Randomization Inference with Natural Experiments:
An Analysis of Ballot Effects in the 2003 California
Recall Election

Kosuke Imai

Department of Politics
Princeton University

Joint work with
Daniel E. Ho, Yale Law School

June 20, 2005



Overview



Overview

The Impact of Ballot Format on Voting:



Overview

e The Impact of Ballot Format on Voting:
* Butterfly ballot in 2000 Florida.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.
* Partisan labels.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

Randomized Natural Experiments:



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.
* Experiment is conducted in real elections.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.
* Experiment is conducted in real elections.
* California alphabet lottery: randomization-rotation procedure.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

% California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

Randomization Inference:



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

% California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.
* No distributional assumption:



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.
* No distributional assumption: Nonparametric method.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.
* No distributional assumption: Nonparametric method.
* No probability model:



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.
* No distributional assumption: Nonparametric method.
* No probability model: Probability measure generated by random assignment.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.

* No distributional assumption: Nonparametric method.

* No probability model: Probability measure generated by random assignment.
* No large-sample approximation:



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.

* No distributional assumption: Nonparametric method.

* No probability model: Probability measure generated by random assignment.
* No large-sample approximation: Ezact test.



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.

* No distributional assumption: Nonparametric method.

* No probability model: Probability measure generated by random assignment.
* No large-sample approximation: Ezact test.

*x Confidence intervals with correct coverage:



Overview

e The Impact of Ballot Format on Voting:

* Butterfly ballot in 2000 Florida.
* Voting equipment.

* Partisan labels.

* Ballot order.

e Randomized Natural Experiments:

* Treatment is physically randomized.

* Experiment is conducted in real elections.

* California alphabet lottery: randomization-rotation procedure.
* 2003 recall election to estimate the ballot page effect.

e Randomization Inference:

* R. A. Fisher used it first in his “Lady Tasting Tea” experiment.

* No distributional assumption: Nonparametric method.

* No probability model: Probability measure generated by random assignment.
* No large-sample approximation: Ezact test.

*x Confidence intervals with correct coverage: Inverting the test.
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e A random alphabet is drawn for every statewide election that applies to all
statewide offices

e California Elections Code 13112(a) holds:

Each letter of the alphabet shall be written on a separate slip of paper, each of which shall
be folded and inserted into a capsule. Each capsule shall be opaque and of uniform weight,
color, size, shape, and texture. The capsules shall be placed in a container, which shall
be shaken vigorously in order to mix the capsules thoroughly. The container then shall be
opened and the capsules removed at random one at a time. As each is removed, it shall
be opened and the letter on the slip of paper read aloud and written down. The resulting
random order of letters constitutes the randomized alphabet, which is to be used in the
same manner as the conventional alphabet in determining the order of all candidates in
all elections. For example, if two candidates with the surnames Campbell and Carlson are
running for the same office, their order on the ballot will depend on the order in which the
letters M and R were drawn in the randomized alphabet drawing.
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e Random alphabet for 2003 recall election:
RWQOJMVAHBSGZXNTCIEKUPDYFL

e The random alphabet is drawn roughly six weeks before the election, after
certification of candidates has been completed.

e Three-step randomization-rotation procedure:

1. Secretary of State randomly draws alphabet letters.
2. Names of candidates are ordered by the randomized alphabet for the first of

80 assembly districts.
3. Candidate names are systematically rotated for the rest of assembly districts.
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e 135 candidates running for the office.

e Page placement of each candidate depends on:

1. Ballot format decided by each of 58 county registrars.
2. Ballot order in each of 80 assembly districts determined by randomized
alphabet and systematic rotation.

e New York Times ballot data:

* Page placement of 135 candidates for 158 unique “districts.”
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e Additional data:

* Election returns for each candidate in every district.
* Registration data for each party in every district.
* Income, education, race for assembly districts (2000 Census).

e We estimate the causal effect of being placed on the first page of the ballot on
each candidate’s vote share.

e Statistical challenges:

1. Variance identification problem:
* Randomization-rotation procedure resembles systematic sampling in surveys.
* Standard variance estimators require knowledge of population distribution.
x The order of California districts is non-random (from Northwest to
Southeast).
* The distribution of district characteristics is unknown.

2. Unequal probability assignment across districts for a given candidate:
* A large number of candidates relative to the number of districts.
* Possible confounding effects due to heterogeneous districts.

3. Clustering of candidates:
* Alphabet randomization rather than candidate randomization is used.
* Many candidate names start with the same letter of the alphabet.



California Assembly Districts by Percentage of Registered
Democrats

Legend

Bay Area
Proportion of Registered

Voters Democratic

B 0.29-0.40
B 0.41-044
B 0.45-0.48

0.49 - 0.55
0.56 - 0.62
0.63-0.88

Los Angeles Metropolitan Region
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1. Formulate a (sharp) null hypothesis:
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% Unit ballot effect is zero for all districts; i.e., Yi(1) = Y;(0) = y; Vi.

2. Choose a test statistic:
* Sample average ballot effect:

121 121
WD(T) _ Zi:1 TiU' i 21:1” — Ti)yi
N; No ’

corresponding to the difference-in-means estimator.
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* Covariance-adjusted statistic:
WHT) = (TTMT) " TTMy

corresponding to the linear least squares estimator, where y =
(Ur,yz,...,y121), M =1 —=X(X"X)7'XT, and X is the matrix of the
observed pretreatment covariates.

x Under Hy, distribution of WP (T) depends only on T.

3. Compute the exact p-value:
* California alphabet lottery determines Tj.

x Distribution of T; is known exactly (No distributional assumption).
x One-tailed exact p-value: pP = Pr(WP(T) > WP(1)).

Since the number of permutations is large, we use Monte Carlo approximation,

Pr(WP(T) > WP(t)) [(WP(TV) > WP(t),

|||\/]3

~ L
m £

with m = 10, 000.
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No significant effect
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Positive ballot effect
on 40% of minor
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No Effect on Pretreatment Variables

e |f the treatment is random, it should not affect pretreatment variables.

Registered Voters Proportion Male Rep. Gub. Vote (2002)
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Generalizing Fisher's exact test:

1.

Sharp null hypothesis: Hy: 1y =719 for alli=1,...,121.

e Constant additive treatment effect assumption.

. Given the null value Ty, the test statistic is given by
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Generalizing Fisher's exact test:

1.

Sharp null hypothesis: Hy: 11 =719 for alli=1,...,6121.

e Constant additive treatment effect assumption.

Given the null value Tj, the test statistic is given by
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Estimating Nonparametric Confidence Intervals

Generalizing Fisher's exact test:

1.

Sharp null hypothesis: Hy: 1y =719 for alli=1,...,121.

e Constant additive treatment effect assumption.

. Given the null value Ty, the test statistic is given by

S AT+ (-t} Y40 — Ty — timo)
Z]Z]-I— ZZ 1 — -l-1

or its covariance-adjusted analogue

)

WD (T) =

WE(T) = (TTMT) " T My*,

where each element of y* is y{ = Ti{yi + (1 — ti)7to} + (1 — Ti) (yi — tiTo).

. Two-tailed level « test; accept Hy if

e A s < P > WOl <15},

and reject Hy otherwise.
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Inverting the test:
e The (1 — «) confidence set; Cy(t) ={T:t € Ay (T)}.
e Confidence interval defined as the shortest closed interval in the confidence set.

e |dentify the upper and lower bounds, Tp = sup, A4(T) and Tty = inf; Ax(T),
via a (Monte Carlo) bisection algorithm.

Nonparametric estimates of CDF (for the sampling distributions of causal effect

estimators) can also be obtained by estimating Ty and T for different values of
x € [0,0.5].
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Sensitivity Analyses

e Constant additive treatment effect assumption:

* In principle, one can define a vector of null values 7.

Page Effect on Major Candidates Page Effect on Minor Candidates

Republican - —— Republican
Schwarzenegger Ranken

Democratic Democratic

Republican Republican
Bustamante Ramirez

Democratic Democratic
Republican Republican

McClintock Roscoe
Democratic Democratic

0e+00 5e-04

e Choice of test statistics:
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Comparison with Conventional Estimators

e Two frequently used parametric estimators:

1. Linear least squares (with and without covariates).
based on the same statistics as those used in randomization inference.
2. Binomial GLM with logit link and overdispersion.

e Results are appreciably different.

Without Covariates
OLS GLM logit RI Fisher

OLS

With Covariates

GLM logit

Rl Fisher

Major Candidates
Schwarzenegger 1.09 9.63 —1.23 7.53 —23.72 19.90

—2.97 0.21 —4.98—-2.05 —6.44 6.87

Bustamante  —8.46 0.54 —5.37 4.04 —20.07 20.31 |-1.12 1.78 0.96 3.01 —5.86 5.64
McClintock 0.50 3.09 —1.10 124 —-347 636 | 156 325 029 205 036 3.57
All Candidates

Positive effects  56(41%) 63(47%) 55(41%) 50(37%) 59(44%) 47(35%)
Negative effects 11 (8%) 8 (6%) 4 (3%) 8 (6%) 17(13%) 2 (1%)
Null effects 68(50%) 64 (47%) 59(44%) 77(57%) 59(44%) 64(47%)
Unidentified 0 (0%) 0 (0%) 17(13%) 0 (0%) 0 (0%) 22(16%)
Comparison with Randomization Inference

Agreement 89(66%) 87(64%) 108(80%) 88(65%)) 74(55%)  108(80%)
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Concluding Remarks

e Randomization inference provides a general framework for robust causal inference
in randomized experiments.

e Parametric inferences can be sensitive to modeling and other assumptions.

e Randomized natural experiments provide social scientists with rare opportunities
to draw valid causal inferences.

The randomization inference framework can directly incorporate complex
randomization schemes in natural experiments.
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