
Randomization Techniques for Graphs

Sami Hanhijärvi, Gemma C. Garriga, Kai Puolamäki
Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science

Helsinki University of Technology, Finland
{firstname.lastname}@tkk.fi

Abstract

Mining graph data is an active research area. Several
data mining methods and algorithms have been pro-
posed to identify structures from graphs; still, the eval-
uation of those results is lacking. Within the framework
of statistical hypothesis testing, we focus in this paper
on randomization techniques for unweighted undirected
graphs. Randomization is an important approach to
assess the statistical significance of data mining results.
Given an input graph, our randomization method will
sample data from the class of graphs that share cer-
tain structural properties with the input graph. Here
we describe three alternative algorithms based on local
edge swapping and Metropolis sampling. We test our
framework with various graph data sets and mining al-
gorithms for two applications, namely graph clustering
and frequent subgraph mining.

1 Introduction

Graph data arises in a wide variety of disciplines. For
example, social networks consist of individuals and the
social interactions between them. Another popular
example is the World Wide Web, consisting of pages
and their links, or very similarly, the Internet with its
computer networks formed by routers and the physical
connections between them. Further than this, input
data in many application areas can potentially be cast
into this relational format. Sometimes it is simpler
to consider sets of graphs instead of a very large
single graph. This is the case in chemo-informatics
applications, where molecules can be represented by
small graphs. Similar examples occur in biology and
ecology, among many other fields from physical and
life sciences. In all, graphs are remarkably versatile
structures.

Studying the patterns and properties of graph data
has become very important in many application areas.
This situation has encouraged the data mining commu-
nity to invest considerable research effort into uncover-

ing interesting structures from graphs: subgraph min-
ing [13, 30], clustering nodes into communities [26], link
mining [10], virus propagation [29], just to cite some.
An important question arising from this overload of
graph mining results remains still largely ignored: how
significant are the results found from the graph data?
Currently, the results are mostly justified by the optimal
or near optimal value of the defined objective function.
For example this is the case in clustering algorithms.
Yet, is the number of clusters found in the data signifi-
cant? Or do those clusters indeed exist in the structure
of the graph?

In traditional statistics the issue of significance test-
ing has been thoroughly studied for many years. Given
the observed data and a structural measure calculated
from it, a hypothesis testing method computes the prob-
ability that the observed data was drawn from a given
null hypothesis. Randomization approaches produce
multiple random datasets according to a null hypothe-
sis about the data. If the computed structural measure
of the original data deviates significantly from the mea-
surements on the random datasets, then we can discard
the null hypothesis and consider the result significant.

The main goal of this paper is to study random-
ization techniques on graphs. The key idea is to apply
enough distortion to the original graph data to obtain
random samples from a desired null distribution. We
propose to use the null hypothesis that the structure in
the original graph is explained by the graph statistics
used to define the null distribution. These graph statis-
tics can be, for example, the degree distribution of the
nodes or the average clustering coefficient of the graph.
Broadly, the results of the data mining algorithm from
the input graph will be considered interesting if they are
unlikely to be observed in the random graphs that have,
approximately, the same values of the graph statistics
that the input graph had. Here we focus on undirected
unweighted graphs, and consider the specific applica-
tions of subgraph pattern mining and graph clustering.

The problem of generating graph samples from a

780 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

user-specified null distribution is a generalization of
the swap randomization task [11]. The randomization
framework we propose on graphs is based on three types
of local edge swappings and Metropolis sampling. We
show, for all three local transformations, how to pre-
serve the degree distribution of the graph, and addi-
tionally, other user-specified graph statistics, such as
the characteristic path length or the average clustering
coefficient. The combinations of graph statistics to be
preserved in the samples together with the type of edge
swaps performed define the level of constraint in gen-
erating the random samples. Indeed, these constraints
identify exactly the null hypothesis to answer the fol-
lowing in a statistical test: do the observed data mining
results on the original graph convey any information
in addition to the specified graph statistics? We show
by experiments that the randomization techniques on
graphs are useful and necessary in practice and show
how to derive the empirical p-value of the data mining
results on graphs.

The paper is organized as follows. Section 2 dis-
cusses related work. Section 3 introduces the prelimi-
naries and notation, while Section 4 specifies exactly the
graph randomization problem approached in this paper.
Algorithms to solve the problem are shown in Section 5,
where we discuss their specifics as well other technical
details of our Metropolis sampling technique. Finally,
in Section 6 and Section 7 we present the applications
and experiments. We go through a final discussion and
conclusions in Section 8.

2 Related work

Randomization tests, also called permutation tests, are
a common method for statistical significance testing [9].
They are often used in, for example, biology [20] and
ecology [18], to generate the distribution for the test
statistic when no standard distribution, such as normal
or χ2, can be applied. The technique has also been
previously applied to data mining [11], where a 0–1
matrix is randomized to assess the results of methods
like frequent itemset discovery or clustering. The key
idea in the approach is to swap 0’s with 1’s while
maintaining the marginal distributions of rows and
columns. Recently, the method has been extended to
real valued matrices [25].

Also bioinformatics makes use of constructive graph
models to define p-values for graphs [16]. Similar works
contribute with Monte Carlo swapping methods in or-
der to sample graphs and define empirical probabili-
ties [27]. Our work extends those methods by different
swapping algorithms that can efficiently preserve sev-
eral user-defined graph statistics, not only the degree
distribution. The specification of the null hypothesis is

user dependent and hence, more flexible. This flexibility
allows for more versatile statistical studies.

Privacy preservation is one application for random-
ization on graphs. The goal in a recent contribution [33]
is to perform a few natural edge swap perturbations that
will preserve the spectrum of the original graph, while
protecting the identity privacy of the nodes in the net-
work. Our contribution is similar to [33] in that we aim
at preserving different statistics with the edge swap per-
turbations; from this perspective, the spectrum could be
simply one of these statistics we wish to preserve. On
the other hand, our final goal for randomizing is quite
different from [33]: we eventually want to evaluate the
significance of the data mining algorithms in a graph,
and therefore, we need to ensure that the final random-
ized samples are taken uniformly at random from the
set of all graphs with the same statistics as the original
data. Performing only a few swaps as in [33] is not al-
ways enough, so there is a need to study the convergence
of the randomization process.

3 Preliminaries

We consider unweighted undirected graphs G = (V,E)
defined by a set of n nodes V and a set of m edges E.
Each edge is an undirected pair (u, v) connecting two
nodes u, v ∈ V . For a node v ∈ V , we use Γ(v) to
denote the set of neighboring nodes, and δ(v) = |Γ(v)|
to denote the degree of v, that is, the number of nodes
adjacent to v. For a graph G, we will often denote the
set of vertexes by V (G) and the set of edges by E(G).

The structure of a graph can be described by various
graph statistics. From several of them in the literature
(see [19, 23]), we will use the degree distribution,
average clustering coefficient and characteristic path
length in this paper. These graph statistics summarize
compactly the structural relations between the nodes
in the graph; however, the methods presented here are
general enough and can be extended to any number of
other graph statistics.

The clustering coefficient of a node v ∈ V (G) is the
fraction of links the neighbors of the node have among
them with respect to all possible such links,

(3.1) CC(v) =
|{(u,w)|u,w ∈ Γ(v) and (u,w) ∈ E}|

|Γ(v)|(|Γ(v)| − 1)/2
.

The average clustering coefficient reads,

(3.2) AvgCC(G) =
1

|V (G)|
∑

v∈V (G)

CC(v).

The characteristic path length of G is calculated as

781 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

the mean of all pairs shortest paths between the nodes,

(3.3) CPL(G) =
1

|V (G)|2
∑

u,v∈V (G)

dG(u, v),

where dG(u, v) is the shortest graph theoretic distance
from u to v in G. To generalize the choice of the graph
statistic, we will denote it generally as r(G) ∈ R, or
simply r.

Our contribution is set within the framework of
statistical hypothesis testing. We denote a test statistic
as t(A(G)) ∈ R, or t for short, where A is a data mining
algorithm and A(G) is the result of the algorithm on
the graph G. The test statistic could be defined, for
example, to be the value of the objective function: the
value of the minimum cut in graph clustering or the
number of patterns in frequent graph mining. However
in principle, it can be any function from the space of
results to a real number. Note the difference between
the graph statistic r and the test statistic t. The former
strictly measures an aspect of a given graph, while
the latter can measure anything that the algorithm A
produces. Their usage in our framework will be different
and hence the distinction.

The null hypothesis H0 throughout the paper is
that for all graphs G that satisfy the given constraints,
the values of t(A(G)) follow the same null distribution.
These constraints will be discussed in more detail later,
when describing the statistic preserving randomization.
Defining the null distribution is often the most challeng-
ing task in statistical hypothesis testing. This can be
achieved by means of analytical expressions or by ran-
domization tests.

The basic idea in randomization is to perturb the
original data and carry out the experiments with the
randomized version of the data. The randomization is
controlled in such a way that the random datasets follow
a certain distribution, which is typically chosen so that
some properties (structural statistics) of the original
data are maintained with a sufficient precision. When
having several randomized datasets, the experiments
on each one of them yield a set of values for the test
statistic t, which follow the null distribution. These are
used to define an empirical p-value: the fraction of test
statistic values from the set that are at least as extreme
than the test statistic value of the original data [24].
A significance test entails a definition of a significance
level α, which is the maximum p-value allowed to reject
the null hypothesis. We use α = 0.05 throughout this
paper.

4 The graph randomization problem

We would like to generate graph samples from a speci-
fied null distribution, and then, evaluate how the results

obtained on the randomized graphs compare to the re-
sults on original (input) graph. An important feature of
our framework is that the randomization method pre-
serves certain structural properties (graph statistics) of
the input graph during the perturbation process, and
hence all random graphs will have the same structural
properties. To justify this: suppose that the space of all
graphs, up to some size, are equally likely and the ran-
domization would thus return a completely new graph
uniformly at random. This unrestricted null hypoth-
esis would almost always be rejected. The reason for
this is that practically all real world graphs have some
structure that is lost in such a randomization. The data
mining algorithm would thus find some structure in the
original graph, and the result would be almost always
significant when comparing it to the randomized ver-
sions of the input data.

A less naive solution is to sample only graphs
that have the same number of nodes and edges with
the original graph. This could be reasonable in some
cases; however, still we would have the problem of
not preserving many of the graph statistics that are
important for describing the structure of the original
graph. Hence, it is very likely that a data mining
result would turn out to be significant also in such a
setting. To sample graphs under additional constraints
is reasonable: if the obtained results are not significant
we can state that the constraints (let it be graph
statistics or other conditions) explain the structure of
the graph. On the other hand, the significance of the
results would imply that the structures found by the
data mining algorithm are not simply random artifacts
that can be explained by the constraints.

Thus, the task we are addressing is the following.

Problem 1. Given an unweighted undirected graph G
with n nodes and m edges and a set of graph statistics
{r1, . . . , rk}, generate a graph Ĝ chosen independently
and uniformly from the set of graphs with n nodes and m
edges and with the same degree distribution as G, which
have approximately the same values for {r1, . . . , rk}.

We specify next what “approximately” means above.

4.1 Statistic preserving randomization All the
edge swaps to randomize the graph will naturally pre-
serve exactly the number of nodes and edges, as well
as the degree distribution. Before presenting the differ-
ent types of local swaps and the associated algorithms,
we discuss next how to restrict the randomization to
preserve other graph statistics such as the characteris-
tic path length or the average clustering coefficient. In
many graph applications, maintaining the characteris-
tic path length in randomization seems a natural choice

782 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

because, for example, of the six degrees of separation as-
sumption in some social networks. On the other hand,
the average clustering coefficient of a graph expresses
the ’clusteredness’ of the data, and will be appropriate
in many applications. Still it is important to point out
that the randomization algorithm we present is general
enough, and it works with any combination of statis-
tics on graphs. The proper choice will depend on the
application.

A natural observation to justify our framework
is the following: in many practical situations it is
infeasible and unjustified to require that the graph
statistics are maintained exactly. Devising a way to
randomize graphs that preserves the exact value of a
graph statistic, such as the average clustering coefficient
or the characteristic path length, is virtually impossible.
And even if it was possible to have a randomization
algorithm that exactly preserves a value of a graph
statistic, we would end up with a method difficult to
generalize to other statistics. A further problem is that
real world data is usually noisy and graph statistics
should therefore be allowed some variance.

To allow for this approximate preservation while
randomizing: let ρ0(Gs) be the distribution such that
all graphs with a given number of nodes and edges and
a certain degree distribution are equally likely. Our
solution is to allow the user to define a distribution
ρ(Gs) from which the random samples will be drawn.
In this paper, we will define ρ(Gs) as a Gaussian
distribution centered at the value of the preserved
statistic of the original graph,

(4.4) ρ(Gs) ∝ N (r(Gs)− r(G), 0, σ21)ρ0(Gs),

where N (·, ·) denotes a multidimensional Gaussian
probability density function with a given mean vector
and covariance matrix, and r(Gs) and r(G) describes
a vector of values of the graph statistic in the sampled
and original graphs, respectively. Note that if no graph
statistic is specified, then at least the randomizations
will be preserving the number of nodes and degree dis-
tribution of the original graph, as required by the defini-
tion of Problem 1. Also notice that r is overloaded here
to represent a vector of values of the several statistics
we wish to preserve. However, for the experiments later,
we will choose to preserve only one statistic, in order to
make more simple the discussion and understandability
of the results.

In the following we will denote by Uniform the ran-
domization that preserves only the degree distribution,
that is, samples that come directly from ρ0. The ran-
domizations with additional constraints that preserve
the average clustering coefficient and the characteristic
path length are denoted by AvgCC and CPL, respec-

tively. Notice that the distribution defined in Equa-
tion 4.4 is general enough to allow the use of other
statistics apart from the ones studied here.

5 Algorithms

In this section we describe three MCMC sampling
methods and show that they satisfy two important
criteria, namely if the MCMC chain has converged, the
samples are are drawn i.i.d. from ρ(Gs); and even if the
MCMC chain has not converged, the p-values we obtain
are conservative.

In the first part of the section we describe how to
sample directly from from ρ0, that is, obtaining sample
graphs that preserve exactly the set of nodes and the
original degree distribution only. This will be exactly
the same as Uniform. In the second part we show how
to further restrict the randomization to additionally
preserve the other graph statistics.

5.1 Sampling from ρ0: Three types of swaps
Our MCMC algorithms are based on performing one
type of the three local edge swappings we will propose
here. The basic idea is that we start the Markov
chain from the original graph and make small random
distortions that will affect at most two edges. These
local distortions are designed to preserve the degree
distribution of the original graph at all times. By means
of applying these swaps as long as is needed for the chain
to mix, we will arrive to a randomized graph, different
from the original one.

The first swapping method follows the idea in [11],
and has been previously used in [27]. The swap is
to select two random edges and swap two endpoints
together. The swap is dubbed XSwap for the shape
of the swap, and it is illustrated in Figure 1a. The
swap has the property that it maintains the individual
node degrees as well as being very general. However,
the swap does not maintain the connected components
in the graph, and may therefore be not acceptable in
some situations.

Consider a co-authorship graph where nodes are
authors and edges signify that the authors have co-
authored in a paper. When randomizing with the
XSwap, a swap can be translated as an author col-
laborating with an author from, possibly, a completely
different research area than he or she originally works
in. This kind of mixing may not be desirable in some
settings. To remedy that, we propose an another swap,
called LocalSwap, that does not mix edges between
connected components and respects the locality of con-
nections. Figure 1b illustrates the LocalSwap. In the
co-author example, a LocalSwap corresponds for an
author k to change the co-authorship from an author i

783 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

(a) XSwap (b) Local-

Swap

(c) Flip

Figure 1: Different swaps for randomization. The Flip
in c) is further conditioned with |δ(n)−δ(l)| = 1, where
δ returns the degree of the node.

to an author j, with which i has worked. Hence, the
swap respects the locality of the edges. However, ob-
serve that it can be shown that in a graph with a single
connected component, each swap of XSwap or Local-
Swap can be reproduced by a series of swaps of the
other, excluding some special cases.

In some situations the individual node degrees do
not matter and preserving them could be excessively
restrictive. Therefore, we propose a third swap called
Flip, which is illustrated in Figure 1c. A random
edge and a node are selected. Then either endpoint
is selected at random and the swap is done if the
degree of the endpoint differs by one of the degree of
the single selected node. This operation maintains the
degree distribution, but changes the individual node
degrees. Flip allows the graph to change more freely.
As a special case, if the graph has a gap in the degree
distribution, namely no nodes with a certain degree
exist, but degrees of both smaller and larger do, then no
edges are exchanged between the sets of nodes of small
and large degrees.

Notice that the different swaps restrict the random-
ization in different degrees. The Flip is obviously the
least restrictive since it does not maintain the individ-
ual node degrees, while the other swaps do. Among Lo-
calSwap and XSwap, LocalSwap is more restrictive
because it does not allow swaps between disconnected
components — however, the difference is evident only if
the original graph is disconnected.

Since the three swaps introduced above are small
changes, we call two graphs adjacent if they can be
reached from one another by a single swap. Using this
definition of adjacency, each graph corresponds to a
state in a Markov chain. The chain is reversible, in that
for each single swap, we can perform a corresponding
reverse swap. However, the chain might not be regular,
i.e., it may be periodic. To guarantee regularity, we
consider all illegal swaps to be self-loops to the current
state in the Markov chain [11]. A swap is illegal,

for instance, if it would result in duplicate edges. If
we define the probability of a swap equally likely to
the probability of its reverse swap, the steady state
distribution of the regular Markov chain is uniform.
Therefore, if the chain is randomized with any of the
swaps, all the obtained graphs are equally likely.

5.2 Sampling from ρ: AvgCC and CPL If ρ(Gs)
is defined as Uniform, using one of these swaps with
self-loops is all that is required for the Markov chain to
converge to that distribution. However, if ρ(Gs) is not
Uniform, the swapping needs to be further controlled.
As mentioned earlier, Metropolis-Hastings approach
can be used to define state transition probabilities to
make the Markov chain have the required steady state
distribution. The swap from a graph G to a graph G′

is performed with the Metropolis-Hastings probability
min(1, ρ(G

′)
ρ(G)), where ρ(G) is defined by Equation (4.4).

Because of this, the Markov chain will have the steady
state distribution ρ(G), which is the distribution we
want to sample from.

Algorithm 1 outlines the randomization algorithm
summarizing the three different types of swaps Flip,
XSwap and LocalSwap, respectively. Notice that
for compactness of the presentation, the outline of
Algorithm 1 contains the three types of swaps. In a
run of Algorithm 1 different types of swaps are never
mixed.

Also note that if we assume that the user defined
distribution for the graph statistics is strictly contin-
uous, then all graphs with the same node degrees are
reachable by the sampling algorithm. This is because
for continuous distribution, all transition probabilities
are greater than zero, and hence, given infinite time, all
graphs are visited.

The computational complexity of one swap is
O(log |V |) if the node neighborhoods are represented
by binary trees. The calculation of the graph statistics
introduce much more complex work load. The average
clustering coefficient requires a single calculation for all
nodes and then the updates caused by swaps can be
done locally. This requires a time of O(b), where b is
the maximum degree of all nodes.

On the other hand, the calculation of the character-
istic path length is O(|E||V |), if done from scratch every
time. The calculation of the characteristic path length is
a special case of calculating the all pairs shortest paths,
which is a well known and much studied problem be-
cause of its fundamental nature and application, such
as in routing [6]. For the experiments of this paper we
adapt D’Esopo-Pape algorithm [1]. The adaption made
for our problem is the following: a queue of nodes is
initially filled with all the nodes in the graph and when

784 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Algorithm 1 Randomization algorithm for graphs.
Notice that for compactness of the presentation the
algorithm contains the three types of swaps. In a run of
the algorithm different types of swaps are never mixed.

1: Input: Undirected graph G, distribution ρ and number of

steps T .

2: Randomize(G, ρ, T)
3: Gs ← G

4: repeat

5: Flip:
6: Select an edge (i, j) ∈ E(Gs)

7: Select (k, l) as either (i, j) or (j, i).

8: Select node n ∈ V (Gs)
9: if k 6= n and l 6= n and (k, n) /∈ E(Gs)

10: and |δ(k)− δ(n)| = 1 then

11: E(Ĝs)← E(Gs)\{(k, l)} ∪ {(k, n)}
12: do with probability min(ρ(Ĝs)/ρ(Gs), 1)

13: Gs ← Ĝs

14: end do
15: XSwap:

16: Select edges (i, j), (k, l) ∈ E(Gs)

17: if (i, l) /∈ E(Gs) and (k, j) /∈ E(Gs) then

18: E(Ĝs)← E(Gs)\{(i, j), (k, l)} ∪ {(i, l), (k, j)}
19: do with probability min(ρ(Ĝs)/ρ(Gs), 1)

20: Gs ← Ĝs

21: end do

22: LocalSwap:

23: Select edges (i, j), (i, k), (j, l) ∈ E(Gs)
24: if k 6= l and k 6= j and l 6= i and

25: (i, l) /∈ E(Gs) and (j, k) /∈ E(Gs) then

26: E(Ĝs)← E(Gs)\{(i, k), (j, l)} ∪ {(i, l), (j, k)}
27: do with probability min(ρ(Ĝs)/ρ(Gs), 1)

28: Gs ← Ĝs

29: end do
30: until reaching T steps

31: return Gs

32: Output: Randomized graph Gs

a node is popped out from the top of the queue, its
neighbors are checked for violation of the condition

dG(v, u) ≤ dG(w, u) + 1, ∀(v, w) ∈ E(G) ∧ ∀u ∈ V (G).

The condition states that the distance to a target node
has to be at most the distance from your neighbor to
that node plus one. If a neighbor violates this condition,
its distance is updated and it is added to the bottom of
the queue if it has not been in the queue after it was
initially popped out. However if it has been in the queue
at least two times, including the initial time, the node
is inserted to the top of the queue. The heuristic idea is
that if the node visits the queue for three or more times,
it is likely that its neighbors need to be updated also.
The algorithm does not have a guaranteed polynomial
bound, but the exceptions are specially constructed
cases. We chose to use this method because it was very
simple to implement and faster than the alternatives.

5.3 Forward-backward sampling The problem in
randomization with MCMC is that if the algorithm is
merely run for all samples always using the original
graph as the input graph, the samples are not considered
to be independent since the they all are dependent
on the input graph. We break the dependency by
using backward-forward sampling [3, 4] by running the
Markov chain backwards for T steps, and then run
it forwards for T steps and use the last sample as a
sample from the desired distribution. However, since
the chain is reversible, this corresponds to first running
the algorithm for T steps, use the resulting graph as
the input graph for further randomizations and run the
algorithm with that graph for T steps for the number of
samples desired. We cannot guarantee that the MCMC
has converged, but we can guarantee that we obtain
conservative p-values (if the chain has not converged,
the obtained p-values should be larger, see [2] page 46).

6 Graph mining applications

In the following sections we will present data mining
applications in graphs and a proposed way of using our
framework in defining the empirical p-values.

6.1 Clustering Graph clustering has received much
attention [7, 26, 28, 34] (see also1). Most of the
clustering methods define an objective function that has
to be optimized to discover the final cluster structure
in the data. Many methods focus on minimizing the
number of edges between clusters while maximizing the
edges within clusters. One way to solve this is to use
spectral clustering [34], which is well known and often
used method. It is not in the scope of this paper to
evaluate all the different graph clustering algorithms.
In the experimental section, we study spectral clustering
of [34] and the kernel-based multilevel algorithm of [7].

In statistical testing, selecting the test statistic to
measure is crucial to the validity of the test. Since all
clustering methods optimize an essential objective func-
tion fA(A(G0)), where A is the clustering algorithm, we
can use this value as a natural measure of the goodness
of the results, that is t(A(G0)) = fA(A(G0)). The sta-
tistical testing consists of first calculating the value of
the objective function s0 = fA(A(G0)) for the result of
the original graph, and then, computing the same for
the set of graphs sampled from the desired distribution
si = fA(A(Gi)), where Gi is ith sampled graph. The
empirical p-value is the fraction of samples si that are
more extreme than s0. If the p-value is at most the pre-
defined threshold α the clustering on original graph is
said to be statistically significant.

1http://staffweb.cms.gre.ac.uk/˜c.walshaw/partition/

785 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

Nodes Edges AvgCC CPL

Zachary 34 78 0.5706 2.3374

Adjnoun 112 425 0.1728 2.5129

Football 115 613 0.4032 2.4864
Power 4941 6594 0.0801 -

Table 1: Characteristics of the real datasets. AvgCC
stands for average clustering coefficient, and CPL stands
for characteristic path length.

6.2 Frequent graph pattern mining Another
popular application for graphs is the mining for patterns
in graphs. The algorithms have different objectives:
some try to find patterns that appear often enough in a
set of graphs [17], while others find patterns that com-
press the data well [5]. See [30] for a review of graph
data mining methods. For our experiments, we focus on
the algorithm presented in [17]; we use the implementa-
tion provided at the authors’ web site. The algorithm
finds frequently occurring subgraphs in a set of graphs.
The frequency of occurrence is often called support, and
it is similar to that in Apriori algorithm [14]. Again, for
the computation of the p-value, we need to define an ap-
propriate measure of goodness; we will use the support
of each pattern for this purpose. Notice that in the case
of pattern mining we will not evaluate the statistical
significance of the individual patterns from our empir-
ical p-value directly. Evaluating patterns is a problem
of multiple hypothesis testing, which falls outside the
scope of this paper. The scheme could be used to test
the significance of the number of patterns, but not each
pattern individually.

7 Experiments

We use five different real datasets2: Zachary [35],
Adjnoun [22], Football [12], Power [31] and Compound3.
Table 1 lists some characteristics of these datasets.
Zachary is a social network of a karate club in US in
1970’s. Adjnoun is an adjacency graph of common
adjectives and nouns in a novel. Football contains
a match graph of football teams in US colleges in
2000. Power dataset represents the power grid network
of Western States in the US. And finally, Compound
dataset contains 340 chemical compounds as graphs.
The characteristics vary with different compounds; the
largest graph has 214 nodes. CPL was not calculated
for Power due to exceedingly long computation time.

We first performed a convergence analysis for few
randomizations, and then randomized the whole dataset
with the number of swaps found appropriate. The

2http://www-personal.umich.edu/˜mejn/netdata/
3http://www.doc.ic.ac.uk/˜shm/Software/Datasets/

carcinogenesis/progol/carcinogenesis.tar.Z

convergence was analyzed by running the algorithms
a sufficient number of times and for each swap, the
distance between the current perturbed graph Gs and
the original G was calculated by

dF (Gs, G) =
∑
v∈V

(|ΓG(v)|+|ΓGs(v)|−2|ΓG(v)∩ΓGs(v)|).

Note that the set of nodes remains the same throughout
the randomization. The distance corresponds to the
square of the Frobenius norm of the adjacency matrices
of the graphs. Figure 2 displays the convergence of
all the algorithms with Adjnoun data and AvgCC
statistic. The number of swaps was set to 500000,
but since we run the algorithms backwards the equal
number of steps, the total number of swaps is 1000000.
Notice that the number of swaps correspond to the
outer loop of the Algorithm 1, and thus it does not
correspond to the number of actual changes made to
the graph because of the self-loops and probabilities
for swapping. The Markov chain is considered to have
converged when the distance has stabilized to around
some value. The convergence results correspond to the
expectations: both LocalSwap and XSwap converged
similarly and faster than Flip. The number of self-
loops, illegal swaps, in Flip is usually much greater than
that of LocalSwap and XSwap. Therefore, Flip is
much slower to converge. However, the computationally
costly portion of the algorithms is updating the graph
statistics. The speed of convergence therefore is not
the determining factor for the running time of the
algorithm. Notice also that Flip gains more distance
to the original graph than the other algorithms since
it is not restricted to maintain individual node degrees,
and therefore, is able to operate more freely.

For all randomizations throughout the experiments,
the variance for the graph statistic was set to σ2 = 10−7.
We found this value to allow the randomization to
vary enough for the randomized graphs to gain enough
distance from the original, while maintaining the value
of the statistic. Figure 3 displays the histogram of the
value of the CPL statistic for 100 randomized graphs
with Football data. The variation is well within the
allowed variance.

We also measured the execution times of our algo-
rithms to produce a single random graph. Table 2 lists
these times for the Adjnoun dataset. Each algorithm
with each statistic was run long enough for it to con-
verge. The number of swaps performed are listed in
Table 3. The times are not strictly comparable, but
they give a rough idea of how long it takes to obtain a
random graph.

786 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

0 2 4 6 8 10

x 10
5

0

500

1000

1500

number of swaps

di
st

an
ce

 to
 o

rig
in

al

LocalSwap
XSwap
Flip

Figure 2: Convergence of the algorithms with Adjnoun
data and AvgCC statistic. The change in the middle
is because the first half is a single graph, the reverse
direction, while after the halfway, five graphs were
randomized and the figure depicts their mean distance
from the original graph. The variance was very small
for the distances of the five graphs.

−1 0 1
0

20

40

LocalSwap

−1 0 1
0

20

40

XSwap

−1 0 1
0

20

40

Flip

Figure 3: Histogram of CPL statistic for different algo-
rithms with Football data and 100 samples. The hor-
izontal axis represents the difference from the original
statistic value multiplied by 104. The variance of the
Gaussian distribution, centered at the original value of
the statistic, was set to 10−7 (standard deviation being
roughly 3 · 10−4). The continuous vertical line is set to
0, expressing the original value for the statistic, while
the dashed line represents the value of the statistic for
the graph after reverse swaps.

7.1 Graph clustering Using the Zachary, Adjnoun,
Football and Power datasets, 100 random graphs were
generated for all pairs of algorithms and statistic; except
for Power and CPL due to the dataset being too large
to use with CPL in a reasonable time. Before every
randomization, a convergence analysis was performed
to find the number of swaps needed for convergence.

Uniform AvgCC CPL

LocalSwap 9.6ms 110ms 24s

XSwap 13ms 122ms 31s

Flip 45ms 140ms 8s

Table 2: Computing times of a single random graph
in seconds of Adjnoun data with different statistics.
Notice that these times also contain stepping to the
reverse direction, which is roughly half of the time. This
time would not accumulate when taking several random
graphs.

Note that because the algorithm, dataset and statistic
to preserve varies, the convergence analysis needs to be
carried out separately for each combination. Table 3
lists the number of swaps used for randomization.

After 100 random graphs were generated, the dif-
ferent samples were clustered with Graclus [7], readily
available from the authors’ site4, as well as a spectral
graph clustering method [34]. Both methods minimize
the cut between clusters, and hence, they should pro-
duce similar results. The algorithms were used to cluster
individual graphs from 2 to 15, 30, and 50 clusters, for
Zachary, Adjnoun and Football, and Power datasets, re-
spectively. For each clustering, the minimum cut value,
the value of the objective function, was stored. Finally,
the empirical p-value for each combination of algorithm,
dataset and statistic was calculated as described above.
The results for the different datasets follow next.

Zachary The empirical p-values were similar be-
tween the combinations of different graph statistics and
randomization algorithms. With Uniform distribution,
the p-values for small cluster numbers were slightly
smaller than with either AvgCC or CPL. However,
whether or not the p-values were less than the α = 0.05
threshold remained more or less unchanged. With all
randomization algorithms and graph statistics, the p-
value for two clusters was below the α threshold, as
it should be, since we know there are two clusters in
the data. We also discovered two interesting phenom-
ena, seen in Figure 4. The p-value rapidly increases
to around one at 8 clusters and stays there for several
number of clusters. The reason for this is that when the
original data is clustered, there is a limit to how many
reasonable number of clusters the graph can be divided
to. When this value is exceeded, the algorithm has to
produce cluster borders within clusters, which results
in a high value for the objective function. Since the
random graphs do not have this structure, adding one
cluster more makes no big difference. Hence the rapid
incline.

4http://www.cs.utexas.edu/users/dml/Software/
graclus.html

787 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

LocalSwap XSwap Flip

Uniform AvgCC CPL Uniform AvgCC CPL Uniform AvgCC CPL

Zachary 2 300 200 2 100 100 5 300 500

Adjnoun 10 50 100 10 50 100 100 300 500
Football 5 4000 200 5 4000 200 20 5000 200

Power 200 5000 - 400 5000 - 2000 5000 -

Table 3: Number of swaps used for different combinations of dataset, algorithm and statistic. The values have
been multiplied by 10−3 for clarity.

2 4 6 8 10 12 14
0

0.5

1

number of clusters

p−
va

lu
e

Zachary Graclus with AvgCC

LocalSwap
XSwap
Flip

Figure 4: Empirical p-values of the Graclus results wrt
number of clusters with Zachary dataset, all random-
ization algorithms and AvgCC as graph statistic. The
continuous horizontal line represents the α = 0.05 con-
fidence threshold.

The other phenomenon is that p-values for spectral
clustering did not exceed the α threshold around 5
clusters. Graclus seems to have trouble clustering to
around five clusters, which could be caused by the
approximate nature of the algorithm in combination
with this dataset.

Adjnoun The Adjnoun dataset is not known to
contain clusters, and by visual inspection of it, there
are none. The graph contains few highly connected
nodes with very large degrees, while other nodes have
only few links. The highly connected nodes seem to
be all connected between themselves and other high
degree nodes, so no clustering structure is evident
among them. Again, there were no large differences
between the combinations of randomization algorithms,
graph statistics and clustering algorithms. However,
as illustrated in Figure 5, the p-values vary greatly
when the number of clusters is changed. This is
consistent with the assumption that the clustering finds
no statistically significant structure from the Adjnoun.

Football The empirical p-values for the Football
data were practically the same across the Graclus and
the spectral graph clustering algorithms. However,
this dataset exhibited also an interesting phenomenon,
which can be seen in Figure 6. The two randomiza-
tion algorithms, LocalSwap and XSwap, behave dif-
ferently from Flip when the number of clusters is small

5 10 15 20 25 30
0

0.5

1

number of clusters

p−
va

lu
e

Adjnoun Graclus with CPL

LocalSwap
XSwap
Flip

Figure 5: Empirical p-values of the Graclus results
wrt the number of clusters with Adjnoun dataset, all
randomization algorithms and CPL as statistic. The
continuous horizontal line represents the α = 0.05
confidence threshold.

and the randomization is constrained with AvgCC.
For CPL and Uniform, the results are almost identi-
cal among the three randomization methods. The rea-
son for this to happen is that Flip is less constrained
than LocalSwap and XSwap, and the difference be-
comes explicit with this dataset. Flip only preserves
the degree distribution, while the other algorithms also
preserve the individual node degrees. And since the de-
grees of nodes in this dataset have only a few values, all
between 7 and 12, Flip has a lot of freedom to make
changes to the graph.

Power The results were always below the α thresh-
old for all number of clusters from 2 to 50, with no vari-
ation among randomization and clustering algorithms,
even with added constraint for AvgCC. In all, the
dataset has a clear structure that the clustering algo-
rithms found.

7.2 Pattern Mining We first ran experiments with
an artificially created dataset having 10 given graph
patterns with labels on the nodes. We created a dataset
of 100 graphs by randomly adding edges and nodes, with
random labels, around a randomly selected subset of the
10 original patterns. Our intuition is that the subgraph
mining algorithm should find the original 10 patterns.

We ran the convergence analysis for the dataset for
both Uniform and AvgCC. The number of swaps de-

788 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

5 10 15 20 25 30
0

0.5

1

number of clusters

p−
va

lu
e

Football Graclus with AvgCC

LocalSwap
XSwap
Flip

Figure 6: Empirical p-values of the Graclus results
wrt the number of clusters with Football dataset, all
randomization algorithms and AvgCC as statistic. The
continuous horizontal line represents the α = 0.05
confidence threshold.

Artificial Compound
Uniform AvgCC Uniform AvgCC

LocalSwap 3 10 50 50
XSwap 1 10 10 10

Flip 10 10 100 100

Table 4: Number of swaps for the artificial and com-
pound datasets multiplied by 10−3.

termined by the converge analysis are listed in Table 4.
Then, 100 randomizations of the sets of graphs were gen-
erated by randomizing each graph individually using all
the randomization algorithms.

We used the FSG [17] algorithm, which is a part of
Pafi5, to find the frequent subgraphs in this database.
We run the tests with different minimum support values
to see if there is any difference. From the results with
the original graphs, frequent patterns were stored as well
as their support. The empirical p-value of the pattern
was computed for each pattern, using the respective
support as a test statistic.

We performed the same experiments for the Com-
pound dataset.6 The fraction of patterns under the α
threshold are shown in Figure 7. Note that the ad-
ditional constraint of restricting the randomizations to
maintain AvgCC does not have much effect in the re-
sults. The results with the artificial dataset were simi-
lar.

8 Discussion and conclusions

Within the framework of statistical significant testing,
randomization techniques allow for a generation of a set
of random data samples drawn from a specified null dis-

5http://glaros.dtc.umn.edu/gkhome/pafi/overview
6Notice that the randomizations may violate some physical

laws, such as the valency numbers of atoms in a molecule may

not be preserved. Despite this, we use the dataset as an example
of how to use the randomization method for real data.

20 30 40 50 60 70
0

0.5

1
LocalSwap

20 30 40 50 60 70
0

0.5

1
XSwap

fr
ac

tio
n

of
 p

at
te

rn
s

20 30 40 50 60 70
0

0.5

1
Flip

minimum support (%)

Figure 7: Graph mining results for all the algorithms
with Compound data. The horizontal axis lists the
minimum supports used. The height of a bar represents
the ratio of patters whose p-value is under the α
threshold 0.05. Black bars correspond to the results
with Uniform, while white bars correspond to the results
with AvgCC.

tribution about the input data. In this paper we focus
our efforts on randomization techniques for unweighted
undirected graphs. We propose three edge swapping
methods that, together with Metropolis sampling tech-
niques on the input graph, result in three algorithms for
sampling randomly graphs from a user-specified null dis-
tribution. Our framework is flexible enough because the
null distribution can be set according to the problem:
random samples are always drawn from the set of graphs
with the same degree distribution as the original graph,
and additionally, the user can specify other statistics
to preserve. Here we showed how to preserve average
clustering coefficient and characteristic path length.

Once the samples from the null distribution are
generated, calculating the empirical p-value follows the
standard definition, i.e., the fraction of test statistic val-
ues from the set of random samples that are more ex-
treme than the test statistic value of the input data. For
graph clustering, the test statistic used here is the value
of the objective function; for frequent subgraph min-
ing, the test statistic is associated individually to each
pattern and it can be, e.g., its frequency in the data.
Evaluating significance in clustering is direct and it cor-
responds to checking whether the calculated p-value is

789 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

under a given α significance level. However, evaluat-
ing significance for individual patterns in frequent graph
discovery is not straightforward as it falls in a multiple
hypothesis problem [8, 32]. This problem is outside the
scope of this paper and we do not discuss it further; still,
the randomization framework proposed here is general
and flexible enough to allow for future studies on the
multiple hypothesis testing problem.

The utility of the framework, as well as how the
p-value vary in several datasets, is shown in the exper-
imental section. We saw that the choice of the null
hypothesis can change the testing results in some cases.
This is due to having a more restrictive null hypothesis,
which is coupled with the graph statistics that samples
share with the original data. We have not discussed so
far which is the choice of the null hypothesis for a given
application. Obviously, the more restricted null hypoth-
esis – more statistics are specified to be preserved in the
samples – the less significant the results of a data mining
algorithm tend to be. In this sense, the randomizations
proposed here are useful towards evaluating the follow-
ing question: do the observed data mining results on
the original graph convey any information in addition
to the specified statistics?

From this perspective the null hypothesis depends
on the user. For instance, in the clustering application
it is important to know whether the discovered clusters
provide some structural information different from the
average clustering coefficient of the graph or the char-
acteristic path length. Obviously, for an input graph
where groups of nodes are all very distant from one
another, clusters can be easily discovered by any algo-
rithm. However, characteristic path length alone could
give an idea of the structure in the network and thus,
the results of a clustering algorithm might not be signifi-
cant enough under those conditions. The same example
can be given for pattern discovery on graphs. A more
sensible null hypothesis there is to know whether degree
distribution already tells something about the subgraph
patterns found in the data. For example, patterns con-
sisting of one single node would not be significant then.

Finally, it is worth noting that it would be fairly
easy to extend the techniques presented here to
directed graphs; yet, handling weighted graphs and
considering edge or node labels is not straightforward.
This will be an interesting future direction. More
importantly for future work, we will explore how the
combinations of the statistics restrict randomization
and how conclusions can be derived from those more
restricted samples.

References

[1] Dimitri P. Bertsekas. Network Optimization: Contin-
uous and Discrete Model. MIT Press, 1998.

[2] Julian Besag. Markov chain Monte
Carlo methods for statistical inference.
http://www.ims.nus.edu.sg/Programs/mcmc/files/
besag tl.pdf, 2004.

[3] Julian Besag and Peter Clifford. Generalized Monte
Carlo significance tests. Biometrica, 76(4), 1989.

[4] Julian Besag and Peter Clifford. Sequential Monte
Carlo p-values. Biometrica, 78(2), 1991.

[5] J. Cook and L. Holder. Substructure discovery using
minimum description length and background knowl-
edge. Journal of Artificial Intelligence Research, 1:231–
255, 1994.

[6] Camil Demetrescu and Giuseppe F. Italiano. A new
approach to dynamic all pairs shortest paths. Journal
of the ACM, 51(6), 2004.

[7] Inderjit Dhillon, Yuqiang Guan, and Brian Kulis.
A fast kernel-based multilevel algorithm for graph
clustering. In Proc. of the 11th ACM Conference on
Knowledge Discovery and Data Mining (KDD), 2005.

[8] Sandrine Dudoit, Juliet Popper Shaffer, and Jen-
nifer C. Boldrick. Multiple hypothesis testing in mi-
croarray experiments. Statistical Science, 18(1), 2003.

[9] Eugene S. Edgington. Randomization Tests. Marcel
Dekker, Inc., New York, 3rd edition, 1995.

[10] Lise Getoor and Christopher P. Diehl. Link mining: a
survey. ACM SIGKDD Explorations Newsletter, 7(2),
2005.

[11] Aristides Gionis, Heikki Mannila, Taneli Mielikäinen,
and Panayiotis Tsaparas. Assessing data mining re-
sults via swap randomization. In Proc. of the 12th
ACM Conference on Knowledge Discovery and Data
Mining (KDD), 2006.

[12] M. Girvan and M. E. J. Newman. Community struc-
ture in social and biological networks. PNAS, 99(12),
2002.

[13] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan.
Frequent pattern mining: current status and future
directions. Data Mining and Knowledge Discovery, 15,
2007.

[14] David Hand, Heikki Mannila, and Padhraic Smyth.
Principles of Data Mining. MIT Press, 2001.

[15] W. K. Hastings. Monte Carlo sampling methods using
Markov chains and their applications. Biometrica, 57,
1970.

[16] Mehmet Koyutürk, Wojciech Szpankowski, and
Ananth Grama. Assessing significance of connectiv-
ity and conservation in protein interaction networks.
Journal of Computational Biology, 14(6), 2007.

[17] Michihiro Kuramochi and George Karypis. An efficient
algorithm for discovering frequent subgraphs. IEEE
Trans. Knowl. Data Eng., 16(9), 2004.

[18] Pierre Legendre and Louis Legendre. Numerical Ecol-
ogy. Elsevier Science, 1998.

790 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

[19] Jure Leskovec and Christos Faloutsos. Sampling from
large graphs. In SICKDD International Conference of
Knowledge Discovery and Data Mining, 2006.

[20] Bryan F.J. Manly. Randomization, Bootstrap And
Monte Carlo Methods in Biology. Chapman & Hall,
3rd edition, 2007.

[21] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller, and E. Teller. Equation of state calcula-
tion by fast computing machines. Journal of Chemical
Physics, 21(1), 1953.

[22] M. E. J. Newman. Finding community structure in
networks using the eigenvectors of matrices. Physical
Review E, 74, 2006.

[23] M.E.J. Newman. The structure and function of com-
plex networks. SIAM Review, 45, 2003.

[24] B. V. North, D. Curtis, and P. C. Sham. A note
on the calculation of empirical P values from Monte
Carlo procedures. The American Journal of Human
Genetics, 71(2), 2002.

[25] Markus Ojala, Niko Vuokko, Aleksi Kallio, Niina
Haiminen, and Heikki Mannila. Randomization of real-
valued matrices for assessing the significance of data
mining results. In Proc. of the 2008 SIAM Interna-
tional Conference on Data Mining, 2008.

[26] Satu Elisa Schaeffer. Graph clustering. Computer
Science Review, 1(1), 2007.

[27] Roded Sharan, Trey Ideker, Brian Kelley, Ron Shamir,
and Richard M. Karp. Identification of protein com-
plexes by comparative analysis of yeast and bacterial
protein interaction data. Journal of Computational Bi-
ology, 12(6), 2005.

[28] A.J. Soper, C. Walshaw, and M. Cross. A combined
evolutionary search and multilevel optimisation ap-
proach to graph-partitioning. Journal of Global Op-
timization, 29, 2004.

[29] Yang Wang, Chakrabarti, Chenxi Wang, and Christos
Faloutsos. Epidemic spreading in real networks: an
eigenvalue viewpoint. In Proc. 22nd International
Symposium on Reliable Distributed Systems, 2003.

[30] Takashi Washio and Hiroshi Motoda. State of the art of
graph-based data mining. ACM SICKDD Explorations
Newsletter, 5(1), 2003.

[31] D. J. Watts and S. H. Strogatz. Collective dynamics
of small-world. Nature, 393, 1998.

[32] Peter H. Westfall and S. Stanley Young. Resampling-
based multiple testing: examples and methods for p-
value adjustment. Wiley, 1993.

[33] X. Ying and X. Wu. Randomizing social networks:
a spectrum preserving approach. In Proc. of the 2008
SIAM International Conference on Data Mining, 2008.

[34] Stella X. Yu and Jianbo Shi. Multiclass spectral
clustering. In Proc. of the Ninth IEEE International
Conference on Computer Vision (ICCV’03), 2003.

[35] W. W. Zachary. An information flow model for conflict
and fission in small groups. Journal of Anthropological
Research, 33, 1977.

791 Copyright © by SIAM.
Unauthorized reproduction of this article is prohibited.

