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Abstract

Background: Modern high-throughput measurement technologies such as DNA microarrays and next generation
sequencers produce extensive datasets. With large datasets the emphasis has been moving from traditional
statistical tests to new data mining methods that are capable of detecting complex patterns, such as clusters,
regulatory networks, or time series periodicity. Study of periodic gene expression is an interesting research
question that also is a good example of challenges involved in the analysis of high-throughput data in general.
Unlike for classical statistical tests, the distribution of test statistic for data mining methods cannot be derived
analytically.

Results: We describe the randomization based approach to significance testing, and show how it can be applied
to detect periodically expressed genes. We present four randomization methods, three of which have previously
been used for gene cycle data. We propose a new method for testing significance of periodicity in gene
expression short time series data, such as from gene cycle and circadian clock studies. We argue that the
underlying assumptions behind existing significance testing approaches are problematic and some of them
unrealistic. We analyze the theoretical properties of the existing and proposed methods, showing how our method
can be robustly used to detect genes with exceptionally high periodicity. We also demonstrate the large
differences in the number of significant results depending on the chosen randomization methods and parameters
of the testing framework.
By reanalyzing gene cycle data from various sources, we show how previous estimates on the number of gene
cycle controlled genes are not supported by the data. Our randomization approach combined with widely
adopted Benjamini-Hochberg multiple testing method yields better predictive power and produces more accurate
null distributions than previous methods.

Conclusions: Existing methods for testing significance of periodic gene expression patterns are simplistic and
optimistic. Our testing framework allows strict levels of statistical significance with more realistic underlying
assumptions, without losing predictive power. As DNA microarrays have now become mainstream and new high-
throughput methods are rapidly being adopted, we argue that not only there will be need for data mining
methods capable of coping with immense datasets, but there will also be need for solid methods for significance
testing.

Background
Randomization methods are techniques for significance
testing that are based on generating data that shares
some of the same properties with the real data, but
lacks the structure of interest. For example, if we are
interested in predicting a target variable on the basis of

some explanatory variables, then we can randomize the
target variable to remove any real connection between
the explanatory and target variables. The prediction
method is run on randomized data, and the accuracy of
the resulting classifier is noted. This is repeated for, say,
10000 randomizations, and the accuracy of the classifier
obtained on real data is compared with the results on
randomized data to obtain an empirical p-value. See [1]
for an overview on using randomization methods for
significance testing.
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A randomization method is based (explicitly or impli-
citly) on a null model, i.e., a description of what the data
would look like in the absence of the pattern of interest.
In the example above, the null model states that the data
looks like the original data, except that the target variable
is random (but has the same distribution of values as the
original one). A well-studied example of a null model is
in the context of 0-1 matrices, where one can consider
the class of matrices having the same row and column
sums as the original data [2-4]. In the realm of gene
expression data, 0-1 matrices can be produced by discre-
tizing data into differentially and non-differentially
expressed values. Using the null model to maintain the
number of 1s in the columns and rows in significance
testing tells whether the data analysis result is caused just
by the row and column sums, i.e., the count of differen-
tial expression values for genes and samples.
Permutation testing has been widely used in biological

studies, as it is a natural fit with comparative clinical
trials (see [5-9] for examples). Straightforward permuta-
tion methods have, however, a limited scope, but a larger
variety of problems can be tackled by using computation-
ally more advanced methods. Advanced methods, e.g.
Markov-Chain Monte Carlo based algorithms, have had
success in fields such as ecology [3,10,11]. Ecological data
cannot in most situations be produced using statistically
controlled procedures such as replicates and comparing
experimental samples to control samples. In molecular
biology similar challenges are faced especially when using
high-throughput measurement instruments. As an exam-
ple, null models have been used in determining the sig-
nificance of co-occurrence patterns in studying potential
transcription factor binding sites [12] or generic time-
dependent variation of gene expression [13].
Nowadays vast amounts of data are produced by using

microarrays, with the intent of detecting complex pat-
terns such as periodic gene expression. Periodic expres-
sion is central in many fields, e.g., in cancer research
and in circadian rhythm research. In analyzing possible
periodicity of gene expression, testing the significance of
the results is quite difficult: As there are thousands of
genes, it is likely that at least some of them will show
periodic behavior by chance. In general high-throughput
exploratory methods such as DNA microarrays are very
prone to misinterpretation [14].
Gene periodicity studies measure expression for a large

set of genes in a series of time steps, covering typically
one or more assumed gene cycles. Due to practical rea-
sons sampling interval is often long and a control experi-
ment repeating the same measurement on non-induced
cells has not been performed. Microarray measurements
are laborious and expensive, limiting the amount of sam-
ples that can be made. Emerging RNA-seq methods are
poised to replace expression microarrays, but for the

foreseeable future the amount of samples is equally
limited with them.
There has been discussion on the true interpretation

of gene periodicity results since the first two experimen-
tal yeast studies [15,16]. The first studies suggested that
400 to 1000 genes are periodically expressed. However
most notably Cooper et al. have suggested that data
produced in the yeast studies does not warrant such
strong conclusions about gene periodicity [17]. They
stress the importance of careful data analysis and inter-
pretation, calling for new methods of significance
testing.
Methodological research in periodicity studies has

concentrated on producing alternative approaches for
identifying periodicity in gene expression time series.
Proposed methods vary from simple Fourier analysis to
more elaborate mathematical and statistical analyzes
[18]. As it is often in rapidly developing fields, computa-
tional methods for verification of results are developed
more slowly. There has been no critical studies on
methods of periodicity significance testing, until the
interesting study by Futschik and Herzel [19]. They pro-
posed a background model of gene expression based on
autocorrelative random processes. Using the background
model they were able to improve the quality of signifi-
cance detection, compared to random permutations or
Gaussian models. An important aspect of the Futschik
and Herzel study was that they discussed the assump-
tions and justifications of their background model,
which had not been done in previous work. Obviously a
single study can cover the area only partially and the
important significance testing question should be stu-
died further. In biomedical sciences, periodicity studies
have continued since, with the focus moving from gene
cycle to circadian cycle (e.g., [20-22]). However on the
method development arena new developments have
been scarce.
In this study we present null models for significance

testing. The null models are formulated as randomiza-
tion methods, i.e., algorithms for generating datasets.
Generated randomized datasets share certain character-
istics with the original dataset, so that they are realistic
samples for calculating how extreme values of periodi-
city we should observe by chance. First we define the
randomization methods and describe how they can be
applied to periodicity analysis. Next we review the dif-
ferences in the results produced by different methods,
and last we discuss the implications of our results for
microarray studies and other fields of high-throughput
biosciences.

Methods
We present the significance testing approach and the ran-
domization algorithms to be used within the framework.
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First we describe how periodicity can be measured from
gene expression and how measured periodicity is inter-
preted statistically.

Measuring periodicity
As a measure of gene periodicity we use a simplified
version of the Fourier score approach used by [15],
based on a Fourier analysis of the gene expression time
series. While several different approaches to periodicity
detection have been discussed in the literature, the origi-
nal Fourier score approach is the most commonly used
and also was found to perform better than more intri-
cate methods [18].
We consider time series matrices produced by mea-

surements of gene expression at consecutive time points.
Let the gene expression matrix E have n rows and m
columns, corresponding to n genes and m sequential
time points. The matrix has been produced by measur-
ing expression of each gene at uniform intervals during
c gene cycles.
Periodicity score F for gene g at frequency w is defined

in Equation (1). Here E(g, t) is the normalized expression
value of gene g Î {1, ..., n}, at time t Î {1, ..., m}.

F1 =
m∑

t=1

sin(wt)E(g, t) F2 =
m∑

t=1

cos(wt)E(g, t)

F =
√

F2
1 + F2

2

(1)

For normalization we use the same procedure as
Futschik and Herzel [19]. First missing values are
imputed with KNN-imputation. Then each row is
shifted to have mean 0 and scaled to have standard
deviation 1. These normalization steps are done to origi-
nal and randomized data before calculating periodicity
scores [19].

Detecting significant periodicity: empirical p-values
Periodicity scores allow us to compare periodicity levels
between genes. To identify genes that are to be consid-
ered periodic, we need a way to decide which periodicity
scores are significantly large. In the original studies peri-
odicity was decided by using a threshold for the score
[15,16]. Threshold is selected in an ad hoc manner by
looking at some characteristics of the dataset, and
selecting a value that gives results that are considered to
be reasonable.
Using a fixed periodicity score threshold does not give

us any approximation on how likely it is to detect the
given level of periodicity by pure chance. For estimating
how unlikely a periodicity score is, we compare it
against the distribution of scores that we would prob-
ably see when only non-induced genes are measured,
i.e., against the null distribution. p-value is derived by

comparing score in the original dataset to the null dis-
tribution. To define and estimate the null distribution,
we use randomization based null models that are
described later.
Let F(x) be the periodicity score of row x, let g be the

original row and let g′ = {g′
1, . . . , g′

R} be the R rando-
mized rows. Empirical one-tailed p-value for the periodi-
city of row g is defined by the Equation (2).

p =

∣∣{g′|F(g′) ≥ F(g)}∣∣ + 1

R + 1
(2)

If the empirical p-value is small, then we can conclude
that under the null model it is unlikely that the
observed periodicity of g is a product of luck. However
when multiple observations are made, the probability of
detecting periodicity by chance increases. Therefore we
need to employ multiple testing correction. The tradi-
tional way to handle multiple testing correction is to
control family-wise error rate (FWER), using for exam-
ple Holm-Bonferroni method [23]. FWER is typically
considered too strict for DNA microarray studies
[24,25]. It controls the probability of making even a sin-
gle error, resulting in very narrow rejection regions.
Microarray studies increasingly use less strict approach
of controlling false discovery rate (FDR), i.e., the propor-
tion of mistakes, with the Benjamini-Hochberg method
[26]. It will also be used here as one of the two multiple
testing methods.
An important caveat of the Benjamini-Hochberg

method is that it controls the expected rate of false dis-
coveries and can have suboptimal performance in permu-
tation testing [27]. As a randomization based null model
can be readily used to generate either cyclicity scores
from the null distribution or empirical p-values, majority
of available multiple testing approaches can be used.
Unfortunately the more advanced solutions, such as
those from [28] or [29], are more complicated. As multi-
ple testing control methods are not the focus of this
study, we use the more simplistic Benjamini-Hochberg
method.

Detecting significant periodicity: Futschik and Herzel
threshold
Futschik and Herzel use an alternative approach to sig-
nificance testing [19]. They do not calculate empirical
p-values, but instead use the raw periodicity scores pro-
duced by the randomization methods. Equation (3)
below defines the Futschik-Herzel empirical false discov-
ery rate FH(f) for threshold f. The equation is based on
periodicity scores in randomized data F(g, r) and on per-
iodicity scores in the original data F(g). Count of scores
greater than or equal to f are calculated over all genes g
Î {1, ..., n} and randomized matrices r Î {1, ..., R},
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where R is the number of randomized matrices pro-
duced.

FH(f ) =

∑R
r=1

∑n
g=1 I

(
F(g, r) ≥ f

)
R · ∑n

g=1 I
(
F(g) ≥ f

) (3)

Here I (P) is one when the condition P is true, and
zero otherwise. By using Equation (3) it is trivial to
select f so that FH(f) = q, where q is the desired false
discovery rate. This approach is similar to threshold
selection in [15,16], but it is important to note that
Futschik and Herzel do not manually tune the score
threshold f, but instead select q and derive the value of
f by using the equation. They do not discuss the statisti-
cal justifications of the method, or specify the underly-
ing assumptions or the exact nature of the provided
control for “empirical false discovery rate”.

Randomization methods
Empirical p-values provide a way of using a null distri-
bution of gene expression matrices to assess the signifi-
cance of periodic signals in the original measured data.
To produce null distributions of expression matrices,
we describe four techniques for generating randomized
n × m matrices E’; that share certain characteristics
with the gene expression matrix E. The methods either
use the original dataset as the data to be randomized or
calculate parameters of a data generating model from
the original dataset [30]. The methods are illustrated in
Figure 1.
P: Permuting all entries

Randomized matrix E′
P is generated by permuting the

values of all entries in matrix E. The result E′
P maintains

the original value distribution of E, but does not main-
tain, e.g., the row and column distributions.
It is obvious that permutations are a drastic randomi-

zation method and do not preserve much of the struc-
ture in the dataset. They are used in periodicity studies,
as in the seminal paper by Spellman et al., where they
argue that an upper bound for false positive count can
be achieved with permutation randomization [15].
R: Permuting within rows

Randomized matrix E′
R is generated by permuting the

values within each row of E. The result E′
R maintains

the original value distribution and the row value distri-
butions. A row in E′

R is dependent only on the corre-
sponding row in E.
Spellman et al. argue that an upper bound for false

positive count can be achieved with randomization by
permuting within rows [15], so the actual false positive
count would be between the amount of false positives
produced by methods P and R. Our results indicate that

original data
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Figure 1 Example dataset and results after applying
randomization methods of this study. The original dataset is a
simulated expression matrix of 10 genes and 20 time points. The
first 5 genes are cyclic and the values for the last 5 genes are
randomly drawn from a normal distribution, as can be seen from
the heatmap of the original dataset. Randomized datasets are
illustrated with a simplified chart showing the basic operating
principle and a result dataset shown as a heatmap.
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both of the methods should be considered optimistic:
They produce only loose lower bounds for the number
of false positives.
A: Autocorrelation
Cell cycle time series data often exhibits autocorrelation
due to the procedure employed to bring cells to a synchro-
nized state in the beginning of the time series. In a method
proposed by Futschik and Herzel gene expression is mod-
eled as an autoregressive AR(1) process for which the value
of expression at time t depends linearly on expression at
time t - 1 up to a normally distributed random variable
[19]. Specifically, Xt = a1 · Xt-1 + Zt, where Xt is the time
dependent random variable, i.e., gene expression, while a1
is the first order autocorrelation of Xt and Zt is the inde-
pendent normally distributed random variable.
As Zt is a random variable, we can easily calculate a1

and the variance of Zt from the original data matrix E
and use them to generate a random matrix E′

A with the
same autocorrelation and variance of Zt. Yang and Su
have suggested using multiple methods simultaneously
for estimating autocorrelation coefficients of circadian
gene expression data [31]. In our experiments we did
not see non-marginal differences when using other coef-
ficient estimators and for that reason used the Yule-
Walker method that was also used by Futschik and
Herzel [19].
One aspect of the Futschik and Herzel approach is

that variance of the whole row is normalized, but the
data generating model preserves only variance of the
normally distributed random variable Zt. With datasets
of this study, we typically see variances less than the ori-
ginal in randomized data. When variance is normalized
after randomization, the data is effectively scaled up on
average. As Fourier score is used for periodicity detec-
tion, also the periodicity scores are scaled up. Unlike the
other methods, E′

A does not maintain the original value
distribution of the matrix elements. For a detailed
description of the method we refer to supplementary
materials of the original article and especially to the
related R-package [19,32].
S: Splitting rows into parts
We propose a new randomization method that takes a
gene cycle and splits it into two equal sized parts
referred to as the prefix and the suffix. Then we simply
randomize the connection between prefixes and suffixes,
i.e., each suffix is randomly assigned to follow a prefix.
More formally, assuming there is only one gene cycle,

a row g in the randomized matrix E′
S with m time

points is generated as

E′
S(g, ·) =〈E(g, 1), · · · , E(g,

⌊m
2

⌋
),

E(h,
⌊m

2

⌋
+ 1), · · · , E(h, m)〉.

Here index h is chosen at random without replace-
ment from {1, ..., m}. In the formula, we combine rows g
and h in the original data to produce a randomized row.
When there are multiple gene cycles, we split each cycle
into prefixes and suffixes. Then again, we combine the
prefixes of row g with suffixes of row h to create a new
row. Each row in the randomized data contains values
from two rows in the original data, except for the rare
case that g = h, when the randomized row is actually
equal to a one row in the original data.
Interpreting the null models
We motivate our randomization method by interpreting
the methods as null models that produce random sam-
ples from a null distribution. What we would like to get
are samples from a situation where the same genes are
measured under the same circumstances, but without a
treatment that is assumed to induce cyclic expression.
The randomization method P can be interpreted as sam-

pling each expression value from a global null distribution.
The strength of the method is that there are a large
amount of individual values in a microarray experiment
and thus we have a robust sampling distribution. However
by sampling each value independently we completely elim-
inate dependencies between values of a single gene. In
time series data consecutive values are naturally strongly
dependent and a realistic null model cannot be produced
without taking these dependencies into account.
In expression data there are differences between the

average level of expression of different genes, but complete
permutation makes data uniform. The method R improves
on P in this aspect: now we sample each gene from its
own distribution, preserving differences between average
levels of expression of the genes. Unfortunately, there are
very few values per gene and building a sampling distribu-
tion from, say, 20 values is not robust. Besides that, the
distribution of values for induced and non-induced genes
can be very different, and permuting expression values of
an induced gene does not necessarily produce an expres-
sion profile that a typical non-induced gene might have.
Dependencies between values of consecutive time points
for a single gene are not taken into consideration with R,
either.
It is possible to sample genes by taking their average

level of expression and adding normally distributed
noise, with the same variance than in original data. This
approach assumes that non-induced genes produce con-
stant level of expression, excluding the noise. However
processes not related to cyclicity can produce varying
expression patterns that are not captured in this model.
The randomization method A takes into account some
of the patterns by adding AR(1) autocorrelation to the
model. AR(1) autocorrelation can capture certain stress
response patterns that the treatment induces and are
argued to be a major feature of gene cycle data [19].
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Formulation of A does not, however, preserve the aver-
age level of expression for each gene, but the level is
mostly decided by the rather arbitrary first measurement
value. Also it is not known how well stress response is
modelled by AR(1) autocorrelation: The model can only
capture a linear pattern that covers the whole timeseries,
but the actual stress response pattern might be non-lin-
ear and only cover the first timepoints of the dataset.
An open question is also what other patterns of non-
induced expression should be taken into account.
As can be seen, producing a general null model of gene

expression is very difficult. And what is more important,
development of null models has been progressing from
simple to more advanced. Each new feature that is taken
into account can make the model more realistic, but we
do not know when the model is realistic enough. The idea
of significance testing with p-values is to assume the
absence of the effect or pattern of interest (null hypoth-
esis), to gather evidence to invalidate null hypothesis in
favor of an alternative hypothesis and to assess the prob-
ability that the evidence was a product of luck. As null
hypothesis is the starting assumption and we are produ-
cing evidence against it, data should be analyzed in a con-
servative way. If there is a bias in our methods, it should
be towards conservative interpretation. A null model that
exaggerates the randomness of the null distribution clearly
contradicts with the statistical framework.
Method S maintains the original value distribution, value

distributions of each column, and also the correlations
between columns inside prefixes and inside suffixes. The
method is based on the assumption that many of the genes
are non-induced and hence the distribution of each col-
umn is close to the distribution of a non-treated sample.
We take into consideration that data can contain global
patterns such as stress response. Values are not mixed
across timepoints and hence global stress response patterns
are not removed, but experiment wide cyclic structures are.
The method can produce a small amount of cyclic genes to
the randomized data by combining two cyclic genes, with
matching phases, in the original data (or a cyclic gene with
itself), which produces a slight conservative bias.
We point out that method S does not take into account

the known fact that there are correlations between genes.
However our model is a conservative null model for gene
periodicity detection: Correlations do not play a role
when the periodicity of each gene is measured indepen-
dently. If we would be assessing the significance of, say,
clustering, then correlations should be taken into
account.

Analysis of periodicity score distributions
This section analyzes the theoretical properties of the
randomization methods. Reading this section is not
necessary for understanding the rest of the article.

To better understand results produced by different
randomization methods, we investigate the theoretical
properties of the periodicity scores produced by them.
This analysis shows clearly how the commonly used ran-
domization methods cannot take the time component or
the sampling frequency of periodicity data into account
even though the methods are used for analyzing exactly
the time-based structure of the data.

A perfect cyclical gene has values ckt = sin
2πkt

m
for

t = 0,1,2, ..., m - 1; let ck = (ck0, ck1, ..., ck(m-1)). Denoting
by E = (egt)n × m a dataset, and by Eg the gth row of E,
let Eg · ck be the dot product of the vectors Eg and ck.
Consider the slightly modified kth periodicity score for
the gth row Eg of E defined by

Sk(Eg) =
(

Eg · ck

m

)2

=

(
1
m

m−1∑
t=0

egt sin
2πkt

m

)2

.

We use this modified version of the periodicity score to
make the results more easily understandable while still
retaining all the important characteristics of the metric.
The periodicity score of ck is Sk(ck) = (ck · ck/m)2 = 1/4.
Therefore periodic genes receive the same score regardless
of the data size and sampling frequency.
By straightforward calculations based on these defini-

tions it is possible to analyze the periodicity scores given
by each of the randomization methods. In the following
we express the expectations and variances of periodicity
score distributions. Details for the results can be found
in the Additional file 1.
Periodicity scores when randomizing by elements
For the P method that permutes all the data elements at
random the expected value and variance of the periodi-
city score for any gene in the randomized data are

E[Sk] =
Eg,t[e2

gt]

2m
,

Var[Sk] =
11

4m2
Eg,t[e2

gt]
2 − 3

4m3
Eg,t[e4

gt].

In the equations Eg,t[e2
gt] and Eg,t[e4

gt] denote the aver-

age values of matrix E’s elements raised to power 2 and
4 respectively. The statistics of the values generated by
the P method do not have any connection to the time
component of the data, but only to the value distribu-
tion of data. This can be restated so that the method
simply calculates the whole signal energy (i.e., sum of
squares of elements), with noise included, contained in
the data set. However only the fluctuation correspond-
ing to some cyclical structure should be accounted.
It can also be seen that as the number of samples in

data m grows, both the statistics become smaller and
smaller. This is true, however, only if the data contains

Kallio et al. BMC Bioinformatics 2011, 12:330
http://www.biomedcentral.com/1471-2105/12/330

Page 6 of 14



no cyclical components. In crude terms, any actual
cyclical structure in data supports the periodicity score
and prevents it from sinking significantly lower than
some given level as m grows. Therefore, as seen in
Figure 2, the p-values for data with cyclical structure
move consistently toward zero as m grows.
For the R method that randomizes each row separately

we reach similar results. The statistics of the periodicity
scores of the randomized data are

E[Sk] =
Eg,t[e2

gt]

2m
,

Var[Sk] = − 3
4m3

Eg,t[e4
gt] +

3
m2

Eg[Et[e2
gt]

2]

− 1
4m2

Eg,t[e2
gt]

2.

(These values are across all the genes, for gene-wise
values simply fix the value of g.) Here again, the statis-
tics do not depend on anything except the value distri-
bution of the data without any regard to the order or
placement of the elements. These results on the theore-
tical properties of the P and R methods make them
questionable if any consideration should be given to the
actual dataset or the purpose of the experiments.
Periodicity scores produced by A: Autocorrelation
In the randomization method of [19] the values of a
data row (Xt)1 × m are generated as values of a martin-
gale: X0 = Z0, X1 = aX0 + Z1, X2 = aX1 + Z2, ..., Xm-1 =
aXm-2 + Zm-1. We require that |a| < 1 and the Zt are i.i.
d. samples from some distribution Z with E[Z] = 0 .
Let us present the data signal as its Fourier decomposi-
tion, i.e., as a sum of different cyclical sine signals∑

k αkck . We may then calculate the autocorrelation of
the signal to equal

α =

∑
k α2

k cos
2πk

n∑
k α2

k

.

Here the values ak give the amount of cyclicity the
signal has for each different frequency. The expectation
and variance for periodicity scores of data samples gen-
erated with this autocorrelation method of [19] can be
shown to be

E[Sk] =
Var[Z]

2m
(

1 − α2 + 2α cos
2πk

m

) + O
(

1
m2

)
,

Var[Sk] = E[Sk]2 + O
(

1
m3

)
.

(4)

In the equations the notation O(f (m)) means that the
error term has absolute value at most some constant
times f(m).

The periodicity scores of the generated samples
depend on Var[Z] since the more the data fluctuates
the higher is the variance Var[Z] chosen in the method
and the more probable it is for any generated sample to
receive high periodicity score. Furthermore the time
component and the periodicity of the original gene data
has influence on the samples’ periodicity through the
autocorrelation measure a. To further simplify the equa-
tions one can note that for a strongly periodic gene its a

is practically equal to for cos
2πk
m

some single k.

The statistics depend on m the same way as for meth-
ods P and R, decreasing as the number of samples
grows, because for higher sampling frequencies the data
fluctuates rather slowly (with a ≈ 1) and the high fre-
quency noise is more easily distinguished. This also
exemplifies how A measures the significance of gene
cyclicity against a background of pure noise. Figure 2
illustrates the behavior of the p-values with increasing
sample counts.
Periodicity scores produced by S: Splitting rows into parts
We now make an assumption that cyclical signals are
cyclical in all parts of the signal, without turning into
pure noise at any point. If we denote by agk the kth
Fourier coefficient of the gth gene, i.e., the gth gene has
Fourier decomposition egt =

∑
k αgkck(t) , then we can

express the periodicity score statistics as

E[Sk] =
Eg[α2

gk] + Eg,h[αgkαhk]

8
,

Var[Sk] =
Eg[α4

gk] + 3Eg,h[α2
gkα

2
hk] + 4Eg,h[α3

gkαhk]

128
.

These values indicate that the cyclicity of the genes on
each of the frequencies gets randomized separately,
since the statistics depend only on the current value of
k. On the contrary to the case of methods P, R and A,
the statistics do not diminish with longer sample sizes
or higher sampling frequencies. This happens, because
the S method focuses on detecting genes that are excep-
tionally cyclical in the context of all the genes in the
given dataset, not against an absolute background of
pure noise as the other methods do.
Summary of analysis
We illustrated how S is the only method using the back-
ground distribution of the analyzed genes instead of a
pure noise background. We also showed how the beha-
vior of P, R and A changes with an increase in the sam-
ple count. Methods P, R and A suffer from high noise
levels in data whereas S dissects the data and considers
each frequency separately, which is also how the actual
test score is calculated. Finally the P and R methods
cannot even be seen as actual periodicity tests since
they ignore any periodicity in the data and redistribute
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Figure 2 Examples of how the number of samples affects the p-values reported by the permutation methods P and R and by the
autocorrelation method A. In both figures, each separate curve corresponds to a standard sine wave at interval [0, 4π], with noise added so
that the sine signal accounts for 5%, 10%, ..., 100% of the total signal energy. The slight bumps in the curves for method A correspond to the
cosine in the denominator of Equation (4).
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only the signal energy of the data, no matter whether it
arises from periodicity, other meaningful patterns or
from random noise.

Results
In the previous section we analyzed the four different ran-
domization methods discussed in this manuscript. The
analysis showed that the method S has sound theoretical
foundation for assessing the significance of periodicity. In
this section we will back analytical results with experi-
ments. We will also compare two different multiple
hypothesis testing approaches and discuss their differences.
All methods were implemented with Matlab and

experiments were run with a standard workstation PC.
Matlab code is available from a companion web site at
http://www.cs.helsinki.fi/u/akallio/periodicity/.

Datasets
Results in rest of this section are based on gene expression
data from well-known yeast gene cycle studies [15,16].
The goal of those studies was to identify the subset of
genes that are cyclically expressed. For comparison we
include a different type of dataset where majority of the
genes show strong cyclic pattern, from a malaria proto-
zoan study [33]. A summary of the datasets and their char-
acteristics is presented in Table 1.
The dataset ALPHA2C has been produced by bringing

the whole yeast cell culture to a hypothetically synchro-
nized state using alpha-factor arrest. The dataset
ALPHA1C is a version of ALPHA2C with only the first
cycle included (restricted to first 9 time points), mimicking
a very low quality dataset. Datasets CDC15 and CDC28
are based on temperature arrest of cdc15 and cdc28 tem-
perature sensitive mutants. Contrary to the other yeast
datasets, the dataset ELU is based on elutriation where
instead of external treatment a subset of hypothetically
synchronized cells was collected from the population. The
dataset MALARIA is based on a synchronized in vitro
culture.
We could use the hypothetical numbers of gene cycles

reported for each of the datasets, but the accuracy of

periodicity calculation can be improved by detecting the
number of cycles from the dataset [15]. For that we find
cadj, where 0 <cadj ≤ 2c and c is the hypothetical number
of cycles. We iterate with 0.01 increments and choose
cadj so that it maximizes the sum of periodicity scores
for all genes. Chosen values of cadj are reported in col-
umn Detected cycles of Table 1.

Comparison of randomization methods
As our initial test of the methods, we studied the beha-
vior of the periodicity score on randomized data. We
computed the scores for each row in each dataset, and
selected for each dataset three thresholds δs so that a
fraction of s = 0.05, s = 0.10, or s = 0.20 of the genes
have scores higher than δs.
For each dataset and each method we then generated

100 randomized datasets, and computed the fraction of
randomized data rows that have periodicity scores
higher than the threshold. If there is no periodic struc-
ture in the data, the distribution of the periodicity scores
in the randomized data should be about the same as in
the original data, and hence the fraction of randomized
rows with scores above δs should be about s. On the
other hand, if the data has strong periodic structure, the
distribution of the scores of the randomized rows should
be clearly different from the distribution of the scores in
the real data, and the fraction of genes with scores
above δs should be less than s. The ratio of randomized
genes labeled as periodic is reported in Table 2 for each
combination of dataset and randomization method.
Table 2 shows that methods P, R, and A consider that

the fraction of genes in the randomized data with high
periodicity scores is much lower than in the real data,
for all datasets. That is, these methods would indicate
that all datasets have significant periodic structure.
On the other hand, results for method S are different for

different datasets: for datasets ALPHA1C ELU, and
MALARIA the fraction of genes with high scores is the
same in the randomized data and in the real data, while for
ALPHA2C, CDC15, and CDC28 the randomized datasets
have fewer genes with high scores. Thus method S indicates
that only in the datasets ALPHA2C, CDC15, and CDC28
there is clear evidence of periodicity. These assessments
produced by method S are consistent with the previous
results. ELU was found to be low quality already by the ori-
ginal authors [15]. ALPHA1C was artificially constructed to
be an example of a dataset with too few timepoints for reli-
able periodicity detection. The dataset MALARIA can be
seen to be a special case, and it is discussed next.

Limitations for generating non-induced expression
The MALARIA dataset is an example of an atypical
microarray dataset and it is not a good fit for randomiza-
tion methods presented in this study. This is because we

Table 1 Characteristics of the datasets, including
reported and computationally detected numbers of
cycles

Dataset Citation Reported
gene cycles

Detected
cycles

Genes Timepoints

ALPHA1C [15] 1 0.81 6178 9

ALPHA2C [15] 2 1.98 6178 18

CDC15 [15] 3 2.19 6178 24

CDC28 [16] 2 1.88 6178 17

ELU [15] 1 0.96 6178 14

MALARIA [33] 1 1.06 4221 46
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are measuring here the count of genes that have signifi-
cantly higher periodicity scores than given by the null
model. MALARIA dataset contains mostly periodic genes,
so it does not contain much information about gene
expression of other types than of the synchronized peri-
odic pattern. Simple permutations P and R do not preserve
much of the structure of the original dataset and compare
strongly periodic original dataset to noise mostly, resulting
in no periodic genes to be detected in the randomized
data. Method A is based on the assumption of Gaussian
expression with AR(1) autocorrelation, and does not pre-
serve much of the structure in the original data either. As
was previously shown in the analysis, method S is different
in this regard. It uses the dataset to build a model of all
expression patterns without other major assumptions
about the data, and as the dataset is very biased, so is the
model. S reports that there is no periodicity in the data
that cannot be explained by chance alone.
The advantage of microarray experiments is that if we

are studying the behavior of maybe some dozens of
genes, the dataset will contain hundredfold of non-
induced genes to compare to [34]. As was shown in our
analysis, the method S can be used to detect genes that
are exceptionally periodic. However, the assumption
about large numbers of non-induced genes is not true
for MALARIA. For that reason we do not consider any

of the results for MALARIA realistic, but hold the view
that the recommended solution would have been to
conduct more measurements to get data on typical
expression patterns in the case of no treatment. If such
data is not available, then additional assumptions have
to be done to roughly approximate the null distribution
of the periodicity score. Assumptions behind the
method A are not realistic in this case. Level of autocor-
relation and variance of Gaussian distribution are calcu-
lated from data, which now contains mostly induced
genes. Therefore calculated parameters are not necessa-
rily realistic for non-induced genes.

The number of periodic genes
To estimate the number of periodic genes in the data-
sets, we use the above randomization methods to pro-
duce randomized samples and apply both the
Benjamini-Hochberg procedure on empirical p-values
and the method of Futschik and Herzel on periodicity
scores. For validation we use a benchmark gene list
from [18] that presents three benchmark sets of genes
for the yeast periodicity studies, corresponding to data-
sets from Spellman et al. and Cho et al.. The first
benchmark set comprises of 113 genes that were con-
firmed to be periodic in small scale laboratory experi-
ments. The other two sets are based on less decisive
methods, so we restrict our comparison to the first set
only.
For comparing the methods we use the positive pre-

dictive value (PPV), which was also used in [19]. For a
given result list the value is defined as

PPV = TP/ (TP + FP) (5)

Here TP is the count of true positives, i.e., the number
of genes that the method considers periodic and that are
found from the small scale experiment benchmark set.
FP is the count of false positives, i.e., the number genes
that the method reports as periodic, but which do not
occur in the benchmark set. It is important to bear in
mind that the benchmark set does not contain all peri-
odic genes, so the absolute value of PPV has little mean-
ing, but the relative difference between values indicates
a difference between the quality of the two candidate
gene lists. Also for this reason only one variable should
be changed at a time when doing the comparison. The
PPV and total count of positives is reported in Table 3.
As PPV is not robust when the number of positives is
small, and undefined when there are no positives, we
omit the value when there are less than 10 positives.
Table 3 reports PPV values followed by the correspond-

ing number of significant periodic genes in parentheses.
We first compare our results to earlier results by Spellman
et al. and Futschik and Herzel. Spellman et al. reported

Table 2 Proportion of genes labeled periodic in the
randomized data

Dataset P R A S

s = 0.05

ALPHA1C 0.005 0.004 0.015 0.050

ALPHA2C 0.003 0.002 0.009 0.015

CDC15 0.001 0.001 0.005 0.013

CDC28 0.001 0.001 0.010 0.018

ELU 0.001 0.001 0.018 0.050

MALARIA 0.000 0.000 0.002 0.050

s = 0.10

ALPHA1C 0.015 0.013 0.036 0.100

ALPHA2C 0.014 0.013 0.031 0.048

CDC15 0.007 0.007 0.024 0.047

CDC28 0.009 0.008 0.037 0.055

ELU 0.003 0.002 0.035 0.100

MALARIA 0.000 0.000 0.004 0.100

s = 0.20

ALPHA1C 0.048 0.044 0.086 0.200

ALPHA2C 0.059 0.056 0.089 0.125

CDC15 0.047 0.045 0.083 0.133

CDC28 0.047 0.044 0.118 0.147

ELU 0.011 0.009 0.074 0.200

MALARIA 0.000 0.000 0.010 0.200

Periodicity is determined by thresholds δs determined so that a fraction of s
of the genes in the original dataset have scores above δs.
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400 to 1000 periodic genes, based on randomization meth-
ods P and R. Our results for the corresponding datasets
are in the range of 300 to 450 with commonly used Benja-
mini-Hochberg FDR 0.05, i.e., much lower. As discussed
earlier, Spellman et al. used a manually tuned threshold
for periodicity scores. Their threshold does not account
for the number of genes that are tested. Our framework
accounts for multiple testing and produces smaller num-
bers of positives. If multiple hypothesis correction is
omitted, our analysis pipeline with methods P and R

produces approximately 1000 significant results, matching
the results by Spellman et al..
When comparing results with those of Futschik and

Herzel, we need to remember that there are differences
in wavelengths that are used for Fourier calculations.
We detected the number of gene cycles (or in other
words wavelength) from the data, whereas Futschik and
Herzel used the wavelength from the original study by
Spellman et al.. For the Cdc28 dataset they are the same
and hence our results are also practically identical to the
Futschik and Herzel study. The small differences are due
to different KNN-imputation implementations and slight
difference in wavelenght that is not visible due to
rounding. For Cdc15 the detected wavelength differs
and that yields differences especially for the stricter
thresholds; At FDR 0.10 they are already quite close
(132 here versus 126 in Futschik and Herzel study).
When looking at FDR control parameters, the typical

FDR threshold 0.05 produces the best PPV values, while
the more relaxed FDR 0.10 is already too forgiving, at
least when compared to the validation data. The FDR
threshold 0.01 is very strict for this kind of study and
that can be seen from the results also. There are no dif-
ferences between the FDR control methods: The
Futschik and Herzel method produces practically identi-
cal results to the Benjamini-Hochberg method.
The poor quality of the artificially constructed bad

dataset ALPHA1C is identified by both A and S meth-
ods, but not by the simpler permutation methods. That
same deficiency is even more exaggerated for the ELU
dataset that was found bad in the previous section and
also by Spellman et al. [15]: The simple methods P and
R report over hundred significant genes already at FDR
0.01 and scale up to thousands at higher FDR levels.
Judging by this, these two methods cannot be recom-
mended even for simple sanity checking of the data.
For the good quality datasets ALPHA2C and CDC15,

both A and S give more conservative results that have
better PPV values. The method S is systematically more
conservative than A, but also gives a better PPV value in
every case.
We can examine these differences closer by looking at

null distribution of periodicity scores produced by the
two methods, when compared to original distribution
from data. Figure 3 shows randomization generated null
distribution together with distribution from data in the
case of CDC15. The vertical line shows threshold of sig-
nificance as decided by the Benjamini-Hochberg method
at FDR 0.05. The method S produces a null distribution
that very closely follows the distribution in original data,
except naturally for the bump at the high end, i.e.,
where alternative distribution of periodic genes mixes
with the non-periodic ones. Method A produces a null
distribution that is biased towards the low periodicity

Table 3 Positive predictive value (PPV) and in
parentheses the count of all positives (true and false) for
the given datasets and randomization methods

Dataset P R A S

FDR 0.01, Futschik and Herzel

ALPHA1C (0) (0) (0) (0)

ALPHA2C 0.315 (111) 0.315 (127) (0) (0)

CDC15 0.199 (251) 0.197 (259) 0.400 (15) (0)

CDC28 0.193 (145) 0.168 (202) (1) (0)

ELU 0.184 (103) 0.183 (104) (0) (0)

FDR 0.01, Benjamini-Hochberg

ALPHA1C (0) (0) (0) (0)

ALPHA2C 0.315 (111) 0.315 (127) (0) (0)

CDC15 0.199 (251) 0.197 (259) 0.429 (21) (0)

CDC28 0.193 (145) 0.168 (202) (0) (0)

ELU 0.184 (103) 0.181 (105) (0) (0)

FDR 0.05, Futschik and Herzel

ALPHA1C 0.080 (75) 0.087 (115) (0) (0)

ALPHA2C 0.176 (296) 0.166 (314) 0.364 (77) 0.600 (10)

CDC15 0.140 (450) 0.136 (464) 0.215 (191) 0.429 (21)

CDC28 0.108 (435) 0.102 (500) 0.276 (58) (2)

ELU 0.055 (1155) 0.050 (1327) (1) (0)

FDR 0.05, Benjamini-Hochberg

ALPHA1C 0.077 (78) 0.087 (115) (0) (0)

ALPHA2C 0.176 (296) 0.166 (314) 0.372 (78) 0.667 (15)

CDC15 0.140 (450) 0.136 (463) 0.218 (193) 0.435 (23)

CDC28 0.108 (435) 0.102 (500) 0.276 (58) (2)

ELU 0.055 (1155) 0.050 (1327) (1) (0)

FDR 0.10, Futschik and Herzel

ALPHA1C 0.077 (338) 0.067 (421) (0) (0)

ALPHA2C 0.125 (447) 0.120 (476) 0.251 (167) 0.434 (53)

CDC15 0.107 (653) 0.105 (668) 0.188 (271) 0.292 (96)

CDC28 0.084 (651) 0.085 (685) 0.205 (132) (2)

ELU 0.040 (2058) 0.039 (2207) (2) (0)

FDR 0.10, Benjamini-Hochberg

ALPHA1C 0.077 (339) 0.067 (432) (0) (0)

ALPHA2C 0.125 (447) 0.120 (476) 0.253 (170) 0.434 (53)

CDC15 0.107 (653) 0.105 (668) 0.188 (271) 0.280 (107)

CDC28 0.084 (651) 0.085 (685) 0.205 (132) (2)

ELU 0.040 (2058) 0.039 (2207) (2) (0)

Values are calculated using FDR levels 0.01, 0.05 and 0.10 with different
control procedures.
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scores, as the peak of the distribution is too far in the
low end. In the score range 6 to 10 the null distribution
drops faster than the original. This probably cannot be
explained by the periodic distribution mixing with the
non-periodic distribution, because it seems highly unli-
kely that non-trivial portions of the periodic distribution
extends to that range. As the null distribution is system-
atically off the mark for the low and mid ranges, it does
not seem plausible that A could be used to reliably sepa-
rate the periodic and non-periodic distributions in the
high range. A threshold decision based on the method S
is the one that is supported by Figure 3.
The methods A and S disagree on the CDC28 dataset.

Method S asserts only two genes to be significant even

on the high FDR levels, while the method A gives more
optimistic estimates. The case is analogous to dataset
ALPHA2C, where both give zero significants at FDR
0.01. The only difference is that CDC28 is given more
conservative assessment, to the point that S does not
accept more than two positives at FDR 0.10. However at
FDR 0.20 also method S would have already given 90
positives and we could more easily observe similar trend
than in ALPHA2C. To examine this further, we again
plot the distributions produced by the two methods in
Figure 4. When compared to the dataset CDC15, the
bump of periodic genes is not pronounced at all and it
seems that the area where significant scores are located
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Figure 3 Null distribution of periodicity scores produced by
methods A and S in dataset Cdc15 plotted together with the
distribution of values in the data. Green density function shows
the distribution in data and red density function shows the null
distribution produced by the randomization method. The gray
vertical line shows threshold of significance as decided by the
Benjamini-Hochberg method at FDR 0.05.
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Figure 4 Null distribution of periodicity scores produced by
methods A and S in dataset Cdc28 plotted together with the
distribution of values in the data. Green density function shows
the distribution in data and red density function shows the null
distribution produced by the randomization method. The gray
vertical line shows threshold of significance as decided by the
Benjamini-Hochberg method at FDR 0.05.
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is populated mostly by genes from the non-periodic dis-
tribution. In this dataset method S still produces a dis-
tribution that more closely follows the original one,
though the difference to method A is not as large. The
peak of the distribution is somewhat too far in the low
end for A, and perhaps slightly for S also. When looking
at the null distribution produced by S, it is easy to
understand why only two genes were declared signifi-
cant. The two distributions of induced and non-induced
genes are so mixed that reliably separating them with a
threshold does not seem possible. Method A paints a
more optimistic picture and admittedly it is not far off
the mark in the distribution graphs, but still an optimis-
tic bias is visible. It casts doubts on the much larger
numbers of positives reported by A.
As a summary, we demonstrated firstly how previously

used permutation methods P and R give overly optimis-
tic results, and secondly, how also the more recent and
more advanced autocorrelation method A has optimistic
tendencies and better results can be obtained by the
more conservative method S. The two multiple testing
control methods had identical performance. Hence we
can recommend the Benjamini-Hochberg method, as it
is established and has a well documented theoretical
basis, unlike the method used by Futschik and Herzel.

Discussion
Microarray data is commonly noisy and can be plagued
by effects not related to the biological question under
study. It is therefore crucial to focus on null models of
gene expression, i.e., what type of patterns we expect to
see by chance. Typically most of the attention is given to
careful formulation of the pattern we are looking for,
such as formulation of a periodicity score. However,
equal amount of attention should be given to formulation
of the null model, i.e., defining what we expect to see
when there are no patterns that we are interested in.
Construction of traditional parametric statistical models
for periodicity studies or any other complex and novel
area of bioinformatics is very difficult. Randomization
methods are an viable alternative for analytical signifi-
cance testing.
However, simple randomization tests, as simple permu-

tations applied to gene cycle data, do not produce mean-
ingful information. Comparing any real data with noise
will assess patterns in the data significant. So it is more
important for a randomization test to retain the realistic
general structure of the data than to remove all structure
under study. Otherwise the result will be too optimistic.
Originally it was estimated that for 400 to 1000 genes

the periodic signal is strong enough to be considered
statistically significant [15]. In our analysis we found out
that data contains evidence of periodicity only for a
smaller number of genes, when using the same datasets

as an evidence. This does not mean that there would be
only a small number of cell cycle regulated genes, but
that their robust identification requires more effort. A
recent meta-analysis integrated large number of different
datasets and reported more than 40 percent of genes in
fission yeast to be periodically expressed [35]. That
demonstrates how improving the data in quantity and
quality allows to identify larger number of periodic
genes. Besides increasing the number of timepoints, an
obvious improvement in periodicity studies is to per-
form control experiments to get a good empirical null
distribution and to use it in assessing the significance of
results.
To stress the point, the seminal results of gene peri-

odicity studies were reported in 1998, and now more
than 10 years later studies are still made that change the
interpretation of those results. Biosciences are a rapidly
developing area of research with new data and instru-
ments coming out at a fast pace, and therefore more
attention should be placed on significance testing.

Conclusions
When gene expression data is mined for complex pat-
terns, little if no effort is made to test results for statisti-
cal significance. With randomization, significance testing
can be extended from simple classical statistical tests to
complex pattern mining. Existing methods for testing
significance of periodic gene expression patterns were
found too simplistic and optimistic. We introduced sig-
nificance testing framework that accounts for multiple
testing and allows simple yet more realistic null models
to be crafted with randomization algorithms. As a result,
a much smaller number of genes showed significant
periodicity.
As DNA microarrays have now become mainstream

and new high-throughput methods are rapidly being
adopted, we argue that not only there will be need for
data mining methods capable of coping with immense
datasets, but there will also be need for a new approach
to significance testing. We need methods that do not
require demanding mathematical analytics and that can
be easily modified and adopted to different situations.
Randomization algorithms are intuitive and can be read-
ily constructed by the growing numbers of computer lit-
erate bioresearchers. Future of biosciences seems to be
characterized by large developments in data production
capability and that development must be met with
appropriate tools to guard against false interpretations.

Additional material

Additional file 1: Appendix: Periodicity score calculations. Additional
file 1 contains more detailed mathematical derivations of the results in
section Analysis of periodicity score distributions.
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