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Abstract: Randomization is an important technique for assessing the significance of data analysis results. Given an input
dataset, a randomization method samples at random from some class of datasets that share certain characteristics with the
original data. The measure of interest on the original data is then compared to the measure on the samples to assess its
significance. For certain types of data, e.g., gene expression matrices, it is useful to be able to sample datasets that have the
same row and column distributions of values as the original dataset. Testing whether the results of a data mining algorithm on
such randomized datasets differ from the results on the true dataset tells us whether the results on the true data were an artifact
of the row and column statistics, or due to some more interesting phenomena in the data. We study the problem of generating
such randomized datasets. We describe methods based on local transformations and Metropolis sampling, and show that the
methods are efficient and usable in practice. We evaluate the performance of the methods both on real and generated data. We
also show how our methods can be applied to a real data analysis scenario on DNA microarray data. The results indicate that
the methods work efficiently and are usable in significance testing of data mining results on real-valued matrices.  2009 Wiley
Periodicals, Inc. Statistical Analysis and Data Mining 2: 209–230, 2009
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microarray

1. INTRODUCTION

Data mining research has produced many efficient algo-
rithms for extracting knowledge from large masses of data.
An important consideration is deciding whether the dis-
covered patterns or models are significant in some sense.
Traditional statistics have, since long, been considering the
issue of significance testing, but it has been given less atten-
tion in the data mining community.

In statistics, the methods for significance testing are typ-
ically based either on analytical expressions or on random-
ization tests. We focus on randomization tests for assessing
the significance of the discoveries; see Refs. [1–3] for
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excellent overall descriptions of randomization approaches
in significance testing.

Given a structural measure, such as the clustering error
for a given number of clusters or the maximum lift of an
association rule, randomization approaches produce multi-
ple random datasets according to a null hypothesis about
the data. If the structural measure of the original data devi-
ates significantly from the structural values of the random
datasets, we can consider the original result as significant.

In this paper, we consider real-valued matrices where
columns can be viewed to be of the same type, and
rows, likewise. Gene expression data is a good example of
such data: the rows correspond to genes and the columns
correspond to samples, e.g., different tissues. The value of
an element of the matrix indicates the level of activity of
a gene in the sample. The rows have the same type, as do
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the columns. A dataset with columns for, say, weight and
height of an individual would not satisfy our requirement.

We study randomization with respect to two null hypothe-
ses. The first one is that the structure in the data is due to
the row and column distributions of values. The second is
that the structure is due to the row and column means and
variances. These null hypotheses correspond to viewing the
results of a data mining algorithm as interesting, if they are
highly unlikely to be observed in a random dataset that has
approximately the same row and column statistics. Thus,
we can answer questions such as “Does the observed clus-
tering or correlation structure convey any information in
addition to the row and column statistics?”

The problem of generating matrices having the same row
and column statistics as the input matrix is a generalization
of the task considered in Refs. [4–6]. There the input is
a 0–1 matrix, and the goal is to generate 0–1 matrices
having the same row and column sums. This problem has
been studied extensively in statistics, theoretical computer
science, and various application areas [4,7–11], and it is
computationally quite hard.

We describe simple algorithms for generating real-valued
matrices that approximately share given row and column
statistics. The algorithms are based on local transformations
and Metropolis sampling. We evaluate the performance of
the methods both on real and generated data, and show that
the methods are usable in practice.

A preliminary version of this paper considered the case
where only row and column means and variances are pre-
served [12]. Here we also study the more general problem
of preserving row and column distributions. All the algo-
rithms of the previous paper are revised, and more general
versions of the methods are given. Additionally, we prove
more theoretical properties of the methods and give exten-
sive experimental results.

The rest of this paper is organized as follows. In
Section 2, we give a brief overview of related work. In
Section 3, we discuss applying randomization in signifi-
cance testing, and give a simple example of randomizing
real-valued matrices. In Section 4, we present local modifi-
cation operations, describe a general Metropolis algorithm,
and give a simple method based on discrete swaps for
producing randomized datasets. We also give examples
of different randomizations. In Section 5, we discuss the
probability distribution of randomized matrices and intro-
duce the difference measures for two different statistics. In
Section 6, we describe the implementation of the methods.
The algorithms are analyzed theoretically in Section 7. Our
main experimental results are discussed in Section 8. In
Section 9, we give some practical guidelines for using the
methods in significance testing. Section 10 concludes the
paper.

2. RELATED WORK

We are not aware of any work that would directly
address the problem considered in this paper. Obviously,
significance testing has received a large amount of attention.
Excellent general sources on a variety of randomization
approaches are [1–3].

Defining the significance of discovered patterns has
attracted a lot of attention in data mining. The χ2-test
is used in Ref. [13] for significance testing of correlation
rules, which are generalizations of association rules. Func-
tional dependencies and logic are used for pruning out non-
significant patterns algorithmically in Refs. [14,15]. Using
inference to prune out nonsignificant correlations quickly
was done in Ref. [16]. A more methodological view on
pruning nonsignificant patterns using multiple hypotheses
testing concepts can be found in Ref. [17]. Definitions and
views on patterns other than frequent item sets or associa-
tion rules can be found in Refs. [18–20].

Various null models have been studied in many
application areas. In ecology, the use of null models in
testing the significance of discoveries is quite widespread.
For example, in the analysis of nestedness, there are sev-
eral different null models whose properties differ somewhat,
and which have been under careful study in recent years
[21–23]. Null models for temporal trends in biological
records are studied in Ref. [24] and in geographic range
size evolution in Ref. [25].

Sampling from the space of contingency tables with
fixed marginal sums has been widely studied [4,26,27].
A sequential importance sampling procedure for analyzing
contingency tables is introduced in Ref. [7]. The asymp-
totics on the exact number of such tables is studied, e.g.,
in Ref. [28]. The algorithmic properties of some of the
methods are discussed in Ref. [29]. A good survey on
the topic is provided by Chen et al. [7]. The problem of
generating random matrices with fixed margins has also
been studied in many application areas, such as ecology
[30] and biology [10], and analysis of complex networks
[11].

3. APPLYING RANDOMIZATION IN
SIGNIFICANCE TESTING

In this section we briefly describe the basic approach,
give the definition of empirical p-values, and give an
example of the usefulness of preserving row and column
statistics when randomizing real-valued matrices. We also
discuss how the approach is used to assess the significance
of data mining results. See Refs. [1–3] for additional
background.

Statistical Analysis and Data Mining DOI:10.1002/sam
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3.1. Basic approach

Consider an m × n real-valued matrix A. Assume that
some data mining task, such as clustering, is performed
on A. Assume that the result of the data mining algo-
rithm can be described by a single number S(A) which we
call a structural measure of A. The structural measure can
be, e.g., the clustering error of the matrix, the correlation
between some specific columns, or the number of correla-
tions above some threshold; any measure can be used, as
long as it can be summarized by one number so that smaller
(or larger) values mean stronger presence of structure.

To assess the significance of S(A), the idea is to generate
randomized matrices Â sharing some statistics with A, and
to compare the original structural measure S(A) against the
distribution of structural measures S(Â). In this paper, we
show how to generate randomized matrices independently
and uniformly from the set of all matrices sharing approx-
imately the distributions of values in rows and columns
with the original matrix. Thus, the computational task we
are addressing is the following.

TASK 1: Given an m × n real-valued matrix A, generate
a matrix Â chosen independently and uniformly from the
set of m × n real-valued matrices having approximately the
same value distributions in rows and columns as A.

We will also specify later what approximately means
above. Additionally, we study a variant where only row and
column sums and variances are preserved in randomization.
That computational task is the following.

TASK 2: Given an m × n real-valued matrix A, generate
a matrix Â chosen independently and uniformly from the
set of m × n real-valued matrices having approximately the
same row and column means and variances as A.

3.2. Empirical p-Values

Let Â = {Â1, . . . , Âk} be a set of randomized versions
of the original matrix A. Then the one-tailed empirical p-
value of the structural measure S(A), with the hypothesis
of S(A) being small, is

∣∣{Â ∈ Â |S(Â) ≤ S(A)
}∣∣ + 1

k + 1
. (1)

This captures the fraction of randomized matrices that
have a smaller value of the structural measure than the
original matrix. The one-tailed empirical p-value with the
hypothesis of S(A) being large, and the two-tailed empirical
p-value are defined similarly. If the p-value is small, we
can say that the structural measure of the original matrix is
significant and not due to the row and column statistics.

In practice, we will be generating the set Â = {Â1, . . . ,

Âk} of randomized versions of A by using a Markov chain.
In this approach, care has to be taken since the samples
are not necessarily independent. We use the ideas from
Refs. [2,3,31], where exchangeability of the samples Âi

is guaranteed by first running the chain backward to some
state Â0 and then k times separately forward from state Â0;
see Section 4.5 for more details.

3.3. Example

Most existing randomization techniques for real-valued
matrices are based on simply permuting the values in a
single column (or row). To show why this is not necessarily
enough, consider the two 10 × 5 real-valued matrices A and
B shown in Figure 1. They share their first two columns,
and the correlation between these columns x and y is
high, 0.92. In matrix B the values on each row are tightly
distributed around the mean of the row, whereas in matrix A

the variance of each row is high. If the test of significance of
correlation between columns x and y would consider only
the first two columns, the results for the two matrices would
be identical. However, it seems plausible that the high
correlation between the first and second columns in matrix
B is due to the general structure of the matrix, and not
some interesting local structure involving the two columns,
as might be the case with matrix A. More specifically, it
seems that the correlation of x and y in B can be explained
by the small variance of each row.

To test this observation, we generated randomized matri-
ces: sets A and B each contain 999 independent random
matrices having approximately the same value distributions
in rows and columns as A and B. For the matrices in set
A the smallest correlation between x and y is −0.85, the
maximum 0.83, average −0.03 and standard deviation 0.30,
while in set B corresponding values are 0.71, 0.99, 0.92,
and 0.04, respectively. The empirical p-values of the corre-
lation between x and y are 0.001 for matrix A and 0.52 for
matrix B. Thus, we can conclude that the high correlation
between the first and second columns in B is indeed due to
the row and column distributions, while this is not the case
for A. Similar results are obtained if only row and column
means and variances are preserved in the randomization
instead of value distributions.

The example illustrates that the structure of the entire
matrix can have a strong effect on the significance of the
results of very simple analysis methods.

3.4. Using the approach

In the previous example, we saw how the same value
of a structural measure can have different significances

Statistical Analysis and Data Mining DOI:10.1002/sam
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x y

.46 .36 .21 .68 .45

.44 .29 .64 .21 .04

.74 .87 .32 .84 .03

.04 .06 .96 .63 .31

.75 .66 .73 .13 .01

.85 .81 .41 .21 .38

.80 .98 .74 .61 .68

.70 .72 .27 .63 .09

.30 .37 .44 .37 .04

.57 .41 .93 .58 .61

Matrix A

x y

.46 .36 .56 .51 .53

.44 .29 .49 .52 .38

.74 .87 .90 .79 .80

.04 .06 .03 .11 .05

.75 .66 .68 .75 .71

.85 .81 .83 .81 .90

.80 .98 .88 .90 .81

.70 .72 .67 .79 .63

.30 .37 .37 .35 .43

.57 .41 .46 .44 .41

Matrix B

Fig. 1 Examples with two real-valued data matrices sharing the
first two columns x and y having high correlation. The values on
each row of the matrix B are close to each other, whereas in A

the variance of each row is large. The high correlation between
x and y is significant in A but not significant in B when tested
using the methods introduced in this paper.

when the structure of the whole matrix is considered. The
example could be described as follows. We start with a
null model that requires matrices to have approximately
the same marginal value distributions as the original data.
Using different original matrices we obtain different null
distributions. Using matrix A or B generates two different
null distributions, so that the original correlation of 0.92 is
an extreme value in the null distribution of S(A), but not
in the null distribution of S(B).

The basic idea of the methods described in this paper is
that they allow generating null distributions using the null
model of the row and column value distributions. Thus we
need not make assumptions on how data is distributed.

When randomization is used for significance testing, it is
important to perform the exact same data mining procedure
to the randomized matrices as to the original matrix to
guarantee the correctness of the results. Take the previous
example where we wanted to assess the significance of the
correlation between the two columns. To obtain meaningful
results, we need to use the same method to choose the two
columns as we did on the original data. If they were just a
pair of specific columns chosen without looking at the rest
of the data, we should calculate the correlation between the
same two columns in the randomized samples. Suppose,
on the other hand, that the columns were selected because
the correlation between them was the largest of all pairs
of columns. Then we should also calculate the maximum
pairwise correlation of columns in the randomized samples.

While assessing significance of local structures, such as
pairwise correlations, we can also perform multiple tests.
In the previous example we tested only a single correlation,
but we could have tested correlations between all pairs
of columns, for example. It would be erroneous to accept
all p-values that are less or equal to a given threshold α

and conclude that the null hypothesis was rejected at the
significance level α. A good method for addressing multiple
testing is to use, e.g., the Benjamini–Hochberg procedure
that controls the false discovery rate (the proportion of false
positives) [32].

4. ALGORITHMS

4.1. Introduction

In this section, we introduce two Markov chain Monte
Carlo (MCMC) methods for sampling from the set of real-
valued matrices with given row and column statistics. In
general, MCMC methods are a class of algorithms for
sampling from probability distributions. They are based on
constructing a Markov chain that has the desired probability
distribution as its stationary distribution. The state of the
chain after a large number of steps is then used as a random
sample from the desired distribution. For more information
on MCMC methods, see, e.g., Ref. [3].

Both methods that we introduce output a randomized
version Â of the original m × n matrix A. Each method
performs a random walk in a Markov chain, whose state
space is the set of m × n matrices. Each step in the walk
is a local modification of the current matrix. That is, the
algorithms start from the original dataset A. Given a current
dataset Âi , the next step selects at random some local
modification from the collection of allowed operations, and
applies it to Âi . If the change is accepted, this yields Âi+1.
Otherwise Âi+1 = Âi .

The data is assumed to be scaled to the unit interval
[0, 1]. To randomize a general matrix A ∈ R

m×n, we first
scale it linearly into [0, 1], randomize, and finally unscale
it back to the original value range. In scaling, the original
minimum value is replaced by zero and the maximum value
by one. If there exist natural minimum and maximum values
for the underlying phenomenon, they can be used instead.
When studying a set of matrices produced by a similar
phenomenon, the same scaling can be used, which ensures
that the significance tests are not biased.

We also discuss how to apply the algorithms for produc-
ing an exchangeable set of samples for calculating a valid
p-value, and give some visual examples of randomizations
with different approaches. The notation Aij refers to the
element at row i and column j in a matrix A.

The implementations of the algorithms are available at
http://www.cis.hut.fi/mrojala/randomization/.

4.2. General Metropolis Method for Randomizing a
Matrix

We describe a general Metropolis algorithm [33,34] for
randomizing a real-valued matrix while preserving some

Statistical Analysis and Data Mining DOI:10.1002/sam
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statistics. The idea is to generate samples Â from the
probability distribution

Pr(Â|A) = c exp{−wE(Â, A)}, (2)

where A is the original matrix, w > 0 is a constant, c

is a normalizing constant and E(Â, A) is any difference
measure of the sample Â. That is, we wish to sample
matrices so that the matrices Â for which E(Â, A) is
small have a high probability of being generated. For
example, E(Â, A) can measure the total difference in row
and column value distributions between Â and A. The
constant w controls how steep the distribution is. The
probability distribution 2 is discussed in detail in Section 5.

The Metropolis method is a general technique for obtain-
ing samples from a probability distribution π [33]. Let S

denote the set on which π is defined, and let Q(x, y) be a
symmetric proposal distribution on S, i.e.,

∑
y Q(x, y) = 1

and Q(x, y) = Q(y, x) for all x, y ∈ S. Then the Metropo-
lis method samples y from state x with probability Q(x, y)

and moves to state y with probability

min(1, π(y)/π(x)).

A direct implementation of the Metropolis approach for
generating samples Â from the probability distribution 2 is
presented in Algorithm 1.

Algorithm 1 GeneralMetropolis(A,A0, I, w)

Input: Original matrix A, starting matrix A0, number of
attempts I , parameter w > 0

Output: Randomized matrix Â

1: Â ← A0
2: for i ← 1, I do
3: A′ ← LocalModification(Â)

4: if ∀i, j : A′
ij ∈ [0, 1] then

5: u ← Uniform(0, 1)

6: if u < exp{−w[E(A′, A) − E(Â, A)]} then
7: Â ← A′
8: end if
9: end if

10: end for
11: return Â

We use local modifications to obtain the proposals from
the distribution Q(x, y); the function LocalModification(A)

returns a possible variation of A. Symmetry of the pro-
posal distribution means that the probability of the events
B = LocalModification(A) and A = LocalModification(B)

must be equal. Additionally, we require that the values after
a local modification are in the original range, which is
assumed to be [0, 1]. In Section 4.3, we introduce some

Table 1. Abbreviations and short descriptions of the local
modifications introduced.

Name Description

Change Replace one element uniformly from [0, 1]
Resample Replace one element by resampling from A

Add Add a uniform number from [−s, s]
Rotate Rotate four intersection elements
Mask Add a mask to four intersection elements

local modifications and discuss their properties. Note, how-
ever, that the method GeneralMetropolis can be used with
any local modification operation.

4.3. Local Modifications

We introduce several local modification operations. Some
only shuffle the values in A, while some assign new values
to elements of the matrix on the basis of some distribution.
They change either one or four elements of a matrix in
each step. For the needs of our methods, we additionally
require that the probability of making a local modification
that undoes the effect of a local modification M is the
same as the probability of M . Table 1 summarizes the local
modifications.

The local modifications are ad-hoc in nature but they
have a large impact on the speed and quality of random-
ization. A good local modification should be fast in per-
formance, change the matrix as much as possible while
introducing only a small difference in the row and column
statistics. These objectives are contradictory. Each local
modification we introduce is good in different aspects. The
local modifications are compared to each other more in the
experiments.

4.3.1. Replacing a Single Value: Change, Resample,
Add

We introduce three simple local modifications that are
based on replacing a single element with another element.
The element to be changed is chosen uniformly at ran-
dom from among all elements of Â. The simplest local
modification, Change, replaces the original value with a
random value drawn uniformly from [0, 1]. The next local
modification, Resample, replaces the element with one of
the original values of A. This guarantees that the original
value distribution of the whole matrix is preserved approx-
imately. The last simple local modification, Add, adds a
randomly chosen value α from [−s, s] to the current value.
The parameter s controls the scale of the transformation.
In the experiments, we will use a parameter value s = 0.1.
Also, other distributions than uniform could be used for
choosing the value to add. These three local modifications

Statistical Analysis and Data Mining DOI:10.1002/sam
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j

.

.

.

i . . . . . .
.
.
.

(a) Replace value

j

.

.

.

i . . . +aa . . .
.
.
.

(b) Add value.

Fig. 2 Three simple local modifications based on value replace-
ment (Change and Resample) and value addition (Add). Each
change only one element at a time.

j1 j2
...

...
i1 . . . a . . . b . . ....

...
i2 . . . b′ . . . a′ . . ....

...

j1 j2
...

...
i1 . . . b′ . . . a . . ....

...
i2 . . . a′ . . . b . . ....

...

Fig. 3 An example of local modification Rotate. The four
elements shown are rotated and the rest of the matrix is kept
fixed. If a = a′ and b = b′, then the row and column statistics do
not change.

are depicted in Figure 2. Note that in each case the sym-
metry of the proposal distribution is obtained.

4.3.2. Swap Rotation: Rotate

The next local modification, Rotate, is a generalization
of binary swaps. The idea of swapping matrix elements
as a randomization technique has a long history [4]. Here
we use a concept of swap rotations as shown in Figure 3,
which degenerates to conventional swaps in the case of
binary data. At each step, we randomly choose from the
current matrix four elements a, b, a′, and b′, located at
the intersections of two rows i1 and i2 and two columns
j1 and j2. A new matrix is produced by rotating those
four elements clockwise, while keeping the other elements
unchanged. Again, it is clear that the proposal distribution
is symmetric.

The smaller the difference between (a, b) and (a′, b′), the
smaller the change in the row and column statistics will be.
If a = a′ and b = b′, the row and column statistics do not
change at all, corresponding to binary swaps. In Section 4.4
we will introduce a method called SwapDiscretized which
utilizes this property.

4.3.3. Addition Mask: Mask

Our next modification, Mask, preserves the row and
column sums exactly. As with swap rotation, a new matrix
is created from the current one by selecting rows i1, i2 and
columns j1, j2 at random, and adding the mask presented
in Figure 4 to the four intersection elements. The value α

j1 j2
...

...
i1 . . . . . . . . ....

...
i2 . . . −a . . . +a

+a −a

. . ....
...

Fig. 4 An example of local modification Mask. The addition
mask preserves the row and column sums.

is drawn uniformly at random from the range [−s, s]. In
the experiments, we use parameter value s = 0.1.

4.4. Discrete Swaps

We will see that maintaining the difference measure
E(Â, A) is troublesome. Therefore, we also consider a vari-
ant based on discretization that avoids keeping track of the
difference in the distributions. Denote by Class(x, N) the
function that discretizes x ∈ [0, 1] into a value in 1, . . . , N .
We use the discretization where the range [0, 1] is divided
into N intervals of equal length, thus, Class(x, N) =
min(�Nx�, N − 1).

The method SwapDiscretized is based on rotations (recall
Figure 3). At each step, the method samples indices i1, i2
of rows and j1, j2 of columns. Given the number C of
classes for values in columns and the number R of classes
for values in rows, the rotation is accepted if

Class(Âi1j1 , C) = Class(Âi2j2, C) and

Class(Âi1j2, R) = Class(Âi2j1, R).

This guarantees that the distributions of the discretized
values in the rows and columns do not change.

The restrictions that Âi1j1 and Âi2j2 belong to the same
column class as well as Âi1j2 and Âi2j1 to the same
row class can decrease the acceptance rate dramatically.
However, we can select Âi1j1 and Âi2j2 belonging to the
same column class in constant time. This is possible if we
keep track of where the elements in each class are located.
First, we randomly select an element Âi1j1 from the matrix,
and after that, we randomly select Âi2j2 that belongs to the
same class as Âi1j1 . The pseudocode of this approach is
presented in Algorithm 2.

Note that at each step the next state can be the current
state, i.e., there are self-loops in the state space.

4.5. Obtaining Exchangeable Samples

Subsequent samples produced by the Metropolis algo-
rithm are dependent, unless the number of steps taken
between the samples is at least the mixing time. It is very
hard to estimate this quantity in any application. We use
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Algorithm 2 SwapDiscretized(A, I, R,C)

Input: Matrix A, number of attempts I , number of classes in
rows R and columns C

Output: Randomized matrix Â

1: Â ← A

2: for i ← 1, I do
3: Pick i1 and j1 randomly
4: Pick i2 and j2 randomly with Class(Âi1j1 , C) =

Class(Âi2j2 , C)

5: if i1 �= i2 and j1 �= j2 and Class(Âi1j2 , R) =
Class(Âi2j1 , R) then

6: Â ← Rotate(Â, i1, i2, j1, j2)

7: end if
8: end for
9: return Â

the ingenious technique of Besag and Clifford [2] to obtain
a set of exchangeable samples.

The technique of Besag and Clifford consists of first
running the chain I steps backward. That is, given the
original dataset A, we obtain a set Â0 such that there is a
path of length I from Â0 to A. Then for the desired number
k of samples, we start for each i = 1, . . . , k from Â0 and
run the chain I steps forward, obtaining samples Âi . Then
{A, Â1, . . . , Âk} forms an exchangeable set of samples.

That is, if the null hypothesis is true for the original
dataset, A, then the samples A, Â1, . . . , Âk have an under-
lying joint distribution that is exchangeable. Thus, the rank
of S(A) among values {S(A),S(Â1), . . . ,S(Âk)} is uni-
form, implying the validity of the empirical p-value regard-
less of the irreducibility and convergence of the chain. The
result may just be more conservative.

In our case, running the chain backward turns out to be
very easy, as the chain is time-reversible. Thus, running
the chain backward is the same as running it forward. The
method is given in Algorithm 3. The same method can also
be used with SwapDiscretized.

4.6. Examples of Randomizations

Next, we give some visual examples of the results pro-
duced by different randomization approaches. In Figure 5

Algorithm 3 Besag-Clifford(A, k, I, w)

Input: Matrix A, number of samples k, number of attempts I ,
parameter w

Output: Exchangeable set of randomized samples {Â1, . . . , Âk}
1: Â0 ← GeneralMetropolis(A, A, I, w)

2: for i ← 1, k do
3: Âi ← GeneralMetropolis(A, Â0, I, w)

4: end for
5: return {Â1, . . . , Âk}

(a) Original (b) GeneralMetropolis with
                     and difference
measure in distributions

(d) SwapDiscretized(c) General Metropolis with
           and difference measure
in means and variances

Fig. 5 Original data and results of randomization of the original
data with three different methods. Black corresponds to zero and
white to one. The small top left artifact in the original matrix has
disappeared in randomizations, which have produced “shadows”
of the artifact to the top right and bottom left regions. The ran-
domizations resemble each other although different randomization
approaches were used.

randomizations of a 100 × 100 matrix resembling a hilly
surface are shown. The results come from applying our
algorithms with the parameters described in Section 8.2.

The three different randomization methods have produced
similar results. In the randomized matrices, the massive bot-
tom right hill remains, but the smaller top left structure
disappears. The existence of the small hill on the top left
in the original data results in shadow shapes emerging in
the top right and bottom left regions in randomization.

5. PROBABILITY DISTRIBUTION FOR
RANDOMIZED MATRICES

Let A be the original m × n real-valued matrix whose
row and column statistics we wish to maintain. We dis-
cuss the probability distribution Pr(Â|A) from which the
randomized m × n real-valued matrices Â are drawn. The
probability distribution is defined by using a general dif-
ference measure between two sets of real values, such as
the sets of values in a specific row of the original and a
randomized matrix. We introduce two difference measures
corresponding to Tasks 1 and 2 in Section 3.1. The first
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one measures the difference in value distributions and the
second one the difference in means and variances.

5.1. Decomposition of Probability Distribution

Let ri be the set of values in ith row of A and cj the
set of values in j th column of A. Let r̂i and ĉj be the
corresponding sets in a randomized matrix Â. Note that ri

and cj are not independent as they both contain the value
Aij . However, we use an approximation of Pr(Â|A) that
assumes the independence of rows and columns. Thus we
write

Pr(Â|A) =
m∏

i=1

Pr(r̂i |ri) ·
n∏

j=1

Pr(ĉj |cj ). (3)

Let s be an original set of values corresponding to ri or
cj , and let ŝ be another set of values whose probability we
would like to estimate given the original set s. Let E(ŝ, s)

be any difference measure between the two sets s and ŝ.
We define the probability of ŝ as

Pr(ŝ|s) = c exp{−wE(ŝ, s)},

where w is a scaling constant and c is a normalizing
constant. Denoting by E(Â, A) the total difference in the
maintained statistics in the rows and columns between a
randomized matrix Â and the original matrix A,

E(Â, A) =
m∑

i=1

E(r̂i, ri) +
n∑

j=1

E(ĉj , cj ), (4)

we have that Equation 3 implies Equation 2 given in
Section 4,

Pr(Â|A) = c exp{−wE(Â, A)}.

5.2. Difference in Distributions

There exist various distance measures between two
probability distribution functions (pdf), such as Kullback-
Leibler divergence, direct L1 distance between two proba-
bility or cumulative distribution functions (cdf) [35,36]. We
will use the L1 distance between the cumulative distribu-
tion functions as it works well when only a sample set of
a distribution is available.

Let Ds be the unnormalized empirical cdf of the set s

defined by

Ds(x) = |{y ∈ s | y ≤ x}|.

The normalized version of the empirical cdf is obtained
by dividing Ds(x) by |s|. Let Dŝ(x) be the corresponding

unnormalized empirical cumulative distribution function of
the set ŝ with |ŝ| = |s|. We will use the L1 norm between
two unnormalized empirical cdfs as the difference measure
in distributions. Thus, we define

ED(ŝ, s) = ‖Ds − Dŝ‖L1 =
∫ ∞

−∞
|Ds(x) − Dŝ(x)| dx.

(5)

By changing the order of integration and summation the
unnormalized cdf difference 5 can be written in an easier
form

ED(ŝ, s) =
|s|∑
i=1

|si − ŝi |, (6)

where si and ŝi are the values in s and ŝ, respectively, in
increasing order.

We use the unnormalized version of the cdf: it provides
a good implicit weighting between the difference in rows
and in columns even if their sizes differ from each other.
The change in the cdf difference after modifying a single
element is approximately independent of the size of the
vector. Thus, the larger a row or column is the smaller the
scaled cdf difference will be.

5.3. Difference in Means and Variances

Measuring the difference in means and variances is easier
than measuring the difference in distributions. Let µ and σ 2

be the mean and the variance of s. Let µ̂ and σ̂ 2 be the
mean and the variance of ŝ, respectively. We define the
difference in means and variances as

EMV (ŝ, s) = |s| · (|µ − µ̂| + |σ − σ̂ |), (7)

where we scale by |s| for the same reason as we used the
unnormalized empirical cdf in the previous subsection. The
difference can be calculated when the sums and the sums
of squares of s and ŝ are known.

Note that the difference measures ED and EMV are not
scale invariant, i.e., multiplying A and Â both by the same
constant changes the value of E(Â, A). Recall, however,
that the values Aij are assumed to be in the interval [0, 1].
This fixes the problem partly. The final touch is done by
tuning the scaling constant w > 0 separately for each data.

6. UPDATING THE DIFFERENCE MEASURES
AFTER A LOCAL MODIFICATION

The time complexity of the GeneralMetropolis algorithm
is dominated by the calculation of the change E(A′, A) −
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Table 2. Three difference measures and short descriptions.

Name Description

GM-MeanStd Difference in means and variances 7
GM-Cdf Difference in cdfs 6
GM-CdfHist Histogram approximation of GM-Cdf

E(Â, A) on line 6. In this section, we discuss how the
change in the difference measures can be calculated effi-
ciently after a local modification. Recall that the total dif-
ference E(Â, A) of a matrix Â defined by Equation 4 is a
sum of differences of rows and columns. Thus, after a local
modification the change in the differences in the maintained
statistics depends only on the rows and columns where the
values were modified.

Since all our local modifications change either one or
four elements of the matrix at a time, it is enough to
consider how we can update the difference after changing
one element. The four elements case can be obtained
by performing four single changes. With all difference
measures we keep track of the current difference on each
row and column in appropriate data structures. Changing a
value in a matrix affects only the corresponding row and
column data structures. Thus, it is enough to consider what
kind of data structure is needed for a single set ŝ of real-
values and how it is updated to a new set s ′ = ŝ ∪ {y} \ {x}.

Updating the difference when only row and column
means and variances are preserved is easy. Updating the
difference in cdfs is hard. Thus, we introduce a histogram
approximation of cdfs that approximately measures the dif-
ference in cdfs and is easier to update. Table 2 summarizes
the matrix difference measures.

6.1. Means and Variances: GM-MeanStd

Updating the difference in means and variances after a
local modification is simple. For each row and column
we keep track of the sum and the sum of squares of the
elements. We store also the sum and the sum of squares of
the original matrix. With these values the difference E(ŝ, s)

defined in Equation 7 can be calculated in constant time.
Updating the sum and the sum of squares after changing a
value takes a constant time. Thus, calculating the change in
differences after a local modification takes constant time.

6.2. Cumulative Distribution Functions: GM-Cdf

Keeping track of the difference in cdfs as defined in
Equation 5 is computationally demanding. For each row
and column we store the original values as well as the
current values in arrays in increasing order. Initializing
these takes O(mn log(mn)) time for a matrix with m rows

and n columns. Calculating the L1 cdf difference directly
between two distributions D and D̂ takes time O(|s|), when
the values are given in increasing order.

Updating the distribution difference 6 when a single
value x ∈ ŝ is changed to a new value y may take, in
worst case, time O(|s|). The update is done by moving
the new value, y, into the correct position to make the
array corresponding to s ′ sorted in increasing order. After
that we only need to calculate the part in the summation
in Equation 6 where the ordering has changed. Thus, only
the values z ∈ ŝ between x and y have to be considered.
Finding the place of the original value x in ŝ takes time
O(log(|s|)) and moving the new value y to the correct
place and calculating the change in differences takes time
O(l) where l is the number of elements between x and y.

The update is easy if the cdf curves of s and ŝ do not
intersect between x and y. Then the change in differences
is simply ±|x − y|. However, when the D and D̂ intersect
frequently, it is easiest to iterate over all elements in s and
ŝ between x and y. Thus, in our case, we have to cope with
the update time O(l + log(|s|)). However, by choosing an
appropriate local modification the size of l can be made
small on average.

6.3. Histogram Approximation of CDFs: GM-CdfHist

Since computing the difference in cdfs requires time
linear in the size of the data, we next introduce a new
difference measure that measures the cdf difference approx-
imately but is faster to calculate. We approximate the
distributions by histograms, with the range [0, 1] divided
uniformly into N bins. Thus, in practice, we distinguish
only N different values. We use a histogram approximation
by Cha et al. [36].

For each row and column we use N numbers to store the
differences of the cumulative distributions for each of the
N bins. Initializing these takes time O(mn + N(m + n)).
When a value is changed, we have to change the cumulative
values in l bins, where l is the number of bins whose
corresponding value is between the old and new value,
inclusive. This takes time O(l). In the exact method l was
the number of elements between the old and new values.
Thus, the approximate method can yield significant speedup
when n or m is large compared to the number of bins N .
Additionally, we do not have to find the correct position of
the old value by binary search as it can be obtained directly.

7. ANALYSIS OF THE METHODS

In this section, we discuss some of the properties of
the introduced randomization methods. The methods are
instantiations of MCMC methods for sampling from the
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desired probability distribution. We study a few general
properties of MCMC methods which are introduced here
shortly: A Markov chain is said to be irreducible if it
is possible to get to any state from any other state by
using the corresponding local modification. The stationary
distribution of the Markov chain is the distribution where
the chain converges. The mixing time of a Markov chain
is the number of steps needed for the convergence to the
stationary distribution. We study these properties to make
certain that the randomization methods produce samples
with good quality in reasonable time.

7.1. Irreducibility of the Markov Chains

First, we give results on the irreducibility of the Markov
chains of SwapDiscretized and GeneralMetropolis with dif-
ferent local modifications. The Markov chain of General-
Metropolis is irreducible when the update operation is one
of Change, Resample, Add, Rotate or Mask. The
Markov chain of SwapDiscretized is, in general, reducible,
i.e., not all states are reachable from others. However, as
Besag et al. have stated, irreducibility of the chain is not
essential for the validity of the p-value [3].

The following two theorems give the irreducibility results
for local modifications with single value replacements. The
proofs are trivial.

THEOREM 1: Given a real-valued matrix A ∈ [0, 1]m×n

all matrices Â ∈ [0, 1]m×n are reachable from A by using
the local modification Change or Add.

THEOREM 2: Given a real-valued matrix A ∈ [0, 1]m×n

all matrices Â ∈ [0, 1]m×n containing only the values of A

(possibly multiple times) are reachable from A by using the
local modification Resample.

The irreducibility of the Markov chains with the other
local modifications that change four values at a time are
less trivial. However, the following two theorems cover the
irreducibility for them.

THEOREM 3: Given a real-valued matrix A ∈ R
m×n,

m ≥ 3, n ≥ 2 or m ≥ 2, n ≥ 3, all matrices Â ∈ R
m×n that

contain the values of A permuted randomly are reachable
from A by using the local modification Rotate.

PROOF 1: Consider the case m ≥ 2 and n ≥ 3. By brute
force it can be shown that all permutations of a 2 × 3 matrix
can be transformed to each other by using swap rotations.
We can use this result to fix one element at a time of a
m × n matrix until the whole matrix is in correct order. �

+ -
? +

(a)

+ - ?
1 + -

(b)

+ - 0
1 + -
? ? +

(c)

+ - 0 ?
1 + - ?
1 1 + -

(d)

+ - 0 0 0
1 + - 0 0
1 1 + - 0
1 1 1 + -
1 1 1 1 +

(e)

Fig. 6 Steps of the proof of Theorem 4. Plus means that Aij > Âij

and minus that Aij < Âij . When the process has stopped, the last
row or column contradicts the sum assumption.

THEOREM 4: Given a real-valued matrix A ∈
[0, 1]m×n, all matrices Â ∈ [0, 1]m×n whose row and col-
umn sums equal the corresponding values of A are reach-
able from A via [0, 1]m×n matrices by using the local
modification Mask.

PROOF 2: The hard part of the proof is the restriction
to [0, 1]m×n matrices. Otherwise, we could just fix one
element at a time. We prove that we can transform A to
any Â ∈ [0, 1]m×n whose row and column sums equal to
the corresponding values of A by using only addition masks
that maintain the values within the range [0, 1] and satisfy
one of the following two conditions:

1. the difference
∑

i,j |Âij − Aij | decreases
2. the number of zeros and ones in A decreases while

the difference stays constant

If the difference
∑

i,j |Âij − Aij | is zero then Â = A and
we have been able to transform A to Â. Thus, suppose
that the process gets stuck in a local minimum where the
difference is nonzero and we cannot apply any addition
mask that would satisfy one of the two conditions. We show
that this leads to a contradiction.

As the difference is nonzero there is an element, say,
A1,1 that is greater than Â1,1. As the sum of each row
is fixed, there is an element on the first row, say, A1,2

that is smaller than Â1,2. Similarly, there is an element
on the second column, say, A2,2, that is greater than
Â2,2. See Figure 6(a). By using the addition mask on
{A1,1, A1,2, A2,1, A2,2} we could decrease the difference
if A2,1 < 1. That would contradict our assumption. Thus,
A2,1 = 1. Now A2,1 ≥ Â2,1 and A2,2 > Â2,2, and hence,
there is an element on the second row, say, A2,3 that is
smaller than Â2,3 (see Figure 6(b)). Similarly, we get the
next step presented in Figure 6(c).

Now we need also the second rule to decide what A3,1

has to be. Consider the quartet {A1,1, A1,3, A3,1, A3,3} =
{+, 0, ?, +}. The element A3,1 has to be 1 as otherwise we
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1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

Fig. 7 A counterexample of irreducibility of SwapDiscretized.
The two matrices have the same row and column statistics, but
they cannot be transformed to each other by using swap rotation,
since there does not exist any rotatable quartet.

could decrease the number of zeros and ones in A without
increasing the difference. Continuing this process by using
similar kind of reasoning we get a matrix resembling the
one presented in Figure 6(e). As the matrix has a finite
size, the process stops at some step. If n ≤ m then the
sum of row n will be larger than supposed, which is a
contradiction. If m < n, then the sum of column m will
be smaller than supposed, again a contradiction. Thus, we
can always perform an addition mask that satisfies one of
the two conditions if the difference is nonzero. Hence, the
Markov chain is irreducible. �

The Markov chain of SwapDiscretized is reducible in
general, as is easily seen. Consider the example shown
in Figure 7 with R = C = 3. The matrices have the same
number of entries of each type per row and column,
but neither of them contain four elements that could be
rotated. Thus, they cannot be transformed to each other. The
counterexample can be generalized directly to all matrices
with an odd number of rows or columns.

7.2. Stationary Distribution

The actual probability distribution from which General-
Metropolis samples differs slightly from the distribution 2
introduced earlier. The final distribution is

Pr(Â|A) =
{

c exp{−wE(Â, A)}, Â ∈ S,

0, Â �∈ S,
(8)

where S is the set of all matrices Â ∈ [0, 1]m×n that are
reachable from A via [0, 1]m×n matrices by using the given
local modification pattern.

Next, we consider the stationary distribution of SwapDis-
cretized.

THEOREM 5: The stationary distribution of SwapDis-
cretized is uniform among all matrices that are reachable
from the original matrix and have the original discretized
row and column distributions.

PROOF 3: The stationary distribution of a reversible
chain is proportional to the degree at each state in the
underlying transition graph [3]. First we note that the
chain of SwapDiscretized is reversible, as the probability

of making a swap rotation that undoes a rotation is the
same as the probability of making that rotation initially. The
number of neighbors of each state is constant since we allow
so called self-loops, i.e., the chain can stay in the same
state. Thus, the stationary distribution of SwapDiscretized
is uniform. �

7.3. Acceptance Probability of a Local Modification

Next, we analyze the probability of accepting a local
modification. With GeneralMetropolis the parameter w

fixes the amount of difference we allow in the maintained
statistics. Thus, choosing the value of w involves making
a compromise between efficiency of mixing and the differ-
ence induced in the row and column statistics: increasing
w decreases the chance of accepting transitions that induce
additional difference in the maintained statistics. The accep-
tance rate depends on the local modification as well as the
difference measure used. In the experiments, we study the
effects of these empirically.

However, for SwapDiscretized we can give a simple
lower bound for the acceptance rate. The number of row
classes R and column classes C involves making a com-
promise between efficiency of mixing, and the difference
induced in the row and column statistics.

THEOREM 6: The acceptance probability of a swap in
SwapDiscretized is approximately at least 1/R if the loca-
tions of class labels in matrix A are randomly distributed.

PROOF 4: Let nl be the number of elements with row
class label l, giving

∑R
l=1 nl = mn. If Ai1j2 has label l then

the probability of accepting a swap in line 5 is nl−1
mn−1 ≈ nl

mn

since the locations of labels are assumed to be randomly
distributed. Using Chebyshev’s sum inequality or Cauchy-
Schwarz inequality we get the result

Pr(Swap is accepted) =
R∑

l=1

( nl

mn

)2

≥ R

(∑R
l=1

nl

mn

R

)2

= 1

R
. (9)

�

Theorem 6 gives an interesting way to optimize
SwapDiscretized. Since the acceptance rate depends only
on the number of row classes R and not on the number of
column classes C in Algorithm 2, we can exploit this asym-
metry. If R ≤ C we can use the pseudocode presented in
Algorithm 2. If, however, C < R we can apply the algo-
rithm to the transposed matrix AT , and return the transpose
of such randomized matrix. Effectively, this just changes
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the acceptance rate from 1/R to 1/C and speeds up the
randomization. We will use this optimization in the exper-
iments giving the approximate lower bound 1/ min(R, C)

for the acceptance rate.

7.4. Mixing Time

Finding the mixing time of an MCMC method is a the-
oretically hard issue. In the experiments, we will use some
simple diagnostics to assess the convergence. Nevertheless,
the following discussion gives some idea of the mixing
times of our methods. We stress, however, that it is just a
simplified reasoning, not a proof of the mixing time.

From the well-known coupon collector’s problem we
know that the expected number of attempts to collect each
of n different coupons is nHn ≈ n ln n where Hn is the
nth harmonic number. Our MCMC methods are based on
swapping items, and thus, resemble this coupon-collector’s
problem. We can roughly assume that the chain has mixed
when each element has been swapped at least once, because
then each element can be assumed to be in a random
position. Let the acceptance rate of the local modifications
of the method be ρ. Then the number of attempts needed
is approximately mn ln(mn)/ρ.

From Theorem 6 and the discussion following it, we
know that the acceptance rate of SwapDiscretized is approx-
imately at least ρ > 1/ min(R, C). Thus for the method
SwapDiscretized, the number of attempts needed is approx-
imately 1

4mn ln(mn) min(R, C), where the coefficient 1
4 fol-

lows from the fact that four elements are touched at each
swap. For example, if the matrix size is m × n = 1000 ×
100 and we use R = 20, C = 60 classes, the approximation
gives 58mn attempts.

7.5. Randomness of a Randomized Matrix

We introduce here a distance measure that can be used to
qualify the difference between the original and a random-
ized matrix. We use it in the experiments to evaluate the
randomness of the resulting matrices.

Let A be the original m × n real-valued matrix and Â

a randomized version of A. We define the normalized root
mean square distance between A and Â as

d(Â, A) = 1

σA

√∑
i,j |Aij − Âij |2

mn
, (10)

where σA is the standard deviation of the values in A. Note
that d(Â, A) is just the scaled Frobenius distance between
A and Â. For random permutations we can calculate the
expected value of d(Â, A), which can be used as a simple
upper bound of randomness for the case where the row

and column statistics are preserved. In a permutation of
a matrix, the locations of the elements in the matrix are
shuffled.

LEMMA 7: Let X be any dataset of size n, and let P (X)

denote a permutation of X selected uniformly at random.
Then we have E[X · P (X)] = E[X]2.

PROOF 5: Let Sn be the symmetric group of order n,
i.e., Sn contains all the permutations of n elements. Then

E[X · P (X)] = 1

n!

∑
π∈Sn

1

n

n∑
k=1

XkXπ(k)

= 1

n · n!

n∑
k=1

Xk

∑
π∈Sn

Xπ(k)

= 1

n2

n∑
k=1

Xk

n∑
i=1

Xi = E[X]2.

�

THEOREM 8: The expected value of the mean square
distance between a matrix A and its permutations equals
2 Var(A).

PROOF 6:

E[(A − P (A))2] = E[A2] − 2 E[A · P (A)] + E[P (A)2]

= 2 E[A2] − 2 E[A]2 = 2 Var(A).

�

Therefore, if Â was a random permutation of A, we would
expect that d(Â, A) ≈ √

2. However, as we are preserving
row and column statistics, we are also restricting the ran-
domness. Thus in practice, the distance d(Â, A) of a good
randomized matrix Â may have any value between zero
and

√
2 depending on the original matrix. We discuss this

effect in the experiments.

8. EXPERIMENTAL RESULTS

In this section, we give results from experiments on
synthetic and real datasets. We introduce a procedure for
selecting the parameter values, and discuss the convergence,
performance, and the difference in the maintained statistics
between the original and randomized matrices. We apply
the randomization methods in assessing the significance of
three different structural measures: clustering error, maxi-
mum correlation between rows, and variance explained by
the main principal components. We further compare our
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methods to simple permutations methods, where either the
entire matrix is permuted or where only the values in rows
or columns are permuted. Finally, we demonstrate how to
apply our methods in DNA microarray data analysis, as a
case study of an existing application.

8.1. The Datasets

We used five types of artificial data in our experiments.
The first dataset Random contains 100 rows and 100
columns, with each entry independently generated from
the normal distribution with zero mean and unit variance.
The second dataset Sum is a 100 × 100 matrix where val-
ues ri and cj are drawn for each row and column from
N(0, 1), respectively. The values of the matrix are Aij =
ri + cj + nij where nij ∼ N(0, 1). The third dataset Gaus-
sian contains 1000 points taken from a 10-dimensional nor-
mal distribution with unit variance and center drawn from
N10(0, 1). The fourth dataset Component contains 1000
random points with 5 intrinsic dimensions linearly trans-
formed into a 50-dimensional space with Gaussian noise
added to the points. The last artificial dataset Cluster has
a clear Gaussian cluster structure with 10 clusters, each with
10–200 points. Cluster centers were drawn from N100(0, 1)

and cluster points were produced by adding random val-
ues from N100(0, 1) to the cluster center. The datasets are
available at http://www.cis.hut.fi/mrojala/randomization/.

We also used the gene expression data Gene by Scherf
et al. [37]. The dataset contains gene expression measure-
ments from 1375 genes in 60 human cancer cell lines.
Around 2% of the values were missing and replaced by the
average of the values in the corresponding rows. The second
real dataset Retail is an aggregated version of retail mar-
ket basket data [38]. The original dataset contained 88162
transactions with 16470 different products. Only products
that occurred in at most 100 transactions were preserved,
leaving 14632 products. Then we randomly partitioned the
rows as well as the products into groups of 100. This gave
an 881 × 146 matrix, where each entry was the total num-
ber of 1s in the 100 × 100 submatrix of the original data.
The resulting matrix contained integer values from 0 to 11.

The values in all the datasets were linearly scaled to
[0, 1]. Table 3 shows some properties of the datasets. In
the following, rows correspond to data points and columns
to dimensions.

8.2. Selecting Parameter Values

We discuss various approaches for selecting the parame-
ter values for our methods systematically. GeneralMetropo-
lis depends on the constant w > 0, which controls the
amount of difference allowed in the maintained statistics
and affects the converge speed. SwapDiscretized has as

Table 3. The number of rows and columns, and
the average values and standard deviations of the
values in the datasets.

Dataset Rows Columns Mean Std

Random 100 100 0.473 0.132
Sum 100 100 0.500 0.146
Gaussian 1000 10 0.529 0.142
Component 1000 50 0.278 0.116
Cluster 1117 100 0.509 0.081
Gene 1375 60 0.578 0.110
Retail 881 146 0.191 0.135

parameters the number of row and column classes R and C.
With all methods we also have to fix the number of attempts
I . For other, less important parameters we use these fixed
values in our experiments: In histogram-based difference
measures we use 100 bins, effectively distinguishing values
at 0.01 precision. In local modifications Mask and Add, we
use the scale parameter s = 0.1, i.e., the addition is selected
from U([−0.1, 0.1]).

We studied four different parameter selection procedures,
where the parameter values are selected

1. by hand;
2. by restricting the differences in row and column

statistics below some limit;
3. by requiring a minimum data-specific distance

between randomized and original data;
4. by requiring convergence in a given number of

attempts.

All these procedures have certain desirable and undesir-
able properties. Selecting the values by hand can produce
good results. However, the problem is that tuning easily
continues until desired results are obtained. In the second
approach, deciding a good limit for the amount of differ-
ence allowed in the maintained statistics is problematic.
However, we can, for example, choose the parameter w so
that the average L1 difference in cdf is around 0.01.

The third approach is based on the idea that the normal-
ized root mean square distance between the original matrix
and a random matrix is usually tightly distributed around
some value in [0,

√
2], when the matrices share their row

and column statistics exactly. If we knew this distance, we
could require the same distance from the randomized matri-
ces and use this information for selecting appropriate w

and I .
In this paper, we use the fourth approach. We fix the num-

ber of attempts I and find as tight a scaling coefficient w as
possible such that the method still converges in I attempts.
This allows a good comparison between the methods and
produces reasonable results. Based on extensive empirical
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tests with our methods we suggest that I = 100mn attempts
is a good general parameter value for GeneralMetropolis.

The appropriate parameter value w was determined by
using an extended binary search approach: first find a range
[w0, w1] that contains the correct value. Then use binary
search to find the correct value with 1% precision. As the
convergence test, we monitored the normalized root mean
square distance between the original and a randomized
matrix. The method was assessed to be converged in I

attempts if the distance between the original matrix and
a randomized matrix produced with I attempts was at
most 1% smaller than the distance between the original
matrix and a randomized matrix produced with 2I attempts.
The distances were calculated as median distances over 30
randomized matrices.

A similar approach could be used to select the number or
row and column classes for SwapDiscretized. However, in
this paper we will, in general, use R = �2

√
n� row classes

and C = �2
√

m� column classes. For the dataset Retail
we will use R = C = 12, since the dataset contains only 12
different values. The number of attempts I needed is found
by monitoring the normalized root mean square distance
and requiring that it converges. The procedure is repeated
30 times.

Tables 4 and 5 give the parameter values for General-
Metropolis and SwapDiscretized, respectively. The param-
eter w has some variation between different combinations
of difference measures and local modifications as each
combination has different properties. We note that with
the selected number of row and column classes, SwapDis-
cretized needs less attempts with all datasets than the
I = 100mn attempts GeneralMetropolis performs.

8.3. Convergence and Performance

We performed experiments to measure how well the
methods maintain the statistics (distributions or means and
variances), and what their performance is. We used Java
implementations integrated with MATLAB on a 2.2 GHz
Opteron with 4 GB of main memory. We will show some
of the results only on the Gene dataset. However, similar
convergence and performance results were obtained also
with the artificial datasets.

Recall that the parameter w was selected for General-
Metropolis by fixing the number of attempts to I = 100mn

and finding w such that the process still converges. Here
we confirm that the methods are really able to converge
in I = 100mn steps with the selected scaling constants w.
Figure 8 shows the normalized root mean square distance
defined in Equation 10 as a function of attempts when ran-
domizing the Gene data matrix. Each data point presented
in the figure is a result from an independent single random-
ization. The randomization was started from the original

Table 4. Values of parameter w for GeneralMetropolis obtained
for four combinations of difference measures and local modifica-
tions in different datasets. The methods use I = 100mn attempts
in all datasets.

GM-CdfHist GM-MeanStd

Dataset Rotate Resample Mask Rotate

Random 35.1 25.9 25.4 14.7
Sum 36.1 31.4 39.1 18.8
Gaussian 40.4 23.7 34.6 17.3
Component 48.1 53.2 70.8 31.4
Cluster 46.1 28.9 25.4 12.2
Gene 37.1 26.1 24.8 12.3
Retail 23.6 17.6 17.6 12.3

Table 5. Values of parameters for SwapDiscretized for different
datasets: the number of row classes R, the number of column
classes C and the number of attempts I .

Dataset R C I/mn

Random 20 20 26
Sum 20 20 41
Gaussian 6 63 11
Component 14 63 41
Cluster 20 66 32
Gene 15 74 51
Retail 12 12 17
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Fig. 8 The normalized root mean square distance between the
original and randomized matrix as a function of attempts used to
backward and forward run with Gene dataset. The x-axis gives
the number of attempts per element, I/(mn), on log-scale.

matrix and was first run I steps backward and then I steps
forward, where I is the number of attempts presented in
the x-axis. Recall that the normalized root mean square
distance does not measure the difference in the maintained
row and column statistics, but the dissimilarity between the
two matrices.
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Table 6. Normalized root mean square distances between the original and randomized matrices. The values are average values over 999
samples. The standard deviation is in all cases less than 0.01.

GM-CdfHist GM-MeanStd Permutation

Dataset Rotate Resample Mask Rotate SwapDiscr. All Row Col

Random 1.384 1.379 1.398 1.381 1.392 1.414 1.407 1.406
Sum 0.811 0.816 0.800 0.799 0.801 1.414 1.121 1.180
Gaussian 0.810 0.829 0.845 0.835 0.833 1.414 1.382 0.930
Component 0.581 0.574 0.529 0.544 0.565 1.414 1.111 1.052
Cluster 1.359 1.360 1.388 1.376 1.372 1.414 1.408 1.389
Gene 1.078 1.085 1.081 1.094 1.083 1.414 1.153 1.385
Retail 1.361 1.363 1.375 1.356 1.377 1.414 1.397 1.395

From Figure 8 we observe that all methods converged
to approximately the same distance. SwapDiscretized con-
verged the fastest, but this is partly due to the differ-
ent parameter selection procedure. The figure supports
our empirical convergence experiments where I = 100 mn

attempts are used for GeneralMetropolis and I = 51 mn

attempts for SwapDiscretized with the Gene dataset.
Table 6 gives the average normalized root mean square

distances between randomized and original matrices for
different methods and datasets. The randomized samples
are produced with the parameters given in Tables 4 and 5.
The variation between different methods is small, whereas
the variation in distances between different datasets is large.
The distances in datasets Random and Peaks are close to√

2 ≈ 1.414, the expected distance of a random permutation
according to Theorem 8. On the other hand, in Gaussian
dataset the values in each column are tightly concentrated
around one value. Thus, also the distances of randomized
matrices that share the original row and column statistics
differ a lot from

√
2. We notice that also the distances of the

row-wise and column-wise permutations differ from
√

2,
but the distances are always larger than the distances with
our methods.

To confirm that the randomizations produced by a single
method are significantly different, we calculated the pair-
wise normalized root mean square distances between 999
randomized samples for each method and dataset. The

results are shown in Table 7. The pairwise distances in
Table 7 almost equal the distances from the original matri-
ces shown in Table 6. Thus, we may conclude that the meth-
ods indeed produce different randomizations in each run.

Table 8 shows the acceptance rate of attempts and the
running times for the methods on Gene dataset. We notice
that GM-Cdf is over ten times slower than GM-CdfHist .
When used with larger matrices the relative time difference
increases. The results of GM-Cdf and GM-CdfHist are in
all cases very close to each other. Thus, there is no need
to use the slower but slightly more accurate GM-Cdf with

Table 8. Performance of the methods with Gene dataset (mn =
82500). Acceptance rate is the number accepted local modifica-
tions divided by the number of attempted ones. Randomization
was done with 100 mn attempts with all GeneralMetropolis meth-
ods and with 51 mn attempts with SwapDiscretized. Time is the
time needed to produce one sample matrix.

Method Acceptance rate Time (s)

GM-Cdf, Rotate 0.237 223.53
GM-CdfHist, Rotate 0.182 16.86
GM-CdfHist, Resample 0.448 6.14
GM-MeanStd, Mask 0.309 9.67
GM-MeanStd, Rotate 0.241 10.24
SwapDiscretized 0.215 4.83
Permutation 0.06

Table 7. Pairwise normalized root mean square distances between randomized matrices. The presented values are average values over
pairwise distances of 999 samples. The standard deviation is in all cases less than 0.01.

GM-CdfHist GM-MeanStd

Dataset Rotate Resample Mask Rotate SwapDiscr.

Random 1.387 1.387 1.397 1.381 1.391
Sum 0.836 0.846 0.801 0.806 0.809
Gaussian 0.823 0.857 0.843 0.841 0.834
Component 0.631 0.619 0.526 0.558 0.599
Cluster 1.360 1.364 1.366 1.359 1.371
Gene 1.085 1.100 1.074 1.102 1.086
Retail 1.363 1.366 1.376 1.356 1.377
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(b) Difference in means and standard deviations

Fig. 9 Convergence of the combined average row and column difference in the maintained statistics as a function of attempts used for
randomizing Gene dataset.

GeneralMetropolis. The other methods are fast enough for
practical use. Compared to producing a random permutation
of the original matrix, the methods take approximately
100 times longer. This is due to the number of attempts
I = 100mn used.

Next we analyzed the difference in distributions between
the original matrix and randomized matrices produced by
the methods. In Figure 9 the convergence of the distribu-
tion difference 9(a) and the mean and standard deviation
difference 9(b) are shown for the Gene dataset. The dif-
ferences have converged in the same number of attempts
as the distances in Figure 8. In Table 9 the average dif-
ferences of rows and columns of randomized samples
are shown for different methods on Gene dataset. From
Figure 9 and Table 9 we can conclude that the methods that
are designed to preserve distributions, GeneralMetropolis
with GM-CdfHist and SwapDiscretized, can really preserve
the distributions better than the methods that preserve only

means and variances. On the other hand, the distribution-
preserving methods can also preserve means and variances
quite well.

For comparison, we have included also the differences in
the maintained statistics with total, row-wise and column-
wise permutations in Table 9. In all cases, the permutation
methods produce much larger differences in the row and
column statistics than our methods. Of course, row-wise
permutations preserve the row statistics exactly, and simi-
larly for column-wise permutations.

8.4. Significance Testing of Structural Measures

To test the methods in actual data analysis tasks, we
used three structural measures: the maximum correlation
value between matrix rows, the K-means clustering error
with 10 clusters calculated with K-means++ algorithm
[39], and the fraction of variance explained by the first
five principal components. We generated 999 randomized

Table 9. Average difference in three statistics for rows and columns between the original matrix and the randomized matrices in
Gene dataset. The distribution difference is the L1 difference in cdfs. The mean and std differences are the absolute differences in the
corresponding values. Values in the table are multiplied by 1000.

Distribution Mean Std

Method Rows Cols Rows Cols Rows Cols

GM-CdfHist, Rotate 7.02 1.19 2.11 0.20 3.04 0.36
GM-CdfHist, Resample 9.09 1.39 3.11 0.28 4.66 0.53
GM-MeanStd, Mask 17.77 9.50 0.00 0.00 0.91 0.05
GM-MeanStd, Rotate 17.74 5.95 2.23 0.06 4.21 0.06
SwapDiscretized 8.66 0.94 3.08 0.12 3.20 0.12
Permutation 58.82 21.69 46.62 17.75 38.93 14.77
Row-wise permutation 0.00 21.64 0.00 17.73 0.00 14.69
Column-wise permutation 58.76 0.00 46.54 0.00 38.92 0.00
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matrices with each method for each dataset using the Besag
approach introduced in Section 4.5. From these samples
we calculated the average value and the standard deviation
of the three structural measures. Finally, the empirical p-
values were calculated for the original data.

The hypothesis for K-means was that the original data has
smaller clustering error, and for correlation and principal
components that the original data has a higher value of
the corresponding structural measure than the randomized
matrices. The results for the maximum correlation value
are shown in Table 10, for the K-means clustering in
Table 11, and for the principal components in Table 12.
For comparison we have also included results with different
permutation methods. Additionally, in Table 11 we give the
standard deviations of K-means clustering errors.

With Random dataset we observe that all methods have
resulted in p-values near 0.5 for the three structural mea-
sures. Thus, as expected, the Random dataset does not
contain any significant structure.

The dataset Sum was generated with a simple procedure
where each row and column has its own mean value in
Gaussian distribution. Thus, it is expected that the dataset
is explained by the row and column statistics. In Table 10
we see that all our methods have produced p-values that
imply that the maximum correlation found in the dataset
Sum is nonsignificant, whereas, all the permutation methods
suggest that there is some structure in the data. It is also
notable that the maximum correlation found in permuted
matrices is much smaller than in the original matrix.

The dataset Gaussian contains a high maximum correla-
tion as shown in Table 10. To see that also high structural
measures can be nonsignificant we used our methods to
assess the significance of the maximum correlation in the
Gaussian dataset. With all our methods we get p-values
near 0.4, implying that the maximum correlation is not
surprising, given the row and column statistics. Actually,
also the column-wise permutation considers the result as
nonsignificant, which implies that the dataset is mainly

described by the column distributions which is clear when
considering how the dataset was generated.

The last two artificial datasets Cluster and Component
were generated to contain significant structure. In Table 11
we have assessed the significance of the K-means clustering
error in the dataset Cluster and in Table 12 the signifi-
cance of the variance explained by the first five principal
components in the dataset Component. We note that all
methods have given a p-value 0.001 as the result. However,
the methods that preserve both the row and column statis-
tics have preserved the structural measure much more than
the permutation methods. This effect is especially visible
with the Component dataset (Table 12).

We used the methods also to study the significance of
the three structural measures in a gene expression dataset
Gene. We notice that the original structures disappear
in the randomizations. However, our methods have again
preserved the structure more than the permutation methods.
We can conclude that the structures in the dataset Gene
are independent from the row and column statistics, and
therefore, interesting.

The second real dataset Retail was formed with an
aggregation procedure. We assessed the significance of the
principal component analysis on Retail dataset. The results
in Table 12 show that according to our methods the intrinsic
structure in the Retail dataset is a purely random artefact
explained by the row and column distributions. Contrary
to this, the permutation methods assessed the structural
measure as significant.

8.5. Applying Randomization Methods in DNA
Microarray Analysis

Next, we demonstrate the performance of our methods on
a real data analysis task. We look at the complete dataset
from [37], of which Gene was a filtered subset. The com-
plete dataset contains gene expression measurements for

Table 10. Maximum correlation values between the rows calculated for original and randomized matrices with different methods. The
average maximum correlations in 999 randomizations are given. The standard deviations of maximum correlations were less than 0.04 in
all cases. The p-values are calculated for the original data matrices with the hypothesis that the original data contains a high correlation.

Random Sum Gaussian Gene

Method Measure p-value Measure p-value Measure p-value Measure p-value

Original data 0.363 0.694 0.993 0.995
GM-CdfHist, Rotate 0.359 0.391 0.674 0.133 0.992 0.399 0.688 0.001
GM-CdfHist, Resample 0.360 0.416 0.666 0.069 0.992 0.353 0.664 0.001
GM-MeanStd, Mask 0.360 0.405 0.699 0.587 0.992 0.411 0.656 0.001
GM-MeanStd, Rotate 0.360 0.397 0.692 0.415 0.992 0.372 0.649 0.001
SwapDiscretized 0.361 0.410 0.689 0.343 0.992 0.396 0.714 0.001
Permutation 0.360 0.389 0.360 0.001 0.972 0.007 0.615 0.001
Row-wise perm. 0.358 0.373 0.360 0.001 0.972 0.008 0.615 0.001
Column-wise perm. 0.360 0.414 0.582 0.001 0.992 0.395 0.658 0.001
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Table 11. K-means clustering errors with 10 clusters calculated for original and randomized matrices with different methods. The average
clustering errors in 999 randomizations are given. The values in parentheses are the standard deviations. The p-values are calculated for
the original data matrices with the hypothesis that the original data contain cluster structure.

Random Cluster Gene

Method Measure p-value Measure p-value Measure p-value

Original data 147.0 457.3 525.5
GM-CdfHist, Rotate 146.7 (0.5) 0.677 659.2 (0.8) 0.001 605.2 (1.3) 0.001
GM-CdfHist, Resample 145.0 (0.7) 0.998 657.8 (1.0) 0.001 620.4 (1.7) 0.001
GM-MeanStd, Mask 147.0 (0.5) 0.534 654.1 (0.9) 0.001 591.1 (1.1) 0.001
GM-MeanStd, Rotate 146.7 (0.5) 0.702 656.5 (0.8) 0.001 621.1 (1.4) 0.001
SwapDiscretized 146.7 (0.5) 0.728 659.0 (0.8) 0.001 604.3 (1.3) 0.001
Permutation 147.0 (0.6) 0.484 688.2 (0.4) 0.001 924.3 (1.0) 0.001
Row-wise perm. 147.0 (0.6) 0.505 690.3 (0.6) 0.001 661.6 (0.9) 0.001
Column-wise perm. 146.7 (0.6) 0.683 660.8 (0.6) 0.001 859.0 (1.3) 0.001

Table 12. The fraction of variance explained by the first five principal components calculated for original and randomized matrices with
different methods. The average fractions of variance in 999 randomizations are given. The standard deviations of fractions of variances
were less than 0.003 in all cases. The p-values are calculated for the original data matrices with the hypothesis that the original data
contains a high fraction of variance explained.

Random Component Retail Gene

Method Measure p-value Measure p-value Measure p-value Measure p-value

Original data 0.173 0.941 0.080 0.605
GM-CdfHist, Rotate 0.174 0.596 0.687 0.001 0.079 0.261 0.440 0.001
GM-CdfHist, Resample 0.174 0.625 0.695 0.001 0.079 0.142 0.425 0.001
GM-MeanStd, Mask 0.174 0.651 0.776 0.001 0.080 0.409 0.456 0.001
GM-MeanStd, Rotate 0.174 0.606 0.747 0.001 0.079 0.303 0.422 0.001
SwapDiscretized 0.174 0.622 0.708 0.001 0.080 0.404 0.441 0.001
Permutation 0.174 0.653 0.140 0.001 0.064 0.001 0.115 0.001
Row-wise perm. 0.174 0.682 0.456 0.001 0.077 0.001 0.407 0.001
Column-wise perm. 0.174 0.604 0.203 0.001 0.066 0.001 0.149 0.001

9365 genes in 60 human cancer cell lines. As exempli-
fied by the analysis in the original paper, gene expression
data analysis always contains numerous steps. In the pre-
processing phase, variables such as technical microarray
quality measures, expression levels and their ratios are used
to discard the majority of genes from further analysis.1 The
set of potentially interesting genes can be further reduced
by applying statistical tests, or by clustering and focusing
on clusters containing important genes. Typically, the final
goal is to produce a set of 10 or so candidate genes, so that
they can be individually tested in further wet laboratory
experiments.

In their analysis, Scherf et al. filtered the set of genes
according to different conditions for signal strength, and
performed hierarchical clustering of the 60 cell lines. We
showed in Section 8.4 that the Gene dataset contained sig-
nificant cluster structure. However, that is not always the

1 Commonly approved standards for microarray data prepro-
cessing do not exist, although there is a working group for
data transformation and normalization under the MGED society
http://genome-www5.stanford.edu/mged/normalization.html.

case in microarray data analysis. Due to rapid development
in the field, very often many of the analysis methods are
ad hoc in nature. Especially in early microarray studies, the
set of genes was reduced with somewhat crude procedures.

We mimicked such ad hoc methods by creating an analy-
sis pipeline that filters the set of genes and performs hierar-
chical clustering on the reduced set. For filtering, all expres-
sion matrix elements are discretized by giving them a value
of 1 or 0, so that the elements with values in the highest
quartile of expression values are set to 1 and the rest to 0.

The set of genes (i.e., rows) is next reduced by calculat-
ing the sum of 1’s for each row. Rows are sorted by their
sums, and 50 rows with highest sums are included in the
filtered data. If there are multiple rows with same sums to
be included, they are picked at random. Typically, the aim
of the preprocessing phase is to arrive at a set that is small
enough to be easily managed and manually analyzed fur-
ther. Therefore, we chose to select only 50 genes. Finally,
a row-wise hierarchical clustering using Euclidean distance
is performed for the 50 rows, and the clustering error is
used as the structural measure.
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For comparison, we also repeat the filtering steps as
described in Ref. [37], and report results for them. The orig-
inal preprocessing was based partly on manual inspection
of the raw scanned data, so our reproduction will follow
only part of the original preprocessing steps. Data rows are
filtered by identifying rows that have at least four values
above or below manually tuned thresholds for over- and
underexpression, and do not have more than four unknown
values.

The ad hoc gene analysis pipeline was applied to the
original data from [37]. The clustering errors and p-values
for the original pipeline and the discretization pipeline
are given in Table 13. We used randomization methods
GM-CdfHist with Rotate, GM-MeanStd with Mask and
SwapDiscretized as they were seen to produce good results
for Euclidean distance-based clustering in Section 8.4, and
for comparison we used the permutation method.

We require p-values to be below 0.05, because it is the
most commonly used significance level in microarray anal-
ysis. We see that the simple permutation method fails to
produce useful results. When permuting all values of the
matrix, the cluster structure of the data matrix is destroyed,
and therefore, results are estimated to be significant for our
crude discretization preprocessing pipeline. On the other
hand, the clustering error arising from the original pipeline
has a p-value of 1.00. It is based on fixed bounds of signal
strength. Permutation changes the data matrix so much that
a very different number of rows are selected, thus compar-
ing clustering errors does not produce meaningful results.
More delicate randomization methods, however, preserve
the structure of data more closely, but for significance test-
ing it would be advisable to fix the number of rows to filter
as was done in our discretization pipeline.

Significance results from our methods are more realis-
tic. The original pipeline is labeled as significant, and the
discretization-based pipeline is given p-values that indicate
nonsignificance. Because the number of rows to be filtered
was fixed at 50, it can be concluded that the discretiza-
tion preprocessing failed to pick a subset of rows with

Table 13. The p-values and clustering errors of Scherf et al. and
discretization analysis pipelines with four different randomization
methods. The results are calculated from 999 randomizations with
the complete Scherf et al. data.

Scherf et al. Discretization

Method Meas. p-val. Meas. p-val.

Original data 232.3 18.5
Permutation 183.9 1.000 28.8 0.001
SwapDiscretized 303.7 0.001 20.7 0.114
GM-CdfHist, Rotate 324.5 0.001 21.7 0.060
GM-MeanStd, Mask 275.3 0.001 20.2 0.146

significant cluster structure, i.e., when more realistic ran-
domization was used to generate random gene expression
datasets, cluster structures of similar strength were detected
by chance.

DNA microarrays were chosen as an example of real
data, because discovering interesting structures in this high-
throughput data is dependent on advanced data analysis
techniques [40]. Multiphased analysis pipelines do not lend
themselves to traditional methods of statistical significance
testing, so there is a growing need for randomization-based
significance testing in microarray data analysis. Microar-
rays have been criticized for their low signal-to-noise ratio,
and there have been doubts that some microarray measure-
ments do not necessarily contain any significant patterns at
all. Our randomization experiments show that this is not the
case with the dataset of Scherf et al., but that with improper
ad hoc methods the significant structure in the data can be
destroyed. We also saw that the simple permutation meth-
ods do not produce very realistic random samples in DNA
microarray significance testing. We hold the opinion that
part of the blame that microarray measurements have been
receiving should be addressed to inadequate robustness of
data analysis methods.

9. PRACTICAL GUIDELINES FOR USING THE
METHODS

In this section we discuss applying the methods in
practice and give some useful guidelines. First, we compare
the methods and their properties. After that we give some
practical information on applying the methods on real
problems.

9.1. Comparison of the Methods

We have introduced two main methods for randomiz-
ing a real-valued matrix, namely GeneralMetropolis and
SwapDiscretized. The method GeneralMetropolis can use
any difference measure and local modification, forming
a few method combinations. We have studied difference
measures GM-Cdf, GM-CdfHist and GM-MeanStd in more
detail as well as local modifications Resample, Rotate,
and Mask.

The only practical difference we noticed between differ-
ence measures GM-Cdf and GM-CdfHist was that GM-
CdfHist is much faster for large datasets. The addi-
tional accuracy in GM-Cdf is negligible compared to
the increase in randomization time. The time differences
between SwapDiscretized and GeneralMetropolis with
GM-CdfHist or GM-MeanStd were small. However, in gen-
eral, SwapDiscretized seemed to be the fastest method.
GeneralMetropolis with GM-MeanStd is somewhat faster
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than GeneralMetropolis with GM-CdfHist. Also, the local
modifications had an effect on the convergence time, the
modifications based on small additions being slightly less
efficient than others.

The main difference between the methods is the ability
to preserve certain statistics. If only row and column means
and variances need to be preserved, then GeneralMetropo-
lis with GM-MeanStd and Mask is the best choice, since
the means are preserved exactly and variances quite accu-
rately as well. If the row and column distributions need
to be preserved, then SwapDiscretized is an easy choice.
Also GeneralMetropolis with GM-CdfHist and Rotate
or Resample works well. The chosen local modification
also affects the final value distributions.

The methods have different parameters. In general,
selecting the scaling constant, w, with GeneralMetropolis
is rather complicated. The effect of w is hard to understand
directly. Contrary to this, SwapDiscretized has understand-
able parameters that can quite safely be selected by hand.
The number of classes directly affects the difference in dis-
tributions. The other parameters regarding difference mea-
sures and local modifications do not have as much impact
on the performance of the methods.

To conclude the comparison, all our methods have pro-
duced reasonable results in the experiments. Also, permu-
tation methods were able to give good results in some
cases depending on the nature of the dataset studied. How-
ever, in our opinion, SwapDiscretized is a good choice for
general significance testing on real-valued matrices; also
GeneralMetropolis with different difference measures and
local modifications is sometimes a good choice.

9.2. Using the Methods in Practice

To make the practical use of our methods easier we have
collected here some suggestions and guidelines. In most
applications we suggest using SwapDiscretized due to its
simplicity.

The first problem a user faces is selecting suitable param-
eter values. Background information about the data can
be useful in selecting the parameters. For example, we
may know that the values are only meaningful in preci-
sion 0.01 when the values are in [0, 1]. In such a case,
it may be reasonable, for example, to use SwapDiscretized
with R = C = 100 which corresponds to the precision 0.01.
Another example is a contingency table where a natural dis-
cretization is directly available (as was the case with Retail
dataset).

With GeneralMetropolis methods, exploiting the infor-
mation of meaningful precision is a little bit harder than
with SwapDiscretized. A corresponding difference scaling
parameter w can be found with an extended binary search
approach as discussed in Section 8.2. In general, we suggest

fixing the precision beforehand and tuning the parame-
ters to obtain the wanted precision. With SwapDiscretized
the number of row and column classes can be calculated
directly from this information.

After fixing the parameters controlling the differences
in the maintained statistics, we should find an appropriate
number of attempts I and assess the amount of randomness.
The number of attempts I can be found, for example, by
monitoring the convergence of the scaled root mean square
distance or of a structural measure. It should, however, be
noted that full convergence is not critical—the results will
just be more conservative.

To check the randomness we can calculate the normalized
root mean square distance between a randomized matrix
and the original matrix. Qualifying whether a matrix is
random enough is a hard question that is partly left for
future work. Nevertheless, we can compare the distance to
other distances obtained by permutation methods, but in
general, those distances can be quite different. A heuristic
approach is to start from a random permutation and run
GeneralMetropolis with w = ∞ until convergence. The
distance of the result from the original matrix may give
some hint of the appropriate amount of randomness.

For the validity of p-values one has to use the Besag
and Clifford approach introduced in Section 4.5. For com-
parison it is always a good idea to repeat the significance
testing with permutation methods as well. The methods can
sometimes be quite sensitive and deviations small, so one
should also look at the difference in the structural measures
and not only at the obtained p-value. The result can safely
be assessed as significant with respect to row and column
distributions if the difference in the structural measures is
large and the p-value is near zero.

10. CONCLUDING REMARKS

We have considered the problem of randomization-based
significance testing for data mining results on real-valued
matrix data. We concentrated on methods for generating
random matrices that have approximately the same row
and column distributions, or means and variances, as the
original data. Such randomized matrices can then be used
to obtain empirical p-values for the data mining results.

We gave a general Metropolis algorithm that can be used
with any difference measure and local modification as well
as a simple method based on discrete swaps. The algorithms
are based on different ways of iteratively updating a matrix.
The algorithms work well, converging in a reasonable time.
Our empirical results indicate that the obtained p-values
clearly show whether the data mining result is significant
or not.

There are obviously many open issues related to our
current work. Starting from the algorithms, the methods
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we presented are not the only possible ones. For example,
the Metropolis scheme can be used with virtually any local
modification for the matrices. It would be interesting to
know the differences in the convergence of the methods in
more detail.

As already the 0–1 case of our problem is computation-
ally very hard, it seems quite difficult to obtain algorithms
that would have a provable convergence time. Still, some
more theoretical analyses would be welcome. Also, more
study is needed in selecting the parameter values for our
methods. Using parallel tempering with GeneralMetropolis
could produce some speedup and accuracy, see, e.g., Ref.
[41].

In applying the algorithms, we employed the schema
suggested by Besag et al. [2,3,31]. This schema involves
running the chain backward. The more efficient sequential
versions of this approach would also be worth studying.

The final important open issue is what type of statistics
should one try to preserve in randomization-based signifi-
cance testing. The choice of the value distributions or the
weaker first and second moments, means and variances,
for the rows and columns seems fairly natural. Addition-
ally, our approach is based on assuming that the rows
and columns are independent of each other. However, also
certain weaker or stronger statistics could be preserved. Pre-
serving different statistics is an interesting topic for future
work.
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[29] I. Bezáková, A. Sinclair, D. Stefankovic, and E. Vigoda.
Negative Examples for Sequential Importance Sampling
of Binary Contingency Tables, http://arxiv.org/abs/math.ST/
0606650, 2006.

[30] J. G. Sanderson, Testing ecological patterns, Am Sci 88
(2000), 332–339.

[31] J. Besag and P. Clifford, Sequential Monte Carlo p-values,
Biometrika 78(2) (1991), 301–304.

[32] Y. Benjamini and Y. Hochberg, Controlling the false
discovery rate: A practical and powerful approach to multiple
testing, J R Stat Soc Series B Methodological 57(1) (1995),
289–300.

[33] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
M. Teller, and E. Teller, Equations of state calculations
by fast computing machines, J Chem Phys 21 (1953),
1087–1092.

[34] W. K. Hastings, Monte Carlo sampling methods using
Markov chains and their applications, Biometrika 57 (1970),
97–109.

[35] S. Kullback and R. Leibler, On information and sufficiency,
Ann Math Stat 22(1) (1951), 79–86.

[36] S. H. Cha and S. N. Srihari, On measuring the
distance between histograms, Pattern Recognit 35(6) (2002),
1355–1370.

[37] U. Scherf, D. T. Ross, M. Waltham, L. H. Smith, J. K. Lee,
L. Tanabe, K. W. Kohn, W. C. Reinhold, T. G. Myers, D.
T. Andrews, D. A. Scudiero, M. B. Eisen, E. A. Sausville,
Y. Pommier, D. Botstein, P. O. Brown and J. N. Weinstein,
A gene expression database for the molecular pharmacology
of cancer, Nat Genet 24 (2000), 236–244.

[38] T. Brijs, G. Swinnen, K. Vanhoof, and G. Wets, Using
association rules for product assortment decisions: A case
study, In Knowledge Discovery and Data Mining, 1999,
254–260.

[39] D. Arthur and S. Vassilvitskii, K-means++: the advantages
of careful seeding, In SODA ’07: Proceedings of the
Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Society for Industrial and Applied Mathematics,
Philadelphia, 2007, 1027–1035.

[40] A. Brazma and J. Vilo, Gene expression data analysis,
Microbes Infect 3 (2001), 823–829.

[41] D. J. Earl and M. W. Deem, Parallel tempering: theory,
applications, and new perspectives, Phys Chem Chem Phys
7 (2005), 3910–3916.

Statistical Analysis and Data Mining DOI:10.1002/sam


