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Abstract

In ERP studies, the comparison of topographies (multichannel measurements) or whole spatiotemporal data matrices

(multichannel time series of measurements), the classical statistical tests very often cannot be used. It is argued that, for

these comparisons, randomization tests are an excellent alternative. It is also argued that the randomization test is

superior to another resampling method, the bootstrap, because exact probability statements (e.g., p values) can be

made. A review is given of the literature on randomization tests designed for electrophysiological data. New

randomization tests are presented and applied to two data sets, one coming from a psychopharmacological experiment

and the other from an ERP experiment in visual word recognition.

Descriptors: Randomization tests, Family-wise error rate, Electrophysiological data, Topographies, Spatiotemporal

data

In this article, I present a class of statistical tests of differences

between event-related potentials (ERPs) among a number of

conditions. The focus is on the statistical comparison of

quantities in cases where the classical statistical tests very often

cannot be used: topographies (i.e., multichannel measurements)

and whole spatiotemporal data matrices (i.e., multichannel time

series of measurements). It is argued that, for these comparisons,

randomization tests are an excellent alternative and better than a

related method, the bootstrap. For illustration purposes,

randomization tests were applied to two data sets, one coming

from a psychopharmacological experiment and the other froman

ERP experiment in visual word recognition.

Setup

I consider multichannel ERP data observed over a number of

time points, as determined by the time interval of measurement

and the sampling rate of the registration equipment (usually,

between 200 and 1000 Hz). This type of data is called

spatiotemporal and can be organized in a matrix of order

number of channels � number of time points.

I consider ERPs observed in a number of conditions. These

conditions may differ because, for example, different types of

stimuli were presented, different instructions were given, or the

participants differed in a systematic way (e.g., patients vs.

controls). In every condition, a number of replications is

observed. In single-participant studies, these replications are

the single-trial ERPs; in multiple-participant studies, these

replications are the ERPs of a number of participants. Typically,

in multiple-participant studies, the ERPs of individual partici-

pants are themselves averages of a number of single-trial ERPs.

In this article, a distinction is made between two types of

multiple-participant studies: studies with a between-participants

manipulation, in which every participant is observed in only one

of the conditions, and studies with a within-participants

manipulation, in which every participant is observed in all

conditions. This distinction is made because different statistics

are used in between- and within-participant studies.

In the following, I first deal with the statistical testing of the

difference between topographies. Later, I will consider the

statistical testing of the difference between whole spatiotemporal

datamatrices. Both statistical testing problemswill be considered

for within- as well as between-participant studies.

Statistical Testing of the Difference between Topographies

A topography is a multichannel measurement at a particular

latency1 (e.g., at 400 ms). Statistical testing of the difference

between topographies is of interest for two reasons:
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1. Topographies reflect the sources that generate the ERPs. In

other words, the topography of an ERP is considered a scalp

signature of the source that generated it. Therefore, by

comparing topographies of different conditions, it is possible

to obtain estimates of the underlying sources that are

responsible for the differences between these conditions.

2. Testing the difference between all channels (i.e., topographies)

by means of a single statistic, as is proposed in this article,

controls the family-wise error rate2 without any correction of

the Bonferroni type. This approach is valid for researchers

who are not interested in the topography of the effect of an

independent variable but only in whether this effect is

statistically significant. The simplest method to evaluate the

statistical significance of an effect is by performing a series of

channel-specific statistical tests. As is well known, this leads to

an uncontrolled increase in the family-wise error (FWE) rate,

which can be bounded by Bonferroni correction, but most

likely at the expense of an excessive decrease in power.

The statistic that is computed to perform the statistical test of the

difference between the conditions depends on the number of

conditions that are compared. However, the main points of this

article do not depend on the number of conditions that are

compared, and therefore these points will be elaborated for the

case of two conditions. After that, it is easy to generalize to the

case of an arbitrary number of conditions.

In the next section, I present the multivariate independent

samples T test for the difference between independent samples,

performed by means of Hotelling’s T2 statistic. This test is used

for testing the difference between two conditions in (a) a single-

participant study (in which the replications are single-trial

ERPs),3 and (b) a multiple-participant study with a between-

participants manipulation (in which the replications are the

ERPs of a number of participants). In a multiple-participant

study with a within-participants manipulation, one has to use the

multivariate independent samples T test for the difference

between paired samples, which is performed by means of another

version of Hotelling’s T2 statistic. I will return to this test for

paired samples in one of the later sections.

The Multivariate T Test for the Difference between Two

Independent Samples

Themultivariate independent samplesT test is a generalization of

the univariate independent samples T test. The number of

replications in the first and the second samples is denoted by,

respectively, n1 and n2. The replications themselves are denoted

by, respectively, y1i (i5 1,y,n1) and y2i (i5 1,y,n2). Every y1i
and y2i denotes a multichannel measurement observed at a

particular latency or in a particular time window. Thus, y1i and

y2i are vectors of length equal to the number of channels. In the

following, the number of channels is denoted byM. The average

measurements in the two samples are denoted by y1and y2.

The multivariate independent samples T test makes use of

Hotelling’s T2 statistic:

T2 ¼ ðy1 � y2Þ
t 1

n1
þ 1

n2

� �
Spooled

� ��1

ðy1 � y2Þ: ð1Þ

To fully understand the right-hand side of this equation, one

has to know some elementary matrix algebra. However, for the

purpose of this article, it is sufficient to have an intuitive

understanding of this formula. In a loose sense, T2 can be seen as

the square of the vector y1 � y2 divided by the matrix 1
n1
þ 1

n2
Spooled (which explains the exponent � 1 in Equation 1). The

value of T2 is always positive. A good handbook on applied

multivariate statistics (e.g., Johnson & Wichern, 1988) provides

information on the properties and applications of Hotelling’s T2.

The vector y1 � y2 is the difference between the average

multichannel measurements in the two conditions. The more the

elements of y1 � y2 differ from zero, the larger T2. The symbol

Spooled denotes the pooled variance–covariance matrix of the

multichannel measurements. Pooled means that, in Spooled, the

variance–covariance matrices of both conditions are combined

by taking their weighted average (with the weights proportional

to the sample sizes). The diagonal elements of Spooled are the

pooled variances of the different channels, and the off-diagonal

elements are the pooled covariances between the different pairs of

channels. The larger the pooled variances on the diagonal, the

smaller T2. The role of the pooled covariances is more

complicated. The pooled variance–covariance matrix is multi-

plied by 1
n1
þ 1

n2
. The larger n1 and n2, the number of observations

in the two samples, the larger T2.

It is important to note here that the T2 statistic cannot be

computed with average reference data. This is because, with

average reference data, the inverse of the variance–covariance

matrixSpooled does not exist.With a common reference electrode,

either physical or synthetic (e.g., linked mastoids), this inverse

exists if the number of observations exceeds a certain critical

number (see further).

The T2 statistic in Equation 1 is a generalization of the square

of the univariate (single-channel) independent samples T

statistic. To see this, consider the T2 statistic in Equation 1 for

the case of a single channel. In this case, y1 � y2 is a single

number, as is Spooled, the pooled variance of the measurements in

this single channel. Let this pooled variance be denoted by s2pooled.

Then, the T2 statistic can be written as follows:

T2 ¼ ðy1 � y2Þ
2

ð 1
n1
þ 1

n2
Þs2pooled

; ð2Þ

which is the square of the univariate independent samples T

statistic.

Under the null hypothesis that the expected values of y1i and

y2i are equal, and some auxiliary assumptions (see further), the

distribution of the T2 statistic is a scaled F distribution with M

and n11n2�M� 1 degrees of freedom. (By scaling, I mean

multiplication by a known constant. For the remainder of this

article, it is not necessary to know the value of this scaling

constant.) By evaluating the observed T2 statistic under this

reference distribution, the FWE rate can be controlled. The

auxiliary assumptions that also have to be fulfilled (besides the

null hypothesis) for the T2 statistic to have the usual reference
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2The family-wise error rate is the probability under the null hypothesis of
observing a significant effect at one or more channels.

3There is some confusion in the psychophysiological community as to
whether the independent samples T test or the paired samples T test
should be used in a single-participant study.Whether the one or the other
statistical test should be used depends on whether the data come in pairs,
with one element of the pair observed in one condition and the other
element in the other condition. Only if the data come in pairs should the
paired samples T test be used. This is because it is likely that the elements
of a pair are correlated. Contrary to a multiple-participant study with a
within-participants manipulation, there are no such pairs in a single-
participant study.



distribution given above, are the following:

1. The vectors y1i and y2i are drawn from multivariate normal

distributions with identical variance–covariance matrices.

2. The total number of observations (i.e., n11n2) is larger than

the number of channels plus one (i.e.,M11). If this condition

does not hold, then the matrix inverse in Equation 1 does not

exist and therefore the T2 statistic cannot be computed.

Although both auxiliary assumptions can be violated, in the

psychophysiological literature, the latter assumption has received

more attention.

Many Channels and Few Observations

In many ERP studies, the total number of observations is less

than the number of channels plus one, and therefore Hotelling’s

T2 statistic cannot be computed. In the literature, several

proposals have been made for dealing with this problem (Achim,

2001; Galán, Biscay, Rodrı́guez, Pérez-Abalo, & Rodrı́guez,

1997; Haig & Gordon, 1995; Karnisky, Blair, & Snider, 1994).

All proposals, in one way or another, reduce the multivariate

testing problem to a uni- or a bivariate problem. For instance,

Karnisky et al. proposed to compute a separate T statistic for

every channel, take the square of these statistics, and add these

values over the channels.4 Their statistic is called T 25 sum.

Because the sampling distribution of T 25 sum is unknown,

Kawrnisky et al. used the randomization distribution of this

statistic to control the FWE rate. The randomization distribution

will be described in the next section.

Haig and Gordon (1995) proposed to project the topogra-

phies onto the so-called centroid difference vector, and to

compute the signed projection lengths. This centroid difference

vector is the difference between the centroids, the average

topographies in the two samples. The signed5 projection lengths

are a measure of relative distance of the topographies to the two

centroids. To make this more explicit, let x1 and x2 be

topographies, belonging to, respectively, sample 1 and sample

2. Also, let the centroid difference vector be computed by

subtracting the average topography (centroid) of sample 2 from

the average topography (centroid) of sample 1. Then, if there is a

difference between the samples, the topography x1 is expected to

be closer to the centroid of sample 1 than to the centroid of

sample 2, and for the topography x2 the reverse is expected. This

will reflect itself in a larger signed projection length when x1 is

projected onto the centroid difference vector than when x2 is

projected onto this vector. Completely in line with this fact, Haig

and Gordon propose to perform an ordinary independent

samples T test on these projections. However, Achim (2001)

noted that the assumptions of the independent samples T test

were not fulfilled by the procedure of Haig andGordon, and that

therefore the usual reference distribution (i.e., the T-distribu-

tion) is not the sampling distribution of this test statistic. Achim

proposed to use the randomization distribution as an alternative

reference distribution instead.

Several other test statistics have been proposed, and I briefly

mention them here. Galán et al. (1997) proposed to compare

topographies by first locating, in each of the conditions, the

electrodes with maximum potential, and then computing the

angle between these two scalp locations.6 Galán used the

randomization distribution to control the FWE rate. Finally,

Achim (2001) proposed two test statistics that are based on a

principal components analysis of the data. In essence, he

proposed to perform a T test on the first or the first two

principal components (in the latter case, by means of the

bivariate T2 statistic).

Randomization Tests for Independent Samples

In this article, a randomization test is proposed for ERP data. A

randomization test involves the following two steps: (a) Compute

some statistic in which you are interested, and (b) evaluate its

value under the randomization distribution. First, I will discuss

the randomization distribution, and especially, the motivation

for its use. And second, I will discuss the choice of the test statistic

whose value will be evaluated under the randomization distribu-

tion. For concreteness, assume that the test statistic is the T2

statistic for independent samples in Equation 1. Instead of

evaluating this test statistic under its usual reference distribution

(a scaled F-distribution), it will now be evaluated under the

randomization distribution.

The randomization distribution. The randomization distribu-

tion arises as a result of random assignment of units to

conditions. The randomization distribution can be used in many

experimental designs, but for the purpose of introduction, it is

good to consider a multiple-participant study with a between-

participants manipulation. In a study of this type, the units are

the participants and these are assigned at random to one of the

conditions.

To understand the rationale behind the use of the randomiza-

tion distribution, one should start from the hypothesis of no

effect. This hypothesis of no effect has a very precise definition:

The value that is observed for a particular participant is identical

to the value that would be observed if this participant were

assigned to the other condition. Under this hypothesis, if the

participants were assigned differently to the conditions, the same

n11n2 values would be observed but distributed differently over

the two conditions. The random element in these data is the way

the observations are distributed over the two conditions. This

random element defines a probability distribution over the data,

which is called the randomization distribution.

The randomization distribution of any statistic of the data can

be simulated on a computer. Suppose that the randomization

mechanism that performed the actual assignment was such that

every partition of the n11n2 participants in two groups of sizes n1
and n2 were equally likely. Such a randomizationmechanism can

easily be simulated on a computer by making use of a

pseudorandom number generator, which is available in almost

all programming languages. The randomization distribution of,

say, the T2 statistic can be approximated by means of an

algorithm that repeats the following three steps a large number of

times (e.g., 10,000 times):
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4Karnisky et al. (1994) considered a within-participants comparison
of conditions, and therefore computed paired samples T statistics, but
their method can easily be extended to a between-participants
comparison, namely, by computing independent samples T statistics.

5Signed means that the direction of the projection is also taken into
account. More specifically, if the signed projection length is positive, this
means that the topography points more in the direction of the centroid
difference vector than in the opposite direction. And if the signed
projection length is negative, the reverse holds.

6This test was originally proposed for a within-participants compar-
ison, but it is easy to formulate a variant for a between-participants
comparison.



1. Perform a random partition of the n11n2 observed values in

two groups such that every possible partition is equally likely.

2. Compute the T2 statistic for this partition.

3. Add the value of this statistic to a temporary list of T2

statistics computed under the hypothesis of no effect.

The final list of T2 statistics is an estimate of the randomization

distribution of this statistic, and it can be used to estimate both

some quantile (e.g., the 95th) of the randomization distribution

as well as the p value of the observed T2 statistic. This p value is

simply the proportion of T2 statistics under the hypothesis of no

effect that is larger than the observed T2 statistic.

Now, consider a single-participant study. In a study of this

type, the units are the occasions at which the trials can be

presented. Typically, these occasions are time-slots in an

experimental session. These occasions are assigned at random

to one of the two conditions. Under the assumption of no effect,

the value that is observed at a particular occasion is identical to

the value that would be observed if this occasion was assigned to

the other condition. Under this hypothesis, if the occasions were

assigned differently to the conditions, the same n11n2 values

would be observed but distributed differently over the two

conditions. Because the assignment is random, it defines a

probability distribution over the data. This probability distribu-

tion can be simulated in the same way as described above.

The hypothesis of no effect will also be called a null hypothesis,

but it should be noted that this null hypothesis is different from

the null hypothesis of the multivariate independent samples T

test, which states that the expected values of the multichannel

measurements in the two conditions, y1i and y2i, are equal. In

fact, the hypothesis of no effect is a hypothesis about the n11n2
units that were observed (namely, that their values are identical in

the two conditions), whereas the null hypothesis of the multi-

variate independent samplesT test is about the expected values in

the populations from which the samples were drawn.7 There

seems to be no reason to prefer one null hypothesis over the

other; they are just different specifications of the general idea of

no difference between the conditions.

The choice of the test statistic. For every test statistic, it is

possible to approximate its randomization distribution by means

of the simulation algorithm described above. Thus, by means of

the randomization distribution, it is possible to control the FWE

rate for the test statistics proposed by Achim (2001), Galán et al.

(1997), Haig and Gordon (1995), and Karnisky et al. (1994).

This obviates the need to derive their sampling distribution, a job

that may be very difficult or even impossible.

The univariate statistics proposed by the authors above solve

the problem that, in many ERP studies, the total number of

observations is larger than the number of channels plus one, such

that the T2 statistic cannot be computed. However, many other

test statistics can be conceived for the same purpose. I now

propose one such statistic that stays much closer to Hotelling’s

T2 than the univariate statistics proposed by other authors. The

main advantage of using Hotelling’s T2 is that it is equivalent to

using the so-called likelihood ratio statistic (Johnson & Wichern,

1988), which has certain optimum properties with respect to

power. As to its computation, contrary to the univariate

statistics, Hotelling’s T2 takes into account the covariances

between pairs of channels, which are always nonzero in practice.8

The new statistic to be presented is based on the idea of

pooling the variance–covariance matrices Spooled over adjacent

time points. This is also called a moving average of time-specific

variance–covariance matrices and it results in a double-pooled

variance–covariance matrix, denoted by Sdouble-pooled. The

single-pooled variance–covariance matrix Spooled in the formula

of Hotelling’s T2 is then replaced by this double-pooled

variance–covariance matrix Sdouble-pooled.

Tomake this more precise, let the variance–covariancematrix

of time point t be denoted by Spooled. If the number of

observations is less than the number of channels plus one, this

matrix cannot be inverted (i.e., the � 1 operation cannot be

performed). However, consider now the pooling of Spooled over

the adjacent time points t� 1, t, and t11, resulting in the double-

pooled variance–covariance matrix:

Sdouble�pooled ¼
S
ðt�1Þ
pooled þ S

ðtÞ
pooled þ S

ðtþ1Þ
pooled

3
;

which is a moving average of width three. By increasing the

number of adjacent time points that is involved in this moving

average (3, 4, 5, y), one can always compute a double-pooled

variance–covariance matrix that is inverible.

If the single-pooled Spooled in the formula of Hotelling’s T2 is

replaced by Sdouble-pooled, the usual reference distribution for the

T2 statistic (a scaledF-distribution) is no longer valid. However,

the FWE rate can also be controlled by using the randomization

instead of this sampling distribution.

The randomization test solves several problems. Not only can

the randomization distribution be determined for every test

statistic, this possibility does not depend on any other auxiliairy

assumption besides the fact that the statistic must be computable.

This is different from the usual reference distributions, which are

all sampling distributions under the null hypothesis plus some

nontrivial auxiliary assumptions. For instance, the usual

reference distribution for Hotelling’s T2 (a scaled F-distribu-

tion) is only valid if the observations are drawn frommultivariate

normal distributions with an identical variance–covariance

matrix in the two conditions. If there is reason to doubt these

auxiliary assumptions, it is wise to consider the randomization

distribution as an alternative reference distribution.

Post hoc testing of separate channels. When a significant

Hotelling’s T2 is observed, the obvious next question is which

channels are responsible for the effect. In other words, given a

significant difference between the two conditions, the question is

where this difference occurs. This question can be answered by

means of a randomization test that is based on a combination of

squared univariate (channel-specific) T statistics. This test

resembles Scheffé’s post hoc test, which is often used in a

common univariate ANOVA following a significant omnibus

test (see Maxwell & Dalaney, 1990, pp. 186–192). The test

statistic for this randomization test is computed as follows:

1. For each of theM channels, compute the squared univariateT

statistic in Equation 2.

2. Compute the maximum of the M squared univariate T

statistics.
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random assignment to the conditions, also the null hypothesis in terms of
expected values (namely, EðY1Þ ¼ EðY2Þ) holds. The reverse does not
necessarily hold.

8If these covariances are all zero, then Hotelling’s T2 is equal to
T 25 sum, proposed by Karnisky et al. (1994).



From a large number of draws from the randomization

distribution of the maximum of the squared univariate T

statistics, estimate the 95th quantile of the randomization

distribution. Denoting the number of draws by D, this estimate

is equal to the .95 � D largest value in the list of D draws. This

estimated 95th quantile is then used as a critical value towhich all

squared univariate T statistics are compared: For every channel

with a squared univariateT statistic that is larger than this critical

value, it is concluded that it exhibits a significant difference

between the conditions.

This post hoc testing procedure controls the FWE rate for all

channels jointly. This is because, under the randomization null

hypothesis of no effect, there is a probability of .05 of having one

or more channels with a squared univariate T statistic that is

larger than the 95th quantile of the randomization distribution of

the maximum of all squared univariate T statistics.

Comparing More than Two Conditions

Hotelling’s T2 is restricted to cases where only two conditions

have to be compared.Whenmore than two conditions have to be

compared, the usual test statistic is Wilks’ lambda.9 Wilks’

lambda is the multivariate generalization of the ANOVA F

statistic. For two independent samples, Hotelling’s T2 (the

multivariate generalization of the squared T statistic) is a simple

function ofWilks’ lambda and results in exactly the same p value.

If the number of observations (summed over all conditions) is

small as compared to the number of channels (e.g., for three

groups, smaller than or equal to the number of channels minus

two), then Wilks’ lambda cannot be used. Again, this problem

can be solved by replacing the time-specific single-pooled

variance–covariance matrix (which is also needed for the

computation of Wilks’ lambda) by a double-pooled variance–

covariance matrix. For evaluating the significance of this

adaptation of Wilks’ lambda, one cannot make use of a

distributional result that gives us its sampling distribution.

However, by making use of the randomization distribution, it is

easy to control the FWE rate. Post hoc testing of separate

channels is possible in essentially the same way as was described

for the case of exactly two conditions: Instead of taking the

maximum of squared univariate (channel-specific) T statistics,

one now has take the maximum of channel-specific F statistics.

The Multivariate T Test for the Difference between Paired

Samples

I now consider multichannel potentials observed in two

experimental conditions of a factor that is manipulated within

participants. The observations, which come in n pairs, are again

denoted by y1i and y2i. The multivariate paired samples T test

makes use of Hotelling’s T2 statistic:

T2 ¼ ðy1 � y2Þ
t 1

n
Sdiff

� ��1

ðy1 � y2Þ: ð3Þ

The symbol Sdiff denotes the variance–covariance matrix of

the differences y1i� y2i. The diagonal elements of Sdiff are the

variances of the differences between the potentials at the different

channels, and the off-diagonal elements are the covariances

between these differences at the different pairs of channels.

Much of what was said for the multivariate independent

samples T test can be repeated here for the multivariate paired

samples T test with minor modifications. First, the T2 statistic in

Equation 3 is a generalization of the square of the univariate

(single-channel) paired samples T statistic.

Second, under the null hypothesis that the expected values of

y1i and y2i are equal, and some auxiliary assumptions (see

further), the distribution of the T2 statistic is distributed as a

scaled F-distribution with M and n�M degrees of freedom.

The auxiliary assumptions are the following:

1. The difference vectors y1i� y2i are drawn from a multivariate

normal distribution.

2. The number of pairs n is larger than the number of channels

M. If this condition does not hold, then Sdiff is not invertible

and therefore T2 cannot be computed.

Third, the idea of pooling the variance–covariance matrices of

adjacent time points can also be applied to paired samples. More

specifically, the matrix Sdiff in Equation 3 can be replaced by

another matrix that is obtained by pooling the Sdiff matrices

observed in some small time interval. Because its sampling

distribution is unknown, the resulting test statistic should be

evaluated under its randomization distribution.

Fourth, the randomization distribution for studies with a

within-participants manipulation arises from a slightly different

random process as for studies with a between-participants

manipulation. In studies with a between-participants manipula-

tion, the randomization distribution arises from the random

assignment of participants to conditions, whereas in studies with

a within-participants manipulation, the randomization distribu-

tion arises from random assignment of occasions to conditions.

Typically, these occasions are time slots in an experimental

session, and one trial is presented in every time slot. In an

experiment with two conditions, the time slots are divided in two

sets, and one set is assigned at random to one condition and the

other set to the other condition. The measurements on the trials

belonging to each of the two conditions are then averaged over

the trials. In the above, these averages are denoted by y1i and y2i.

The assumption of no effect involves that exactly the same

potentials would be observed if the time slots were assigned in the

reverse way: The time slots that were first assigned to one

condition are now assigned to the other. The result of this

reversal is that the values of y1i and y2i are interchanged and that

the difference y1i� y2i changes sign. Because the assignment of

occasions to conditions is random, it defines a probability

distribution over the data. In particular, under the hypothesis of

no effect, the probability of observing the difference y1i� y2i is

equal to the probability of observing minus this difference.

Fifth, the randomization distribution of any statistic of the

data (i.e., the n differences y1i� y2i) can be simulated on a

computer. The randomization distribution of, say, the paired

samples T2 statistic with a pooled variance–covariance matrix

can be approximated by means of an algorithm that repeats the

following three steps a large number of times:

1. For every participant, simulate the toss of a fair coin (with

probability .5 of observing heads) and let the result of this toss

determine whether the observed difference y1i� y2i is multi-

plied by 11 or � 1.

2. Compute the T2 statistic using the differences computed in

step 1.
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in an article.



3. Add the value of this T2 statistic to a temporary list of T2

statistics computed under the hypothesis of no effect.

The final list of T2 statistics is an estimate of the randomization

distribution of this statistic, and it can be used to estimate both

some quantile of the randomization distribution as well as the p

value of the observed T2 statistic.

Sixth, post hoc testing of separate channels is performed in

essentially the same way as for a between-subjects manipulation

with two levels: Instead of taking the maximum of squared

univariate (channel-specific) independent samples T statistics,

one now has to take the maximum of squared univariate

(channel-specific) paired samples T statistics. For the rest, the

post hoc testing procedure is identical.

Seventh and last, if the within-participants manipulation has

more than two levels, a slighty different version of the T2 statistic

has to be used. For instance, if the manipulation has three levels,

then two differences have to be computed for every participant:

for instance, y1i� y2i and y1i� y3i. These two difference vectors

of length M are then concatenated, producing a combined

difference vector of length 2 � M. In the computation of the test

statistic, this combined difference vector replaces the single

difference vector y1i� y2i in our discussion of the two-level case.

The generalization to the case of an arbitrary number of levels is

along the same lines as for the case of three levels.

Statistical Testing of the Difference between Multichannel Time

Series of Measurements (Spatiotemporal Data)

We now consider the statistical testing of the difference between

multichannel time series of measurements. A multichannel time

series of measurements is organized in a M � S spatiotemporal

data matrix (withM and S denoting, respectively, the number of

channels and the number of time points). The observed

spatiotemporal data matrices in the two conditions are denoted

by, respectively, y1i and y2i.

A Straightforward Statistical Test that Is Infeasible in Practice

A straightforward statistical test for comparing the spatiotem-

poral data matrices of two conditions is a M � S-variate T2

statistic. In the previous section, the interest was in comparing

topographies, which are multichannel measurements observed at

a single time point, consisting of M elements. Now, complete

spatiotemporal matrices, consisting of M � S elements, are

considered. Therefore, for comparing the spatiotemporal data

matrices of two conditions, a M � S-variate T2 statistic is

required. To be able to compute this M � S-variate T2 statistic,

the number of observations (participants or trials) has to be

larger than M � S11. Because the number of channels M is

usually between 10 and 100, and the number of time points S is

usually of the order of several hunderds, an extremely large

number of observations is required. It is very unlikely that such a

large number of observations is attainable in practice.

Besides being infeasible in practice, this statistical test also has

the disadvantage that, if it is significant, it gives no information

about the time points at which the difference between the

conditions occurs. In the following, a statistical test will be

presented that does give this information.

A Feasible Randomization Test

We now consider a randomization test that is based on a

combination of test statistics for several time points. This test

resembles the post hoc testing procedure that was proposed for

the statistical testing of the difference between topographies. The

test statistic is computed as follows:

1. For every time point from 1 to S, compute the appropriate T2

statistic: In the case of two independent samples, compute the

T 2 statistic in Equation 1, and in the case of paired samples,

compute the T 2 statistic in Equation 3.

2. Compute the maximum of the S T2 statistics. This combined

statistic will be denoted as Max(T 2).

From a large number of draws from the randomization

distribution of Max(T 2), the 95th quantile of this distribution

is estimated. This estimated quantile is then used as a critical

value to which all time-point-specific T2 statistics are compared:

For every time point with a T2 statistic that is larger than this

critical value, it is concluded that it exhibits a significant

difference between the conditions.

This procedure controls the FWE rate for all time points

jointly. This is because, under the randomization null hypothesis

of no effect, there is a probability of .05 of having one or more

time points with a T2 statistic that is larger than the 95th quantile

of its randomization distribution.

It is instructive to see that the FWE rate for all time points

jointly is not controlled when the randomization test of the

previous section (i.e., for a single time point) is applied to all S

time points separately. To see this, suppose that the randomiza-

tion null hypothesis of no effect holds and that the researcher

evaluates all S T2 statistics under their own (time-point-specific)

randomization distribution. Let the significance level be .05.

Then, it can be shown that the expected number of time points

with a significant T2 statistic is equal to S � .05. Thus, when S is

equal to 1,000, one can expect 50 time points with a significantT2

statistic. It is clear that, in this case, the FWE rate for all time

points jointly is not controlled at .05.

It is worth considering a couple of variations on the Max(T 2)

randomization test. First, it may happen that the T2 statistics

cannot be computed because the number of observations is too

small. In that case, one can use the same solution as described in

the previous section: taking the moving average of the time-

specific variance–covariancematrices. If there is reason to believe

that the variance–covariance matrices are constant over time,

then it makes sense to take the average of all S time-specific

variance–covariance matrices. This will result in a more reliable

estimate of the variance–covariance matrix and therefore in a

more sensitive statistical test (at least, if the variance–covariance

matrices are indeed constant over time). However, in my own

experience with data from cognitive neuroscience, the variance–

covariance matrices are not constant over time; usually, the

variances increase over time.

Second, it may happen that a researcher is not interested in

finding significant differences at a single time point only. This is

likely to be true if the sampling rate is very high (e.g., 500 Hz or

more). For researchers who are not interested in effects that last

only 1 or 2 ms, it makes sense to compute a moving average on

the time series of T2 statistics, with the width of the moving

average equal to the minimum time interval that is large enough

to be of interest. If the Max(T 2) randomization test is applied to

a time series ofmoving averages instead of to the time series of the

original T2 statistics, a single moving average that exceeds the

critical value under its randomization distribution now corre-

sponds to an interval instead of a single time point. An advantage
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of taking a moving average of the time series of T2 statistics is

that, if the effect lasts as long as the width of the moving average,

this will increase the power of the statistical test. This is because

an average T2 statistic is more reliable than individual T2

statistics.

The widths of the moving averages of the time-specific

variance–covariance matrices and T2 statistics are two tuning

parameters of the randomization test that is presented here. It

should be clear that these tuning parameters should be fixed in

advance, because the type 1 error probability may not be

controlled otherwise. In the absence of theoretical results on the

effects of these tuning parameters, the best option is to determine

the tuning parameters from an application of the randomization

test to independent pilot data. In the applications discussed in the

next section, the widths of the two moving averages are fixed at

31 and 10 ms for, respectively, the time-specific variance–

covariance matrices and the T2 statistics.

Third, it is easy to extend this test of the difference between

two spatiotemporal data matrices to the case of more than two

conditions. For the case of more than two independent samples,

the Max(T 2) statistic is replaced by the maximum of S Wilks’

lambdas, each computed at a single time point. And for the case

of a within-participants manipulation with more than two levels,

the Max(T 2) statistic is replaced by the maximum of S time-

specific T 2 statistics, each of which is computed on a combined

difference vector, as described previously.

A Comparison with Other Resampling Methods

The randomization test belongs to the larger class of resampling

methods. All resampling methods attempt to quantify uncer-

tainty by resampling from the set of observations. A randomiza-

tion test is a resampling method because it can be conceived as a

procedure inwhich (1) all observations in the different conditions

are put into one or more urns, and (2) new values for the

observations in the conditions are found by drawing at random

without replacement from these urns. By repeating steps 1 and 2,

draws from the randomization distribution are obtained.

Two other well-known resampling methods are the bootstrap

and the jackknife. Both methods are described by Wasserman

and Bockenholt (1989) in a paper that was especially written for

the psychophysiological community. Wasserman and Bocken-

holt focused on the estimation of parameters (a populationmean,

a correlation, a regression coefficient, etc.) and in particular, on

how to quantify the uncertainty in these estimates. For example,

Fabiani, Gratton, Corballis, Cheng, and Friedman (1998)

applied the bootstrap method to quantify the uncertainty in the

location (Cz, Pz, F7, etc.) that has the largest P3 amplitude. In

this study, the parameter is the electrode placement at which the

largest P3 amplitude is observed, and the uncertainty in the

parameter estimate is quantified by a frequency distribution over

the 30 placements used in this study; if the frequencies are

strongly concentrated around a single placement, this means that

there is not much uncertainty about the locus of the largest P3

amplitude.

This focus on parameter estimation differs from the present

article, in which the focus is on the testing of the hypothesis of no

effect. With unidimensional measurements (e.g., a measurement

at a particular sensor at a particular time point), it is very often

possible to reformulate the hypothesis of no effect as a hypothesis

about the value of some unknown parameter (e.g., a population

mean), and this usually leads to a simple statistical test. However,

when the hypothesis is about multidimensional measurements

(i.e., topographies and whole spatiotemporal data matrices), this

reformulation is muchmore complicated and, more importantly,

does not lead to a simple statistical test.

There is an easy bootstrap method for testing the hypothesis

of no effect with multidimensional measurements, but this

method is not along the lines described by Wasserman and

Bockenholt (1989). This method will be described in the

following. The jackknife, in contrast, cannot readily be used

for testing this hypothesis and will be ignored in the following.

I now briefly describe how the bootstrap method can be used

to test the hypothesis of no effect. The focus is on the comparison

of topographies in a within-participants design with two

conditions. The extension to whole spatiotemporal data ma-

trices, independent samples (a between-participants design or a

single-participant study), and more than two conditions is

simple. For the application to the comparison of topographies

in a within-participants design with two conditions, the boot-

strap method involves the following four steps:

1. Compute residuals. For the type of data that is considered

here, these residuals are the observed difference topographies

y1i� y2i minus their average y1 � y2.

2. Put all n residuals in a single urn.

3. Draw n residuals at random with replacement from this urn.

4. Compute Hotelling’s T2 statistic in Equation 3, treating the

residuals as the actual observations y1i� y2i.

By repeating steps 3 and 4 a large number of times, the so-called

bootstrap distribution of T2 statistics is obtained. By evaluating

the observed T2 statistic under this bootstrap distribution

(comparing the observed T2 statistic with some quantile of this

distribution or computing a p value), the statistical significance of

this observed T2 statistic is assessed.

The rationale of the bootstrap method is that the bootstrap

distribution is considered as an approximation of the sampling

distribution under the null hypothesis. In fact, if the number of

observations n is infinite, then the bootstrap distribution is

identical to this sampling distribution. One should not be

completely reassured by this result, because statistical testing

only makes sense in finite samples; in infinite samples, there is no

uncertainty about whether or not the null hypothesis holds.

The main difference between the randomization test and the

bootstrap is that the randomization test is exact: The randomiza-

tion test makes an exact probability statement (e.g., a p value)

about the observations under the hypothesis of no effect. This

probability statement follows from the randomization mechan-

ism that is responsible for the assignment of participants or

occasions to conditions. In contrast, a probability statement on

the basis of a bootstrap distribution is only approximate; one

would like this probability statement to be identical to the

probability statement on the basis of the sampling distribution,

but for finite samples, this is not guaranteed. Moreover, there is

no general statistical theory that quantifies the degree to which

the bootstrap distribution approximates the sampling distribu-

tion.

It is easy to extend the bootstrap method to whole

spatiotemporal data matrices, independent samples, and more

than two conditions. Extending the method to whole spatiotem-

poral data matrices involves that Hotelling’s T2 statistic is

replaced by the Max(T 2) statistic. Extending the method to a
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study with independent samples involves that every sample

(condition) has its own urn of residuals from which as many

elements are drawn (with replacement) as the number of obser-

vations in this sample. The extension to a study with more than

two conditions involves that, in a study with independent

samples, the T2 statistic is replaced by Wilk’s lambda, and in a

study with a within-participants design, the T2 statistic is com-

puted on a combined difference vector, as described previously.

Applications

Does Diazepam Modulate the Auditory Evoked Potential?

Jongsma, van Rijn, van Schaijk, and Coenen (2000) studied the

effect of diazepamon the rat auditory evoked potential (AEP). In

a within-participants experiment, Jongsma et al. obtained a

single-channel ERP of eight Wistar rats in two conditions:

diazepam (4.0 mg per kg, s.c.) and control. The order of the

conditions (diazepam and control) was counterbalanced.

AEPs were elicited by trains of 10 repetitive tone-pip stimuli.

Within a train, the interstimulus interval was 2 s. Two successive

trains were separated by an interval of 4 s. Here, we only consider

the AEP elicited by the first tone-pip in the train. However,

essentially the same results were found for the AEPs elicited by

the other tone-pips.

The EEGwas bandpass filtered (between 0.1 and 500Hz) and

recorded digitally with a sampling frequency of 1,024 Hz. For

every rat, the average EEG over 150 trials was calculated,

separately for the experimental and the control conditions. The

EEG in the interval between � 100 and 0 ms before stimulus

onset was used for baseline correction (removing the DC

component). The grand averages are shown in Figure 1. From

this figure, it appears that the N2 component of the AEP is much

more pronounced under diazepam than in the control condition.

To test the statistical significance of the effect of diazepam, the

Max(T 2) randomization test was performed. Because only a

single-channel potential was observed, the T2 statistic is a simple

squared paired samples T statistic. To improve the reliability of

the variance, s2diff in Equation 3 was replaced by a moving

average (spanning a width of 31 ms) of the time-point-specific

variances s2diff . Also, because one is usually not interested in

significant differences at a single time point only, a moving

average (spanning a width of 10 ms) was computed on the time

series ofT2 statistics. This resulted in a smoother time series. This

time series is shown in Figure 2 as the line with the diamonds.

The statistical test of the effect of diazepam involved the

computation of the 95th quantile of the randomization distribu-

tion of Max(T 2). This quantile was estimated by drawing 10,000

Max(T 2) values under its randomization distribution and taking

the 500th largest of these values. This estimated quantile is equal

to 10.53 and it is shown in Figure 2 by the thick horizontal line.

The observed time series of the squared paired samples T

statistics rises above the critical horizontal line after about 45 ms

and remains above this line until about 72 ms poststimulus. This

is in line with the fact that the estimated p value of the observed

Max(T 2) value is equal to .004. Thus, it can be concluded that

diazepam modulates the AEP.

In Figure 2, the thin lines are 10 random draws from the

randomization distribution of the time series of the squared

paired samplesT statistics. Of these 10 randomdraws, none have

a maximum that is larger than the observed Max(T 2) value.

The Time Course of Orthographic Processing Reflected by ERPs

A second application involved the data of an ERP experiment

that was conducted to study visual word recognition (Maris,

2002). The focus is on the comparison of the ERPs that are

observed in the condition with regular words and the ERPs that

are observed in the condition with pseudohomophones. Pseu-

dohomophones are nonwords that, when pronounced, sound

like an existing word (e.g., gaim, werd, rane). Maris was

interested in the difference between the ERPs in response to

regular words and those in response to pseudohomophones,

because that comparison may give information on the time

course of orthographic processing. More specifically, pseudoho-

mophones differ from regular words only in that their spelling is

unfamiliar (and incorrect), and therefore the time course of the

difference between the ERPs may give information on the time

course of orthographic processing.
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Figure 1. Grand averages of the auditory evoked potentials under

diazepam and the control condition.
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squared paired samplesT statistics (denoted by diamonds), the estimated

95th quantile under the randomization distribution of Max(T 2) (denoted

by the thick horizontal line), and 10 random draws of time series of

squared paired samplesT statistics from their randomization distribution
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Theparticipants in the experiment byMaris (2002) performed

a lexical decision (LD) task: For every stimulus, which was either

an existing word or a nonword (not only pseudohomophones but

also nonhomophonic pronounceable nonwords and nonpro-

nounceable nonwords), they indicated whether it was a word or a

nonword. Two versions of the LD taskwere used: In one version,

they pressed the response button when the stimulus was a word

(the go-on-word LD task) and in the other version they pressed

the response button when the stimulus was a nonword (the go-

on-nonword LD task). Every participant saw half of the stimuli

in the go-on-word version and the other half in the go-on-non-

word version of the LD task. In the following, the ERPs on the

regular words in the go-on-word LD task are compared to the

ERPs on the pseudohomophones in the go-on-nonword LD task.

Thus, in both conditions, the same motor response was given.

The EEG was registered on 27 channels for a total of 1,200

ms: 400 ms before and 800 ms during stimulus presentation. The

potentials observed in the prestimulus interval were used for

baseline correction. The EEGwas bandpass filtered (between 0.1

and 200 Hz) and recorded digitally with a sample frequency of

1000 Hz.

There was no hypothesis about where (i.e., on which channel)

and when (i.e., in which time interval) the difference between

regular words and pseudohomophones could be observed.

Therefore, we used the Max(T 2) randomization test to evaluate

the statistical significance of the difference between the two

27 � 800 spatiotemporal data matrices. For the purpose of

illustration, this test was applied to the data of a single

participant: 18 single-trial ERPs on regular words and 21 on

pseudohomophones. These trials were selected by removing all

trials on which an incorrect response was given (i.e., trials on

which the button was not pressed) and all trials with artifacts due

to eye movements.

To improve the reliability of the estimate of the variance–

covariance matrix, the Spooled in Equation 1 was replaced by a

moving average (spanning a width of 31 ms) of the time-point-

specific variance–covariance matrices Spooled. Also, a moving

average (spanning a width of 10 ms) was computed on the time

series of T2 statistics, which resulted in a smoother time series.

This time series is shown in Figure 3.

The statistical test of the difference between the ERPs on

regular words and pseudohomophones involves the computation

of the 95th quantile of the randomization distribution of

Max(T 2). This quantile was estimated by drawing 10,000

Max(T 2) values under its randomization distribution and taking

the 500th largest of these values. This estimated quantile is equal

to 66.832 and it is shown in Figure 3 by the thick horizontal line.

The observed time series of (the moving average of ) Hotelling’s

T2 statistic rises above the critical horizontal line after about 180

ms and, in the next 75 ms, remains above this line most of the

time. This is a relevant finding because, in the data of the same

participant there was no early significant effect of a phonological

manipulation (e.g., pronounceable vs. nonpronounceable non-

words). Thus, for at least one participant, the electrophysiolo-

gical manifestion of orthographic processing is visible at an

earlier stage than the electrophysiological manifestion of

phonological processing.

Conclusions

From the present study, it can be concluded that, for situations in

which classical statistical tests cannot be used, the randomization

test is an excellent alternative. One useful application of the

randomization test is the comparison of topographies. Because

the number of observations is often less than the number of

channels plus 1, the classical multivariate T test by means of

Hotelling’s T2 statistic cannot be used. This problem can easily

be solved by (a) replacing the variance–covariance matrix in

Hotelling’T2 statistic (Spooled for independent samples orSdiff for
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Figure 3. Plot of the time series of the moving average of the observed Hotelling’s T2 statistics, denoted by the jagged line, and the

estimated 95th quantile under the randomization distribution of Max(T 2), denoted by the horizontal line.



paired samples) by its moving average, and (b) evaluating the

resulting statistic under its randomization distribution. This

procedure takes advantage of the fact that an average variance–

covariance matrix is more reliable than a time-specific variance–

covariance matrix and therefore will result in a more sensitive

statistical test (at least, if the variance–covariance matrices are

constant in the time interval over which the moving average is

computed).

Another useful application of the randomization test is the

comparison of whole spatiotemporal data matrices. The

Max(T 2) statistic is very well suited for this comparison and

the randomization distribution is a convenient reference

distribution to evaluate its statistical significance.

A potential problem with the two statistical tests mentioned

above is that their results may depend on the two tuning

parameters: (a) the width of the moving average of the variance–

covariance matrix and/or (b) the width of the moving average of

the time-point-specific T2 statistics. To protect against type 1

error inflation, these tuning parameters should be fixed in

advance (rather than being chosen on the basis of the data). This

requires scientific discipline on the part of the researcher.

However, this is not essentially different from the testing of

multiple comparisons in (M)ANOVA: A more conservative

criterium for statistical significance is required when these

comparisons are chosen on the basis of the data than when they

are chosen a priori, and it is the researcher’s responsibility to

apply the appropriate one.

On the basis of a randomization test, one cannot generalize to

a population; one can only conclude that, for this particular

sample, the difference between the conditions is so large that it

cannot be attributed to the randomization mechanism (which

may, accidentally, assign participants with some large ERP

component to one condition and the other participants to

the other). I do not consider this a serious disadvantage of

the randomization test because the objective of generalizing to

some population of interest can only be attained if the

participants are drawn at random from this population. This

way of selecting particpants (specifying a population of interest

and drawing at random from it) is rarely used in psychophysio-

logical studies.

The bootstrap is another resampling method that can be used

for testing the same null hypotheses that are tested by means of

the randomization test. The bootstrap distribution is an

approximation to the sampling distribution. In contrast to the

exact probability statements that can be made on the basis of the

randomization distribution, only approximate probability state-

ments can be made on the basis of the bootstrap distribution.

Moreover, there is no general statistical theory that quantifies the

degree to which the bootstrap distribution approximates the

sampling distribution.
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