over the experimental units (or over
all potential recipients of the treatments) should coincide.
For example, a physician may not believe that each
cancer patient faces the same prospect for a cure from
radiotherapy as from chemotherapy, but he or she still
might want to entertain the hypothesis that the overall
success rates of the two treatments might be the same.
The randomization test would be of no help to the
physician.

The way in which “chance variability” enters into
his experiment should be carefully explicated by the
scientist when he constructs the statistical model he
will use for analyzing his results. The randomization
test ignores this model and substitutes an alternative
relation between chance and the experiment, based on
a frequency distribution induced by the physical act
that assigns animals to diets. The logical foundation
of this relation is challenged by the scientist’s second
question.

Basu presses this challenge home and denies Fisher's
dictum that the physical act of randomization validates
the randomization test. I find his argument convincing,
and yet it seems to me that the significance probability
of §'* can possess a rhetorical force that tells for the
superiority of the improved diet, without reference to
the distribution induced by the physical randomization.
To explain this, I need to deseribe certain thoughts
that the scientist might have about his experiment.

For each of his 30 animals, the scientist has ideas
at the beginning of the experiment about what the
animal would weigh at the end, were it fed the standard
diet. Although it undoubtedly implies more precision
than the scientist could readily supply, think of these
ideas as generating 30 standard-diet predictive dis-
tributions. One hypothesis about the diets that the
scientist might entertain—although we know he does
not believe it!—is H,: Each animal would end up
weighing the same under the standard diet as it would
under the improved diet. In particular, if H, were true,
the 30 standard-diet predictive distributions also de-
seribe the scientist’s ideas about what the animals
would weigh if they were fed the improved diet. Now
suppose the scientist has paired his 30 animals so sue-
cessfully that the predictive distributions for the two
animals in each pair coincide. Moreover, suppose also
that there are no patterns of covariation among his
animals such that, if H; were true and he knew the
outcome of the experiment for some group of pairs,
the scientist’s conditional predictive distributions for
the two animals in each of the remaining pairs would
differ. Call this state of knowledge—or lack of it!—
about the experimental animals null neutrality.
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Under H, and null neutrality, the scientist’s pre-
dictive probability that the 15 animals on the improved
diet all end up heavier than their partners is !5 In
fact, the joint predictive distributions under H, and
null neutrality induce the uniform distribution on the
set S = |(=£1, ..., =1)}, where the ith coordinate of
a point in S is 41 if d; is positive and —1 otherwise.
So the usual null distribution of the sign test derives
from the scientist's predictive distributions under H,
and null neutrality, without regard to the method of
assignment of animal to diet. The null distribution for
the Fisher randomization test can also be derived, with
somewhat more tedious assumptions about conditional
predictive distributions, in terms of the scientist’s prior
beliefs about the experimental outcome under H. Since
the scientist’s real beliefs about the superiority of the
improved diet imply predictive distributions weighted
toward large positive values for the d/s, small values
of the significance probability from the randomization
test indicate small posterior probability near H,, if the
scientist had assessed null neutrality and fully proba-
bilized the problem—hence the rhetorieal if not inferen-
tial forece of the 415

What about the assessment of null neutrality? It is
to be regarded as a rough approximation at best; if the
scientist is willing to think hard enough, he can of
course recognize differences between any pair of ani-
mals. Still, if null neutrality holds approximately, so do
the conclusions that follow from assuming it, which
serve only as guidelines anyway. In this regard, it is
not much different from assuming normality in mea-
surement situations. Yet, just as with normality, it is
an assessment not to make lightly—and, as I shall
argue later, the physical act of randomization can play
a role in deciding whether the assessment is appropriate.

To see whether this or the Fisherian interpretation
of the statistician’s significance probability provides the
sounder guidance for the scientist, it is useful to con-
sider some extreme cases. The issue should not be
whether these cases occur in practice, but whether the
logic that you claim to follow in practice guides you
rightly or wrongly when pressed into extremity.

Ezample 1 (a variant of Basu’s biased coin): The
scientist achieves a successful pairing—null neutrality
seems reasonable. He generates 15 random numbers on
the university computer, associates each of these num-
bers with a distinct pair of animals, and assigns the
first animal (first, relative to a list of the animals’
cage addresses) in each pair to the improved diet, if
the pair’s random number is even. It turns out that,
in each pair, the animal that received the improved
diet ends up heavier.

Just as the scientist is about to write up his results,
however, the computer center informs him that because
of a faulty program, only about 40 percent of the
random digits the generator produced during the ex-
periment were even.
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Ezxample 2: Same story, but the seientist knew about
the generator's quirk before he chose the numbers.

FEzample 3: The scientist is not so lucky as in ex-
ample 1, or perhaps he knows more about his experi-
mental animals: In each pair, he can identify one
animal that seems to have more growth potential than
the other. This time, the random-number generator is
working fine. Surprisingly, all the animals that the
scientist judged to have higher growth potential get
assigned to the improved diet. And they all end up
heavier.

Basu carefully—and, as far as I can see, success-
fully—argues that Fisher's logic leads to a significance
probability different from 4'® for example 2. The same
argument must apply to example 1, since Fisher's logic
allows the scientist's knowledge of the randomizing
mechanism to enter into the analysis only when he
writes down a probabilistic model for it—and since this
model attempts to represent the mechanism’s physical
properties, he must use whatever he knows when he
analyzes the experiment, not what he thought he knew
when he generated the random numbers. The signifi-
cance probability derived from the Fisherian logic, as
discussed by Basu, is singularly unattractive as a mea-
sure of evidence, depending as it does on an artifact
of the method of listing cages.

Fisher's logic, tied to the random-number generator
and imaginary repetitions, cannot fault the calculation
of a significance probability of 3'% in example 3. The
design of the experiment may be at fault here, and
the experiment itself quite uninformative scientifically,
but this does not seem to stand in the way—in the
Fisherian framework—of analyzing its evidential content
by the %% significance probability.

Interpreting the statistician’s significance probability
in terms of the scientist's predictive probability dis-
tribution changes this analysis completely. In example 1,
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the significance probability of ' is unchanged by the
computer center's information, since the probability
refers to the scientist’s thoughts at the commencement
of the experiment, to which the information is irrelevant.
At first sight, the same holds in example 2, since the
probability does not refer to the method of assignment
of animal to diet. But the scientist is interested in
sharing his assessment of null neutrality : He wants his
readers to feel the force of his argument, and so his
assessment must be theirs. From this point of view,
using a biased or arbitrary mode of assignment is to
invite suspicion of loading the experiment in the scien-
tist's favor—perhaps unconsciously, as in the famous
Lanarkshire milk experiment (“Student” 1931). Ran-
domly assigning animals to diets with public proba-
bility } is a way of guaranteeing the honesty—to the
public and the scientist himself—of his subjective as-
sessment that both animals in a pair had the same
standard-diet predictive distribution.

In example 3, the scientist cannot assess null neu-
trality, and so the significance probability of }'5 does
not apply. Here, he can block his pairs according to
his predictive distributions for the d.s, to ensure as
informative an experiment as possible. Again, he can
employ one or more physical acts of randomization as
a check and guarantee of his subjective assessments
of these distributions. The experiment can of course be
analyzed, but the null distribution for the randomiza-
tion test will no longer follow Fisher's frequency dis-
tribution and will necessarily be somewhat less open
to general agreement.

[Received December 1979.]
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Comment

What is one to do with this paper but applaud it?
Another incoherent procedure has its nature clearly
displayed. Here is an encore that I have used in class
to suggest that the randomization test does not “pass
the test of common sense.”

The example is artificial in that the experiment is
very small, but this has the virtue of simplifying the

arithmetic. The same principle holds for a larger and
more realistic experiment at the expense of computa-
tions that might obscure the essential ideas. Two scien-
tists are to conduct an experiment to compare a treat-
ment, T, thought to improve the yield, with a control, C.
Four units are to be used, two each for T and C. The
six possible assignments of T and C to the units are

*D.V. Lindley was formerly Head, Department of Statistics
and Computer Seience, University College London. He is now
retired and lives at 2 Periton Lane, Minehead TA24 8AQ), England.
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listed in the first column of the tabulation appearing
two paragraphs after this one. The first scientist, A,
decides to select one of the six designs at random. The
second scientist, B, feels that the first and last designs
would be unsatisfactory, because all the treatments and
all the controls come together, and therefore selects a de-
sign at random from the four remaining. (In practice,
as mentioned before, larger sets of designs would be
used.) Both A and B carry out their respective ran-
domizations and both come up with the design TCTC,
in the second row of the tabulation. On implementing
the design, both scientists obtain the results 5, 4, 3, 2
shown in the final row of the tabulation. The total for
the treated units is 8, that for the control 6, and the
effect is measured by the difference, 2. So far the
scientists agree, but now see what happens if they use
the randomization argument for analysis.

Had the observed values arisen from any other of
the designs that might have been used, the differences
would have been those listed in the second column of
the tabulation. Consider scientist B first. Scientist B
excluded the first and last designs, and so the possible
differences are (2, 0, 0, —2), of which the first, the one
actually obtained, is the largest. Hence the result is
significant at 25 percent, because all designs had the
same 25 percent chance of being used. Scientist A,
however, included the first and last designs in the
randomization so must include the differences 4 and —4
that could have arisen by use of them. Of all six dif-
ferences, 4 is the largest and 2, the one actually ob-
served, the next largest. Hence the chance of the ob-
served difference, or more extreme differences, is 2 out
of 6 and the result is significant at 33} percent.

There, then, are two scientists who have performed
exactly the same experiment, TCTC, obtained exactly
the same result, and yet one is quoting a significance
level substantially in excess of the other. And the reason
for this difference in level is that A contemplated doing
experiments that B did not (viz., those in the first and
last rows of the tabulation), although, in fact, A did
not perform one of these experiments. Expressed slightly
differently, the analysis of the results of the experiment
depended on what might have been done, but in fact
was not done. Certainly in this context, in which the
only probability ideas leading to the level are the equal
probabilities involved in the random assignment, the
argument seems unsatisfactory.

Designs Differences
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The whole concept of A and B reaching substantially
different conclusions seems so absurd that the ran-
domization-analysis argument has to be dismissed. There
are two defenses: first, that in practice substantial dif-
ferences (like 25 and 33§ percent) are not observed and
that the results arc typically the same as normal theory.
In that case, why not use normal theory? The second
defense is that A and B ought to argue differently
beeause B thought that the first and last experiments
might be unsatisfactory, whereas A did not. In other
words, both scientists had different ideas before the
experiment ; is it not reasonable that the two secientists
should have different ideas afterwards? This argument
violates the claim often made for significance tests—
that they allow the data to speak for themselves and
arc not affected by considerations outside the data—
and if admitted plays straight into the Bayesian camp,
where the ideas of prior information are considered
explicitly.

A minor comment is that it is perhaps a little unfair
to say that there i3 ‘“no satisfactory answer to the
question: Why randomize?”’ The work of Rubin (1978)
has at least made a substantial contribution to the
answer. The answer for me is tied up with what we
mean by random. (Basu's definition of randomization,
in the first section of Seection 2, is in terms of random-
ness.) I suggest that X is random, given H, if X is
independent of any A, given H; that is, if p(4|X, H)
= p(A|H). The idea is that the generation of X,
whether by a random mechanism, or by pseudorandom
numbers, is unconnected with anything else. It is thus
a subjective notion, in that what you consider random,
I might not; though, in practice, we observe a lot of
agreement among people. The value of randomization
in design may then be illustrated by an experiment to
test the efficacy of treatment T in aiding the recovery R
of a patient. We require the probability of a patient’s
recovery were the patient to be given a treatment,
p(R|T, D), using data D from a planned experiment.
This may differ from p(R|T, D, A), where 4 is some
factor unrecognized by us. (Had it been recognized it
could have been planned for in the acquisition of D.)
In order to make reasonably sure that our design does
not confound the effects of T and A, we may assign
treatments at random, that is, independent of A. This
does not ensure lack of confounding but reduces its
possibility to an acceptable level. Thus prerandomiza-
tion has a place in coherent analysis: Basu shows that
postrandomization is incoherent.

[Received December 1979.]
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Comment

Basu’s article on Fisher’s randomization test for ex-
perimental data (FRTED) is certainly entertaining.
Although much of the paper is devoted to the thesis
that Fisher changed his views on FRTED, apparently
the primary point of the paper is to argue that FRTED
is “not logically viable.” Admittedly, FRTED is not
the ultimate statistical weapon, even in randomized
experiments, but calling it illogical is rather bizarre.

Basu criticizes FRTED through two primary argu-
ments. His first line of criticism follows from his attack
on a nonparametric test labeled in Section 4 as “Fisher’s
randomization test.”” But this test was not proposed
by Fisher and is not a logical variant of FRTED;
consequently, these criticisms are not of FRTED.
I believe that Basu agrees with this contention because
in concluding this first criticism he states, “Where is
the physical act of randomization in the Fisher ran-
domization test? . . . We should recognize the fact that
in Section 21 of Design of Experiments (1935) Fisher
was not really concerned with the particular test situ-
ation that we have discussed in the previous section.”
Basu’s second line of eriticism of FRTED takes the
form of a discussion between a statistician and a scien-
tist; I find this discussion so confused that it is easier
for me to challenge the argument indirectly by clearly
describing FRTED than directly by correcting particu-
lar misconceptions.

In the paired comparison experiment, let ¥;; be the
response of the i¢th unit (¢ = 1, ..., 2n) if exposed to
treatment j (j = 1, 2), where ¥ = |Y,;} is the 2n X 2
matrix of values of Y. The assumption that such a
representation is adequate may be called the stable unit-
treatment value assumption: If unit 7 is exposed to treat-
ment j, the observed value of ¥ will be Y,;; that is,
there is no interference between units (Cox 1958, p. 19)
leading to different outcomes depending on the treat-
ments other units received and there are no versions
of treatments leading to “technical errors” (Neyman
1935). If Y were entirely observed, we could simply
calculate the effect of the treatments for these 2n units;
for example, ¥;; — ¥i: would be an obvious measure
of the effect of treatment 1 versus treatment 2 for the
ith unit, and the average value of ¥V;; — ¥z would be
a common measure of the typical effect of treatment 1
versus treatment 2 for these 2n units. Because each
unit can be exposed to only one treatment, we cannot

* Donald B. Rubin is Senior Statistical Research Adviser, Educa-
tional Testing Service, Princeton, NJ 08541.

observe both ¥;; and Y, and so we will have to draw
inferences about the unknown values of ¥ from ob-
served values of Y.

Let T = (Ty, ..., T1.) be the indicator for treatment
received: T; = 1 if the ith unit received treatment 1
and T: = 2 if the ith unit received treatment 2; if
T: =1, ¥, is observed and Y is missing, whereas if
T:=2, Y is observed and Y, is missing. In order
to avoid confusion about the inferential content of
indices, suppose that the unit indices ¢ are simply a
random permutation of (1, ..., 2n). The pairing of the
units in the paired comparison experiment will be
represented by X, where X; = 1 for the two units in
the first pair, ..., and X; = n for the two units in
the nth pair. Other characteristics of units can be coded
in other variables, but for simplicity assume for now
that only values of ¥, X, and T will be used for drawing
inferences, where Y is partially observed and both X
and T are fully observed.

Both randomization and Bayesian inferences for un-
observed ¥ values require a specification for the condi-
tional distribution of T given (Y, X), say Pr(T|Y, X).
The physical act of randomization in the experiment
(e.g., the physical act of haphazardly pointing to a
starting place in a table of random numbers) is designed
to ensure that all scientists will accept the specification

Pr(T|Y, X) = Pr(T|X). In the paired comparison
experiment,

0 ifT;=T;f 1 st X; = X;
Pr(T|X) = i ; for any 7 # j s.t. i

O]

If treatments are assigned using characteristics Z of the
units that are correlated with ¥ (the scientist’s con-
fessed experiment at the end of Sec. 5), then Pr(T|Y, X)
= Pr(T|X) would generally not be acceptable. For
example, if treatment assignments are determined by
tossing biased coins where the bias favors the first unit
in each pair receiving treatment 1 (Z = order of unit
in pair), then whether Pr(T'|Y, X) = Pr(T'|X) is gen-
erally acceptable depends on the scientific view of the
partial correlation between Z and Y given X; if the
order “does not seem to have much relevance,” then
Pr(T|X, Y) = Pr(T|X) may be plausible with (1) as
the accepted specification for Pr(T|Y, X). Of course,
even if unit order is randomly assigned within pairs,

2 otherwise.
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one could decide to record its values and use Pr(T'| X, Z)
to draw inferences; this is analogous to recording the
random numbers used to assign treatments and ob-
serving that given them no randomization took place
(i.e., Pr(T|X, Z) = 1 for one value of T and 0 for all
other values of T). In order to make sensible use of
FRTED, we cannot condition on numbers accepted a
priori to be unrelated to Y.

Suppose that we wish to consider the hypothesis H,
that ¥y = Yy for all 4, or any other sharp null hy-
pothesis such that given H, and the observed values
in ¥, all values of ¥ are known. Under H, and ac-
cepting specification (1), the difference in observed
averages fa = 3. Y (2 — T)/n — L Yiu(T: — 1)/n, or
any other statistic, has a conditional distribution given
Y and X consisting of 2* equally likely known values.
Because the expectation of §z over this distribution is
zero, values of §, far from zero are a priori considered
to be more extreme than values near zero. The propor-
tion of possible values as extreme or more extreme than
the observed value of g4, that is, the significance level
of FRTED is not a property solely of the data and
the null hypothesis but also of the statistic and the
definition of extremeness of the statistic. If the observed
value of §4 is extreme (e.g., if the significance level is
less than 1 in 20), then we must believe that

1. Hy is false with the result that the treatments
have an effect; or

2. Pr(T|Y, X) = Pr(T|X) is false with the result
that the 2* values of §, are not a priori equally likely ; or

3. An a priori unusual (extreme) event took place.

The physical act of randomization is designed to rule
out option 2 and consequently leave us believing either
that an a priori unusual event has taken place or that H,
is false.

I see nothing illogical about the FRTED); it is rele-
vant for those rare situations when a purely confirma-
tory test of an a priori sharp hypothesis is to be made
using an a priori defined statistic having an associated
a priori definition of extremeness. On this point, I find
myself in total agreement with the following statement
of Brillinger, Jones, and Tukey (1978, p. F-1):

If we are content to ask about the simplest null hypothesis,
that our treatment (“seeding”) has absolutely no effect in
any instance, then the randomization, that must form part
of our design, provides the justification for a randomization
analysis of our observed result. We need only choose a measure
of extremeness of result, and learn enough about the distribu-
tion of this result

o for the observed results held fixed

s for re-randomizations varying as is permitted by the

specification of the designed process of randomization.
If p% of the values obtained by calculating as if a r
re-randomization had been made are more extreme than (or
equally extreme as) the value associated with the actual ran-
domization, then p% is an appropriate measure of the un-
likeliness of the actual result.

Under this very tight hypothesis, this caleulation is obviously
logically sound.

d
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Of course, there are limitations of FRTED of which
Fisher was well aware. For example, the null hypothesis
that ¥ = Y. for all ¢ may not be very realistic; when
Neyman (1935) criticized the FRTED for Latin Squares,
Fisher (1935a) replied :

[The null hypothesis that “the treatments were wholly
without effect”’] may be foolish, but that is what the Z-test
[FRTED] was designed for, and the only purpose for which
it has been used . . . Dr. Neyman thinks that another test
would be more important [one for the average treatment
effect being zero]. I am not going to argue that point. It may
be that the question which Dr. Neyman thinks should be
answered is more important than the one I have proposed
and attempted to answer . . . I hope he will invent a test of
significance, and a method of experimentation, which will be
as accurate for questions he considers to be important as the
Latin Square is for the purpose for which it was designed.

More complicated questions, such as those arising from
the need to adjust for covariates brought to attention
after the conduct of the experiment, simultaneously
estimate many effects, or generalize results to other
units, require statistical tools more flexible than FRTED.
Such tools are essentially based on a specification for
Pr(Y|X, Z), where now Y refers to outcome variables
in general, X refers to blocking and design variables,
and Z refers to covariates. Fisher (1935a) was certainly
willing to specify particular distributional forms for data
in experiments, and I believe that he was simply ad-
vocating such an attack whenever justified in his “as-
tonishing short section on nonparametric tests in the
seventh edition of DE."” This desire to condition on all
relevant information is obviously very Bayesian.

I believe (Rubin 1978) that Bayesian thinking, which
requires specifications for both Pr(T|Y, X, Z) and
Pr(Y|X, Z) and draws inferences conditional on all
observed values, provides, in principle, the most ef-
fective framework for inference about causal effects.
Other statisticians view the specification Pr(Y|X, Z) as
something to be avoided in prineciple: “For crucial com-
parisons . . . the appropriate role for the classical kind
of parametric analysis would seem to be confined to
assistance in the selection of the test statistics to be
used . . . in a randomization analysis” (Brillinger, Jones,
and Tukey 1978, p. F-5). Using the test statistic (in
conjunction with the null hypothesis and definition of
extremeness) to summarize all scientific knowledge rele-
vant for data analysis seems to be unduly restrictive.
Although much care is needed in applying Bayesian
principles because of the sensitivity of inference to the
specification Pr(Y|X, Z), the increased flexibility and
directness of the resulting inferences make the Bayesian
approach scientifically more satisfying.

On this point, perhaps Basu and I are actually in
substantial agreement. FRTED ecannot adequately
handle the full variety of real data problems that
practicing statisticians face when drawing causal infer-
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ences, and for this reason it might be illogical to try
to rely solely on it in practice.

[Received December 1979.]
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Rejoinder

Let me begin by thanking Hinkley, Lane, Lindley,
Rubin, and my good friend Kemp for their many in-
teresting comments. I also offer my apologies to them
for my inability, because of an eye condition needing
surgical treatment, to read the discussions for myself.
They were read out to me, and so I may have missed
out on some of the many issues raised. I thank Carlos
Pereira for his help in putting together this reply.

Rubin wonders about the relevance of the material
discussed in Section 4. Let me explain why I challenged
the Fisher nonparametric test—the first nonparametric
test by many years, as Fisher (DE 1960) put it. The
logic of the test is essentially the same as that of the
paired-comparison test discussed in Seetion 6. Both are
conditional tests of a very extreme kind. In the non-
parametric test, the statistic (x|, 22|, ..., |za]) is
held fixed; the 8;'s define the reference set. In the ran-
domization test of Section 6, everything but the design
outcome is held fixed. Kempthorne and Folks (1971)
labeled the nonparametric test as the Fisher random-
ization test even though, as I explained at the end of
Section 5, the 8;'s cannot really be likened to a set of
randomization variables. (Kemp disputes this, but then
he disputes almost everything I said.) Each of my dif-
ficulties with the nonparametric test also persists with
the randomization test. For instance, why must we
choose £ (in Sec. 6, d) as the test criterion and not the
median £? With n = 7 and each z; > 0, the significance
level (SL) works out as 1/128 with # as the criterion
and as 1/16 with £ as the eriterion. Neither Kemp or
Hinkley answers my question. At one place Kemp
mumbles about the central limit theorem, but that is
hardly relevant for my sample size. Hinkley makes the
curious suggestion that the choice of the test ecriterion
is not a statistical problem. How to justify holding
|21], |22], ..., |za| fixed in the nonparametric test?
Why not hold |Z| fixed instead? In the latter case,

the SL is either § or 1. In Section 6, when the scientist
admitted that he had made a one-toss restricted ran-
domization, the statistician declared the experiment to
be uniformative because, for every possible outcome of
the experiment, the SL is either } or 1. Kemp agrees
with the statistician. But Kemp, why? Should we not
treat such value-loaded terms like significant or in-
formative with greater respect?

When I said that the Fisher randomization test is
not logically viable—Rubin calls the characterization
“bizarre” and Kemp, in classical debating style, queries
my system of logic—I only meant that the logic of the
test procedure is not viable. How else ean you charac-
terize a test procedure that falls to pieces when con-
fronted with the slightly altered ecircumstances of a
restricted or unequal probability randomization? I am
happy to note that Lane and Lindley agree with me
on this point.

My working definition of a Bayesian fellow traveler
is one who has trouble in understanding a P value as
the level of significance attained by the particular data.
Rubin, who claims to be a Bayesian, seems to be quite
at home with significance testing. George Box is another
notable exception to my working definition.

Let us try to make some sense—please Kemp, do not
ask me to define sense—of the P value of 2-'% in Sec-
tion 6. Suppose each of the 15 subject pairs is indis-
tinguishable to the scientist. Also suppose that the
scientist believes that there is no treatment difference.
No doubt then the scientist will be surprised if, at the
end of the experiment, he finds that each of the 15
treated subjects gains more weight than the correspond-
ing control subjects. The SL of 2-'% may be regarded as
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a measure of this element of surprise. It is a probability
(measure of doubt) that existed in the mind of the
scientist before the experiment and under the assumed
circumstances. As Lane observes, this probability does
not depend on the nature of prerandomization. But
Kemp, the frequentist, refuses to interpret the SL in
terms of such nonexistent belief probabilities.

If the scientist cannot truly distinguish between the
subjects in each block, then “Nature has done the
randomization for us,” says Hinkley, and so he eannot
understand the point in all the fuss that I am making.
But our scientist, like most scientists, can distinguish
between the subjects in each block—one subject is
heavier, the other one is older and so on. Mother Nature
is asking for a helping hand, and so the scientist must
randomize! But the scientist can still distinguish be-
tween the subjects in each pair. How can we evaluate
his surprise index? So we very sternly tell the scientist,
“Randomize and close your eyes!” The scientist ran-
domizes, closes his eyes, but still refuses to be greatly
surprised in the end. Because, he says, he knew all
along that the improved diet is superior to the standard
diet. At this point Kemp will perhaps say, “I am sur-
prised that you can write so much on surprise without
even defining the term.”

Many of my esteemed colleagues believe that post-
randomization is a useful statistical device. I know my
friend Kemp well enough to say that he is not one
among them. He agrees with Fisher, Lindley, and me
that postrandomization has no place in scientific thinking.
But, today, fighting for every inch of the ground, Kemp
is trying to prove me wrong even on this issue. Perhaps
one can play better poker by wearing a mask, making
hand signals instead of using one’s vocal chords, and
carrying a randomizer hidden in one’s pocket. But does
Kemp really think that our scientist is engaged in
something like a poker game against Mother Nature?
Why does he not advise the scientist also to wear
a mask?!

I have no objection to prerandomization as such.
Indeed, I think that the scientist ought to prerandomize
and have the physical act of randomization properly
witnessed and notarized. In this crooked world, how
else can he avoid the charge of doctoring his own data?
In order to make the device a superior cosmetic agent
it may be necessary to make the extent of prerandomiza-
tion sufficiently wide. In Basu (1978) I have mentioned
a few noncosmetic uses of the prerandomization device.

Lindley agrees wholeheartedly with my criticisms of
the Fisher randomization test. But, disagreeing with me
on what he calls a “minor point,” he suggests that
there may be a place for randomization in a subjective
Bayesian theory of statisties. All I know is that L.J.
Savage had similar thoughts but he never spelt them
out for us. [ may have something to say on the Rubin
(1978) thesis on another occasion.

Hinkley and Rubin quote from the prefiducial Fisher
to dispute me on the randomization test. In the thirties,
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Fisher knew that the unrestricted, equal probability
randomization test closely parallels the traditional test
based on the Gaussian law. So Lindley is asking, “Why
not use normal theory?” I remember having seen a
Fisher quotation (from the prefiducial time) saying that
the randomization test provides a logical justification
for the parametric tests based on the normal theory.
So Kemp is asking us to discard the normal theory
and use the randomization logic instead. In Section 21(a)
of DE (1960), we find Fisher summarily discarding the
Kempthorne thesis on experimental designs. Kemp says
that no useful purpose can be served by trying to
“psychoanalyze” the mind of Fisher. But what purpose
does it serve to dismiss much of Fisher's later writings
as mere polemics?

I cannot understand what Hinkley is trying to com-
municate with his comments on the ancillarity of the
design outcome. Is it “plain foolish” to regard the
design outcome as an experimental constant? Since
there are only a finite number of design outcomes, how
can one get an “infinitesimal slice” of the sample space
by holding the ancillary statistic fixed? As I pointed
out, it is the randomization-test argument that rests
on an infinitesimal slice of the sample space by holding
fixed everything but the design outcome. The Bayesian
recommendation is to hold the data fixed and to specu-
late about the still-variable parameters. When you push
the Fisher conditionality argument to the limit, you
become a Bayesian.

On the ancillarity issue, Kemp adopts the proverbial
Chinese philosophy of seeing no evil. He is in effect
saying, “How can there be an ancillary statistic when
there is no probabilistic statistical model and, therefore,
no parameters?”’ I have no difficulty in recognizing the
60 parameters o = {(z;, y:): 1 =1,2,...,30} in the
scientist’s diet problem—z; and y; are, respectively, the
would-be treatment and control responses of subject ¢ at
the planning stage of the experiment. Let us suppose
that the scientist's parameter of interest is 8§ = & — §.
Consistent with his prior opinion { on w, the scientist
has a prior opinion 5 on 8. After the experiment, the
scientist, having observed 15 of the z.'s, and the com-
plementary set of 15 y;'s, must have drastically revised
his prior opinion £ to a new opinion £*. Consistent
with £* the scientist has then an opinion »* on the
parameter of interest 6.

According to DeFinetti, probability, like beauty,
exists only in the mind; it is a formal representation
of opinion on parameters. The subjective Bayesian
thesis on statistics deals with the process of opinion
changes in the very limited context of what we may
call statistical parameters. The Bayesian thesis appears
to me to be coherent and pertinent to the real issues
of scientific inference. That the Bayesian paradigm is
useful is slowly gaining recognition. Fuller recognition
will take time. But by then it will perhaps be time
for us to move on to a more useful paradigm.
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When it comes to changing one’s opinion on a scien- eration grows up that is familiar with it.” It rarely
tific paradigm, the mind of a stubborn scientist—for happens that Saul becomes Paul.
that matter, the minds of a whole community of trained
scientists—certainly does not, perhaps cannot, follow ; ;
t i A A .
any logic. In his Scientific Auwtobiography and Other LRecsised March.1079. Kevised Maroh 1880
Papers (1949, pp. 33-34) Max Planck wrote, “A new

scientific truth does not triumph by convincing the REFERENCE
opponents and making them see the light, but rather pianck Max (1049), Scientific Autobiography and Other Papers,
because its opponents eventually die, and a new gen- New York: Greenwood Press.
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