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Normal-distribution tests for significance (such as the 
F and t tests) assume that samples are taken from popu-
lations with equal variances. The F and t tests are both 
robust to violation of the equal-variance assumption, 
provided that the sample sizes are equal. When both the 
variances and the sample sizes are unequal, however, both 
tests are unreliable: They are too liberal when the small 
cell has the larger variance and too conservative when the 
large cell has the larger variance.

Unlike the standard normal-distribution tests for sig-
nificance, the randomization test depends for its validity 
on random distribution of the subjects to cells, rather than 
on sampling from a population with known characteristics 
(e.g., Edgington, 1995; Manly, 1997). Hence, the statisti-
cal question refers to confounding of subject variability 
with the treatment of interest when the subjects are as-
signed to conditions. Because the randomization test’s 
chance model provides a closer match to the procedure of 
a comparative experiment than the sampling model used 
in survey or quality-control studies, randomization tests 
are often preferred over parametric tests (e.g., Ludbrook 
& Dudley, 1998). In addition, because the randomization 
test’s chance model does not depend on a symmetrical 
error distribution, a randomization test can be more sensi-
tive to true differences between the cells than would the 
corresponding F test (e.g., Mewhort, 2005).

Because its validity depends on random assignment 
during the conduct of the experiment rather than on the 
characteristics of the underlying distributions, one might 
hope that the randomization test would escape the prob-
lems associated with heterogeneity of variance and un-
equal Ns. Unfortunately, like the F and t tests, the random-
ization test is also sensitive to heterogeneity of variance 
when the cells are unequal in size (e.g., Box & Andersen, 

1955; Hayes, 2000). In this article, we present a way to 
circumvent the problems associated with heterogeneity of 
variance when the cells are unequal.

Examining the Unequal-N/Heterogeneity 
Problem for the Randomization Test

Hayes (2000) tested unequal groups that differed in vari-
ance by a ratio from 1:1 to 1:10. To keep computation to a 
manageable level, he used an approximation of the full ran-
domization test. With two groups of 10 subjects, 184,756 
combinations are required for a full randomization test. 
Instead of computing the full test, Hayes used 5,000 com-
binations. With a true null hypothesis, the Type I error rate 
varied from less than .001 to greater than .35.

The approximate randomization test has the advan-
tage of limiting the computational load, but it introduces 
a potential problem. Hayes (2000) varied the number of 
observations per group but fixed the number of combina-
tions in the approximate test at 5,000. As a result, he also 
manipulated the proportion of the combinations from the 
full randomization test involved in each approximate test. 
For example, in a randomization test involving 10 sub-
jects in each of two cells, 5,000 samples are about 3% of 
the 184,756 combinations required by the full test; with 
5 and 35 subjects, by contrast, 5,000 combinations repre-
sent less than 1% of the 658,008 combinations required 
by the full test. An approximate test should be more stable 
when it includes a larger percentage of the total number of 
combinations. Hence, when the group size is manipulated 
while holding the number of combinations constant, the 
stability of the test is varied systematically.

An approximate test is unsatisfying for a second reason. 
As Pagano and Tritchler (1983) put the issue, “an unap-
pealing feature of this method is the possibility of differ-
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contrast, when the smaller cell has the larger variance, the 
test is too liberal. As a result, one cannot trust the test’s 
estimate of significance.

Figure 1 extends the example by showing the random-
ization test’s ability to detect a true effect when the smaller 
cell has the larger variance. For the example shown in Fig-
ure 1, N1 was always 8 and N2 varied between 8 and 24. 
The data were Gaussian, and the variance of the smaller 
cell was 10; the variance of the larger cell was 1. As be-
fore, we averaged across 5,000 independent replications 
of the full-enumeration randomization test.

As is shown in Figure 1, when the H0 was true and the 
Ns were equal, the probability of rejecting H0 was ap-
proximately 5% level. As the difference in Ns increased, 
the probability of rejecting a true H0 also increased; with 
N2  24, the probability reached 20%. When H0 was false, 
the ability to detect a true difference in means increased; 
the rate of increase was greater the larger the difference 
in the Ns.

The situation illustrated in Figure 1 presents a frighten-
ing prospect: As the difference in the Ns increases, the test 
becomes increasingly liberal and the increase exaggerates 
a small true difference between the means. From an em-
piricist’s perspective, the test for significance appears to 
be set to deceive systematically.

Given the risk of systematic deception, the best practice 
is to keep the Ns equal. Such advice, however, may not 
always be practical. In some cases, the experimenter may 
want to minimize the number of subjects in one cell. For 
example, an experimental drug may be so costly that it can 
be administered to only a small number of animals, or a 
manipulation may be so painful that it should be admin-
istered to a minimum number of animals. Hence, when 
designing the study, an experimenter may want to keep 
one cell smaller than the other. Although the examples 
shown in Figure 1 may seem extreme, when they occur, 
their danger is a serious threat to the study’s validity.

Circumventing the Unequal-N/Heterogeneity 
Problem When the Large Variance  
Is in the Small Cell

With N  32 (n1  8 and n2  24) and variances in 
the ratio 10:1, the randomization test rejected a true null 
hypothesis at a rate of about 20%—a full 15% greater 
than the nominal 5%. To bring the rejection rate back to 
the nominal 5%, we used a bootstrap-like procedure. Spe-
cifically, we took scores at random (without replacement) 
from the larger group to create a sample of size equal to 
the smaller group, and computed a standard randomiza-

ent investigators obtaining different results with the same 
data” (p. 435).

We replicated Hayes’s (2000) demonstration using full 
randomization tests (i.e., complete enumeration) to ensure 
that the approximate test did not bias our examination of 
the R test. Table 1 presents the Type I error rate for the ran-
domization test as a function of sample size and the ratio 
of the variances. In addition, the table shows the num-
ber of combinations associated with each combination of 
sample sizes. The error rates were obtained by computing 
the randomization test with a true H0 using Gaussian data. 
We averaged across 5,000 independent replications of the 
full randomization test.

As is shown in Table 1, the full randomization test con-
firmed the basic trends documented by Hayes (2000): 
When the groups were equal, the Type I error rate was 
maintained at the 5% it should have been, but when the 
two groups differed in size, the Type I error rate shifted 
from the nominal 5%. Specifically, it was too small when 
the small cell had lower variance and too large when the 
large cell had the lower variance.

When the larger cell has the larger variance, the test be-
comes too conservative. Only a very large effect may yield 
a significant difference, but if the difference is significant, 
there is little worry that the test has been misleading. By 

Table 1 
Rate of Rejecting a True Null Hypothesis As a Function of  

Sample Size and Variance: Randomization Test

Variance Ratio

N  n1  n2  C(N, n1)  1:10  1:4  1:2  1:1  2:1  4:1  10:1

16 8  8    12,870 .0744 .0585 .0594 .045 .0616 .0646 .0665
20 8 12   125,970 .0312 .03 .0319 .058 .0921 .0984 .1152
24 8 16   735,471 .0156 .0158 .0181 .0468 .1222 .1304 .1618
28 8 20  3,108,105 .0072 .0095 .0104 .052 .1414 .1577 .1946
32  8  24  10,518,300  .0042  .0052  .0094  .058  .1631  .2024  .2133
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Figure 1. A Monte Carlo simulation showing the ability of the 
randomization test to detect a true difference as a function of the 
separation between means when the Ns are unequal. The data were 
sampled from a Gaussian distribution, and the variance of the 
small cell was 10 times bigger than the variance of the larger cell.
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using the F test—circumstances that meet the distribu-
tional assumptions of the F test. The results were essen-
tially the same as those we have described for the random-
ization test. That said, the randomization test is preferred, 
because the distributional assumptions of the F test are 
hard to guarantee in practice.

Finally, we have also examined cases in which the par-
ent distributions are not Gaussian. When the distributions 
are skewed and the skew is correlated with the treatment, 
Mewhort (2005) showed that the randomization test is bet-
ter able to find a true effect than the corresponding F test. 
When we applied the resampling algorithm to examples 
based on that situation, the randomization test remained 
more sensitive than the corresponding F test, but the advan-
tage was smaller than Mewhort documented (on the order 
of 4%–12%). The important point is not the difference in 
sensitivity favoring the randomization test but the fact that 
the resampling algorithm works with skewed data.

In summary, the resampling technique gives us control 
over the nominal alpha level, and the test remains sensi-
tive to true effects. The downside of the procedure is that 
it requires considerable computing time.

Bringing the Computational Cost Under Control
To make the computing cost clear, consider an exam-

ple in which the Ns for the two cells are 10 and 16. If 
the variances were roughly equal, one would compute a 
single randomization test. It requires us to examine the 
difference between cells for each of the C(26, 10)  26!/
(16!  10!)  5,311,735 combinations. If the variances 
are unequal (with larger variance in the smaller cell), the 
resampling technique is possible. The resampling tech-
nique requires 100 randomization tests; each of the 100 
tests involves C(20, 10)  184,756 combinations. Hence, 
the technique requires 18,475,600 recombinations of the 
data. That number of combinations is substantial, even for 
a fast desktop computer.

Fortunately, Gill (2007) invented an extremely clever 
algorithm that brings the computing cost into manage-
able proportions. His method uses a Fourier expansion 
to count extreme cases. Briefly, under H0 all combina-
tions of the data in a randomization test are equally likely. 
The idea is to compute the proportion of cases that is 
as extreme as, or more extreme than, the data observed. 
Gill defined a statistic T with an observed value t. Hence, 
the one-tailed probability of interest can be defined as 
p(T  t)  p(T  t)/2.

To compute the probability, Gill (2007) exploited the 
Heaviside function, H,
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tion test on the two groups. We repeated the procedure 
independently 100 times, each time noting whether the 
equal-N test had rejected the H0 at the 5% level. Finally, 
we took the proportion of cases (out of 100) in which the 
equal-N tests rejected the H0 as an estimate of probability 
of rejecting H0 for the test as a whole.

Figure 2 shows the probability of rejecting the H0 as a 
function of difference in variance and the difference in Ns. 
The data were drawn from a Gaussian distribution, and, 
as before, we averaged over 5,000 independent examples. 
As is shown in the figure, with variances in the ratio 1:1, 
the probability of rejecting the null took an increasing 
ogive-like function as the separation between means in-
creased. The increase was independent of the differences 
in N; that is, the curves for N2  8, 12, 16, 20, and 24 fell 
on top of each other. The curves for variance ratio 3.16:1 
increased to about .5, whereas the data for variance ratio 
4.47:1 increased to about .3. Taken together, the Monte 
Carlo results indicate that the resampling technique gives 
us control over the nominal alpha value: When the H0 is 
true, alpha remains at the 5% it should, regardless of the 
difference in Ns and variances. Furthermore, the test’s 
sensitivity to real differences between cells depends on 
the difference in variance—not on the Ns. In effect, the N 
for the larger cell does not matter—the ability to detect a 
true difference depends on the N of the smaller cell.

Although the resampling technique corrects the too-
liberal behavior of the standard test, we do not recommend 
using it as a matter of course: If the Ns are different but 
the variances are roughly equal, the resampling procedure 
is too conservative. The conservative nature of the resam-
pling technique means that one can trust a significant re-
sult, but the trust is gained at the cost of sensitivity to true 
differences.

We have also examined the efficacy of the resampling 
algorithm using data drawn from Gaussian distributions 
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Figure 2. A Monte Carlo simulation showing the ability of the 
resampling technique to detect a true difference as a function 
of the separation between means and the ratio of the variances 
when the Ns are unequal. The data were sampled from a Gauss-
ian distribution.
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NOTE

1. Code to compute the randomization test using Gill’s (2007) method 
is available from the first author. The code, in the form of a Fortran-90 
module, includes routine for both completely randomized (between-
subjects) and repeated measures (within-subjects) tests.
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where tr is the value on the rth combination. To evaluate 
alpha, Gill used the Fourier expansion—that is,
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where k  2k   1, and F(a) is the imaginary part of a. To 
ensure the validity of the expansion (i.e., to ensure a  ), 
he scaled the data so that the max| t  tr|  9 /10. The 
max| t  tr| is easy to compute by first ranking the data to 
obtain the most extreme combination.

Using Gill’s (2007) algorithm, the computational cost 
of computing a randomization test can be brought to a 
practical level on a newer PC1; it is a little more costly than 
computing an F or t, but it is vastly faster than computing 
the full enumeration of all combinations.

Conclusions
In the present article, we describe a simple algorithm 

that avoids the systematic liberal bias associated with 
standard t, F, and R tests for data with unequal Ns and 
the larger variance in the smaller cell. Even though the 
circumstances under which data with these conditions 
may be created are rare, the experiment may be too costly 
to rerun, and standard statistical significance tests could 
easily lead to incorrect conclusions. Hence, we offer the 
resampling option to experimenters when circumstances 
require it. Unfortunately, however, the algorithm is not 
symmetrical: We have not yet discovered an algorithm 
with which to help reduce the conservative bias when the 
larger cell also has the larger variance.
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