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Each letter of the alphabet shall be written on a separate slip of paper, each of which shall

be folded and inserted into a capsule. Each capsule shall be opaque and of uniform weight,

color, size, shape, and texture. The capsules shall be placed in a container, which shall

be shaken vigorously in order to mix the capsules thoroughly. The container then shall be

opened and the capsules removed at random one at a time. As each is removed, it shall

be opened and the letter on the slip of paper read aloud and written down. The resulting

random order of letters constitutes the randomized alphabet, which is to be used in the

same manner as the conventional alphabet in determining the order of all candidates in

all elections. For example, if two candidates with the surnames Campbell and Carlson are

running for the same office, their order on the ballot will depend on the order in which the

letters M and R were drawn in the randomized alphabet drawing.

2



3

3



3

• Random alphabet for 2003 recall election:
R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

• The random alphabet is drawn roughly six weeks before the election, after
certification of candidates has been completed.

3



3

• Random alphabet for 2003 recall election:
R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

• The random alphabet is drawn roughly six weeks before the election, after
certification of candidates has been completed.

• Three-step randomization-rotation procedure:

3



3

• Random alphabet for 2003 recall election:
R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

• The random alphabet is drawn roughly six weeks before the election, after
certification of candidates has been completed.

• Three-step randomization-rotation procedure:

1. Secretary of State randomly draws alphabet letters.

3



3

• Random alphabet for 2003 recall election:
R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

• The random alphabet is drawn roughly six weeks before the election, after
certification of candidates has been completed.

• Three-step randomization-rotation procedure:

1. Secretary of State randomly draws alphabet letters.
2. Names of candidates are ordered by the randomized alphabet for the first of

80 assembly districts.

3



3

• Random alphabet for 2003 recall election:
R W Q O J M V A H B S G Z X N T C I E K U P D Y F L

• The random alphabet is drawn roughly six weeks before the election, after
certification of candidates has been completed.

• Three-step randomization-rotation procedure:

1. Secretary of State randomly draws alphabet letters.
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80 assembly districts.
3. Candidate names are systematically rotated for the rest of assembly districts.
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⋆ Many candidate names start with the same letter of the alphabet.
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California Assembly Districts by Percentage of Registered

Democrats
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Yi(0) : potential vote share when the candidate is not placed on the first page.

⋆ ti and yi: observed values of Ti and Yi.
⋆ Unit ballot page effect: τi ≡ Yi(1) − Yi(0).

• Hypothesis Testing Procedure:

1. Formulate a (sharp) null hypothesis:
⋆ H0 : τi = 0 for all i = 1, . . . , 121

⋆ Unit ballot effect is zero for all districts; i.e., Yi(1) = Yi(0) = yi ∀i.

2. Choose a test statistic:
⋆ Sample average ballot effect:

WD(T) =

∑121

i=1 Tiyi

N1

−

∑121

i=1(1 − Ti)yi

N0

,

corresponding to the difference-in-means estimator.
7



8

⋆ Covariance-adjusted statistic:

WL(T) =
(

T⊤MT
)−1

T⊤My

corresponding to the linear least squares estimator, where y =

(y1, y2, . . . , y121), M = I − X(X⊤X)−1X⊤, and X is the matrix of the
observed pretreatment covariates.
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WL(T) =
(

T⊤MT
)−1

T⊤My

corresponding to the linear least squares estimator, where y =

(y1, y2, . . . , y121), M = I − X(X⊤X)−1X⊤, and X is the matrix of the
observed pretreatment covariates.

⋆ Under H0, distribution of WD(T) depends only on T .

3. Compute the exact p-value:
⋆ California alphabet lottery determines Ti.
⋆ Distribution of Ti is known exactly (No distributional assumption).
⋆ One-tailed exact p-value: pD ≡ Pr(WD(T) ≥ WD(t)).

• Since the number of permutations is large, we use Monte Carlo approximation,

Pr(WD(T) ≥ WD(t)) ≈
1

m

m
∑

j=1

I(WD(T (j)) ≥ WD(t)),

with m = 10, 000.
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• No significant effect
on major candidates.

• Positive ballot effect
on 40% of minor
candidates.
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2. Given the null value τ0, the test statistic is given by
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Generalizing Fisher’s exact test:

1. Sharp null hypothesis: H0 : τi = τ0 for all i = 1, . . . , 121.

• Constant additive treatment effect assumption.

2. Given the null value τ0, the test statistic is given by

WD
τ0

(T) =

∑121

i=1 Ti{yi + (1 − ti)τ0}
∑121

i=1 Ti

−

∑121

i=1(1 − Ti)(yi − tiτ0)
∑121

i=1(1 − Ti)
,

or its covariance-adjusted analogue

WL
τ0

(T) =
(

T⊤MT
)−1

T⊤My∗,

where each element of y∗ is y∗

i = Ti{yi + (1 − ti)τ0} + (1 − Ti)(yi − tiτ0).

3. Two-tailed level α test; accept H0 if

t ∈ Aα(τ0) =
{

u :
α

2
≤ Pr(WD

τ0
(T) ≥ WD(u)) ≤ 1 −

α

2

}

,

and reject H0 otherwise.
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Inverting the test:

• The (1 − α) confidence set; Cα(t) = {τ : t ∈ Aα(τ)}.

• Confidence interval defined as the shortest closed interval in the confidence set.

• Identify the upper and lower bounds, τL = supτ Aα(τ) and τU = infτ Aα(τ),
via a (Monte Carlo) bisection algorithm.

• Nonparametric estimates of CDF (for the sampling distributions of causal effect
estimators) can also be obtained by estimating τU and τL for different values of
α ∈ [0, 0.5].
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Comparison with Conventional Estimators

• Two frequently used parametric estimators:

1. Linear least squares (with and without covariates).
based on the same statistics as those used in randomization inference.

2. Binomial GLM with logit link and overdispersion.

• Results are appreciably different.

Without Covariates With Covariates

OLS GLM logit RI Fisher OLS GLM logit RI Fisher

Major Candidates

Schwarzenegger 1.09 9.63 −1.23 7.53 −23.72 19.90 −2.97 0.21 −4.98−2.05 −6.44 6.87

Bustamante −8.46 0.54 −5.37 4.04 −20.07 20.31 −1.12 1.78 0.96 3.01 −5.86 5.64

McClintock 0.50 3.09 −1.10 1.24 −3.47 6.36 1.56 3.25 0.29 2.05 0.36 3.57

All Candidates

Positive effects 56(41%) 63(47%) 55(41%) 50(37%) 59(44%) 47(35%)

Negative effects 11 (8%) 8 (6%) 4 (3%) 8 (6%) 17(13%) 2 (1%)

Null effects 68(50%) 64(47%) 59(44%) 77(57%) 59(44%) 64(47%)

Unidentified 0 (0%) 0 (0%) 17(13%) 0 (0%) 0 (0%) 22(16%)

Comparison with Randomization Inference

Agreement 89(66%) 87(64%) 108(80%) 88(65%) 74(55%) 108(80%)
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Concluding Remarks

• Randomization inference provides a general framework for robust causal inference
in randomized experiments.

• Parametric inferences can be sensitive to modeling and other assumptions.

• Randomized natural experiments provide social scientists with rare opportunities
to draw valid causal inferences.

• The randomization inference framework can directly incorporate complex
randomization schemes in natural experiments.
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