
Multiple-baseline designs are variants of single-case 
designs well suited to behavioral research. In this ar-
ticle, we want to bring these designs to the attention of 
experimental psychologists and social and behavioral re-
searchers in general, discuss such designs’ advantages and 
limitations for valid inference in behavioral research, and 
suggest a statistical data-analytic technique to comple-
ment visual inspection, together with software to conduct 
those analyses.

A multiple-baseline design consists of a series of rep-
licated single-case designs, in which the replications are 
carried out at the same time. They extend the basic single-
case AB phase design by implementing several of those 
AB designs simultaneously to different persons, behav-
iors, or settings (Ferron & Scott, 2005; Onghena & Edg-
ington, 2005). For convenience, these separate persons, 
behaviors, or settings will henceforth be called units.

The most characteristic feature of a multiple-baseline 
design is that the intervention is applied sequentially across 
the different units. By extending each A phase a little fur-
ther than the previous one, the intervention is introduced 
in a staggered way. When a change in each unit takes place 
if, and only if, the intervention is introduced for that unit, 
researchers can be more confident to attribute the effects 
to this intervention instead of to extraneous effects (Baer, 
Wolf, & Risley, 1968; Barlow & Hersen, 1984; Hayes, 
1981; Kazdin, 1982; Kinugasa, Cerin, & Hooper, 2004; 
Koehler & Levin, 2000).

As an example, Ziegler (1994) used a multiple-baseline 
design to determine the effectiveness of an attentional shift 
training program on the performance of targeted soccer 
skills. In soccer, one of the most important skills is the 
ability to attend and respond quickly and accurately to ap-
propriate environmental cues. As subjects, Ziegler chose 
4 male collegiate soccer players who scored low on a test of 

attentional shift. During baseline, she observed their abil-
ity to hit a target in four soccer drills (each athlete was al-
lowed 3 attempts in each drill, a total of 12 attempts per 
testing session). After a stable baseline had occurred for the 
1st subject (after Session 6), the attentional shift training in-
tervention was introduced for him. For the other 3 subjects, 
intervention started after the 8th, 10th, and 12th session, 
giving rise to the typical staggered administration. During 
the treatment phase, the men continued to be observed. As 
indicated in Figure 1, the accuracy of execution of the ex-
perimental soccer drill improved after treatment. There is a 
marked increase in points scored after the intervention.

Besides applying the treatment sequentially to several 
subjects, as in the example of Ziegler (1994), the interven-
tion in multiple-baseline designs can also be introduced 
sequentially to different behaviors within the same sub-
ject, or to several independent situations, settings, or time 
periods in a given subject (Barlow & Hersen, 1984; Kaz-
din, 1982; Kinugasa et al., 2004). The placement of the 
intervention points throughout the different units can be 
decided in several ways. Most traditionally, researchers 
use a response-guided assignment procedure, in which the 
intervention points are chosen on the basis of emerging 
patterns in the data (Ferron & Jones, 2006). In the ex-
ample of Ziegler, this was done for the 1st subject by start-
ing the treatment phase after baseline data were stable. 
For the other subjects, she decided to start the B phase 
on the basis of a systematic assignment schedule. Here 
the intervention points are decided a priori, whereby an 
even staggering across time is obtained. Another proce-
dure that can be used to determine the intervention points 
throughout the different units is a random assignment ap-
proach, in which the placement is determined at random 
(Marascuilo & Busk, 1988; Onghena, 1992; Wampold & 
Worsham, 1986).
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Figure 1. Results of the attentional shift training program. The numbers of points per session are shown for each of 
the 4 subjects. Each session consisted of 12 attempts (4 drills  3 attempts), so the maximum possible score for each 
testing session was 12. From “The Effects of Attentional Shift Training on the Execution of Soccer Skills: A Preliminary 
Investigation,” by S. G. Ziegler, 1994, Journal of Applied Behavior Analysis, 27, p. 551. Copyright 1994 by the Society for the 
Experimental Analysis of Behavior. Reprinted with permission.
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relate to the greatest threat to internal validity—namely, 
“history”—when events other than the treatment could 
have produced the observed effect (Christ, 2007; Shad-
ish, Cook, & Campbell, 2002). Kazdin and Kopel (1975) 
made three recommendations to maximize the possibility 
of drawing valid inferences: (1) Researchers should select 
units that are as independent from each other as possible; 
(2) they should use 4 or more units rather than just a few; 
and (3) they should implement a reversal phase for 1 of 
the units.

Another potential problem is that the intervention is 
withheld temporarily from some of the units because of the 
staggered administration (Harris & Jenson, 1985). From 
this, ethical (withholding effective treatment) and meth-
odological (e.g., boredom) difficulties may arise. These 
can, however, usually be avoided by including only very 
few data points in the baseline phases, by shortening the 
delay period between the implementation of treatments for 
successive units, or by applying the treatment to more than 
1 unit at the same time (Kazdin, 1982). Finally, this design 
could be considered weaker than, for example, a with-
drawal design, because potential treatment effects cannot 
be demonstrated directly but should instead be inferred 
from units not yet treated (Barlow & Hersen, 1984).

ANALYZING MULTIPLE-BASELINE DATA

Visual Analysis
For the analysis of multiple-baseline data, several tech-

niques have been suggested. The oldest and still most pop-
ular one is visual inspection. In this nonstatistical method 
of data analysis, data are plotted on a graph, in which the 
y-axis represents the dependent variable and the x-axis 
represents units of time (Zhan & Ottenbacher, 2001). On 
the basis of these graphs, a judgment is reached about the 
reliability or consistency of intervention effects (Long & 
Hollin, 1995).

This method of data analysis undoubtedly has some ad-
vantages, such as the speed of making the graphs, yielding 
conclusions, and deriving hypotheses (Parsonson & Baer, 
1992); in many cases, however, these advantages do not 
outweigh the difficulties. The main problems are the lack 
of concrete decision rules, the requirement of a particular 
pattern of the data (e.g., stable baselines without a trend 
in the direction of the expected change), and the overlook-
ing of small but systematic effects (Kazdin, 1982). The 
accuracy and reliability of this method have been ques-
tioned because there has often been a lack of agreement 
among judges (e.g., DeProspero & Cohen, 1979). And 
especially when there is variability within phases, both 
Type II and Type I error rates are elevated to unacceptable 
levels (Matyas & Greenwood, 1990). Morley and Adams 
(1991) recommended complementing visual analysis with 
a statistical analysis of the data, whenever possible.

However, although several statistical tests have been 
suggested for use with multiple-baseline designs, they are 
still rarely used; whereas in group research statistical tests 
are commonly used to evaluate the effect of an interven-
tion, in single-case (multiple-baseline) research, statistical 
tests are the exception rather than the rule.

ADVANTAGES AND LIMITATIONS

In several circumstances, single-case designs can pro-
vide a good alternative or supplement to group designs. 
Examples are the generation of pilot data in the early 
stages of larger group studies; research concerning rare 
types of experimental subjects; and, of course, when re-
search funds are scarce and it is not possible to obtain 
enough subjects for large-scale group studies (Barlow & 
Hersen, 1984; Edgington & Onghena, 2007).

In a variety of research contexts, the multiple-baseline 
design satisfies critical empirical validity criteria, which 
include the internal validity, replication and generaliza-
tion, and selectivity and discrimination (Koehler & Levin, 
1998) better than other single-case designs do. By simul-
taneously monitoring the different units, a relative control 
over historical confounding variables can be obtained by 
which plausible rival hypotheses that could account for 
the observed effects can be ruled out (Barlow & Hersen, 
1984; Kazdin, 1982; Onghena, 2005). When the observed 
effects are the result of time-related factors such as history 
or maturation, rather than experimental manipulation, 
these same factors would also be expected to influence the 
other units when they are still in the A phase (Harris & Jen-
son, 1985). This simultaneous monitoring also allows for 
a closer approximation of naturalistic conditions, where 
several target behaviors occur at the same time (Long 
& Hollin, 1995). Replication and generalization across 
units is established by applying the intervention to several 
units, which all receive a separate AB phase design. These 
replications are necessary for demonstrating the external 
validity of the experiment (Onghena & Edgington, 2005). 
Another advantage of multiple-baseline designs is that no 
reversal is required to demonstrate the effect of an inter-
vention, so this technique can be especially useful when 
behavior appears to be irreversible, or when reversals are 
considered undesirable because of practical limitations 
or ethical concerns (Baer et al., 1968; Kazdin, 1982). 
Multiple-baseline designs are also well suited to clinical 
situations, because the intervention is first implemented 
in 1 patient, behavior, or setting, before it is extended. This 
is an advantage for the person who has to administer the 
treatment, who only needs to increase the scope after fully 
having mastered the initial application, as well as for the 
client, for whom a shaping program is followed in which 
more behaviors or situations are gradually incorporated 
into the program (Kazdin, 1982).

Of course, like all designs, multiple-baseline designs 
have limitations. Although they can provide rather strong 
inferences when all treatment effects occur at the point at 
which intervention is introduced for each unit, the conclu-
sions are less clear when the effects are inconsistent across 
units (Ferron & Scott, 2005). This is the case when not all 
units change at the point at which the intervention is in-
troduced, and it has some serious implications for internal 
validity when there are only 2 units, because extraneous 
effects cannot then be ruled out (Kazdin, 1982). Ambigu-
ity can also arise when the units are interdependent, so that 
an intervention in one unit has an effect on the other unit(s) 
(Kazdin, 1973, 1982; Leitenberg, 1973). Both problems 
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ington & Bland, 1993), and they are not based on distribu-
tional assumptions or assumptions about the homogeneity 
of variances. Also, the presence of serial dependence or 
trends in the data will not invalidate the result of a random-
ization test (Arndt et al., 1996; Hooton, 1991; Ludbrook, 
1994; Recchia & Rocchetti, 1982; Wilson, 2007). The 
basic approach of randomization tests is very straightfor-
ward. The essence is that some aspect of the experimental 
design needs to be randomized. The randomization test is 
then based on permutations that mirror the random assign-
ment used in the experiment (Ferron, Foster-Johnson, & 
Kromrey, 2003). The null hypothesis states that there is no 
effect of the intervention (Edgington & Onghena, 2007). 
This is tested by locating the observed value of the test sta-
tistic in the randomization distribution (an equivalent of 
the sampling distribution in parametric statistical testing): 
The randomization test’s p value is equal to the propor-
tion of test statistics that exceed or equal the observed test 
statistic. The null hypothesis is rejected when this value 
is less than or equal to the predetermined significance 
level  (Murray, Varnell, & Blitstein, 2004; Potvin & Roff, 
1993; Strauss, 1982). A more comprehensive step-by-step 
explanation of the randomization test procedure can be 
found in Bulté and Onghena (2008).

By applying the randomization schedules to the dif-
ferent units, the necessary random assignment can be in-
corporated easily in multiple-baseline designs (Onghena, 
1992). Because in multiple-baseline AB designs the order 
of the phases cannot be altered (all A observations always 
precede all B observations), the randomization cannot 
be applied to the treatment order. The only aspect of the 
design that can be manipulated, and consequently ran-
domized, is the timing of the first intervention point (i.e., 
the start of the B phase) for each of the units. Even with 
response-guided experimentation, in which the emerging 
data pattern is taken into account, this should not be a 
problem; one could, for example, start the random assign-
ment from the moment at which all baselines have been 
stabilized (Edgington, 1975, 1980; Ferron & Sentovich, 
2002; Koehler & Levin, 1998). For multiple-baseline de-
signs, several randomization test strategies have been sug-
gested over the years.

In 1986, Wampold and Worsham presented a random-
ization test in which the subjects (or behaviors or situa-
tions) are assigned randomly to the different units, so that 
the order in which they are subjected to the treatment is 
determined at random but the intervention points are fixed 
for each separate unit. This way, the intervention points 
are placed according to the demands of the researcher and 
a staggered introduction of treatment can be obtained. For 
a design with N units, there are N! different ways in which 
the subjects, behaviors, or settings can be assigned to the 
different AB designs (Edgington, 1992).

In the strategy proposed by Marascuilo and Busk 
(1988), the start of the intervention phase is determined 
randomly for each unit on the basis of the rationale of Edg-
ington (1975). This leads to kN possible assignments (for a 
multiple-baseline design with N units and k possible start 
points for the intervention phase). The amount of control 
over the staggering of the interventions is less than with 

F and t Tests
The most familiar group of statistical tests consists of 

the parametric F and t tests. However, these tests are con-
troversial in the analysis of multiple-baseline data, because 
data from single-case research often violates some of the 
assumptions on which parametric tests depend (e.g., nor-
mality and homogeneity of variances). The assumption of 
serial independence is often especially problematic, be-
cause multiple-baseline data tend to have autocorrelated 
residuals that can seriously bias the results from F and 
t tests (see, e.g., Gorman & Allison, 1996; Hooton, 1991; 
Kazdin, 1982, 1984; Kinugasa et al., 2004; Ludbrook, 
1994; Recchia & Rocchetti, 1982; Todman & Dugard, 
2001). Before these tests are used on multiple-baseline 
data, the data should be demonstrably free from serial de-
pendency. Otherwise, alternative statistical tests should be 
considered (Kazdin, 1984; Long & Hollin, 1995).

Time Series Analysis
One of the proposed alternatives to conventional F and 

t tests is time series analysis, which is suitable for the 
analysis of data when serial dependency is present and 
when the criteria for visual inspection (e.g., stable base-
lines) are not met (Kazdin, 1982, 1984). However, time 
series analysis requires many data points to determine the 
existence and the pattern of autocorrelation and to iden-
tify the model correctly (Box, Jenkins, & Reinsel, 1994; 
Crosbie, 1993; Tryon, 1982). This could cause problems 
for multiple-baseline designs, in which the phases are usu-
ally rather short, so that the intervention will not be with-
held for a very long time. Another difficulty of time series 
analysis is the complexity of the mathematical theories 
on which it is based (Gorman & Allison, 1996; Hartmann 
et al., 1980).

Split-Middle Technique
In addition, several nonparametric statistical tests have 

been proposed for use with multiple-baseline designs. 
One approach is the combined use of the split-middle 
technique and a binomial test. This method can reveal the 
nature of the trend in the data by plotting linear trend lines 
(celeration lines) that best fit the data, then applying a 
binomial test to see whether the number of data points in 
the intervention phase falls above (or below) the projected 
line of the baseline (Kazdin, 1982; Kinugasa et al., 2004). 
Requirements for this test are that several observations 
are needed in the different phases and should be made at 
equally spaced intervals in each phase (Kazdin, 1982). 
The split-middle technique is easy to compute and can be 
used with a small number of data points, an advantage for 
use with multiple-baseline designs (Zhan & Ottenbacher, 
2001); however, it is not suited when data are autocorre-
lated (Kinugasa et al., 2004).

Randomization Tests
Other nonparametric tests that have been suggested for 

the analysis of multiple-baseline data, and that we believe 
provide a strong alternative, are randomization tests. Their 
most important advantages are that they are free from the 
assumption of random sampling (Edgington, 1973; Edg-
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into R if you click on “File,” choose “Source R Code,” 
and select the appropriate file. To demonstrate the R func-
tions, the example of Ziegler (1994) will be used again. 
Although in her original study, no random assignment 
procedure was used to determine the start points of the 
intervention phase for the different subjects, for illustra-
tive purposes we will assume that such a random selection 
process did take place. Her data, extracted from the visual 
display in Figure 1, are provided in Table 1.

To guarantee that the R functions work properly, we 
suggest that researchers follow a few guidelines when 
creating the text (.txt) file containing the data. This data 
frame can be made most easily in a text editor (e.g., Edit-
Pad or Notepad) or in Excel, with the file saved as “text 
(tab delimited).” It should consist of two columns for 
each unit (if made in a text editor, separated by a tab): the 
first column with condition labels (“A” and “B”), and the 
second column with the obtained scores. This way, each 
row represents one measurement occasion. By contrast 
to Table 1, it is important not to label the columns or the 
rows. A plot similar to that in Figure 1 can be obtained by 
typing the command graph(design=”MBD”)into the 
R console, after which R will open a pop-up window to 
ask in what file the data to be graphed can be found.

When conducting a randomization test, the intervention 
start points should be chosen randomly, given the restric-
tions imposed by the researcher. For the R functions in this 
article, an additional text file should be created with the 
possible start points for each unit. Herein, each row should 
contain all possibilities for one unit, separated by a tab, so 
that there are as many lines in the file as there are units in 
the experiment. Each line (including the last one) should 
be closed by a return and, again, the rows and columns 
should not be labeled. The numbers given in Table 2 are 

the Wampold–Worsham (1986) approach, but the number 
of possible assignments will be larger, yielding a smaller 
possible p value (Ferron & Sentovich, 2002).

Koehler and Levin (1998, 2000) tried to combine the 
best of both worlds in their randomization test by ran-
domly assigning the subjects (behaviors, or settings) to the 
different AB designs, as well as randomly assigning the 
start points of the intervention. This strategy results in

 N ki
i

N

!
1

possible assignments (for a design with N units and ki pos-
sible start points for the ith unit, provided that there is no 
overlap between the possible start points of the different 
units).

Ferron and Sentovich (2002) found that the power of 
these suggested randomization tests is similar and there-
fore concluded that, because of the similarity in power, re-
searchers should be able to focus on design considerations 
(and thus choose the test that best matches the design used 
in the study) when choosing among the alternative ran-
domization strategies. Because the procedure suggested 
by Koehler and Levin (1998, 2000), by obtaining a sys-
tematic staggering of the interventions, best retains the 
integrity of the multiple-baseline design, we prefer their 
method. In the following, we will provide an R package 
for analyzing multiple-baseline data with the Koehler–
Levin (1998) randomization test.

AN R PACKAGE FOR ANALYZING 
MULTIPLE-BASELINE DATA WITH 

RANDOMIZATION TESTS

Most of the widespread statistical software packages, 
like SPSS or SAS, do not include randomization tests for 
multiple-baseline data. Koehler and Levin (2000) devised 
their own program, RegRand, to calculate p values ac-
cording to their regulated randomization procedure. This 
software program, however, is Macintosh-based and has 
no IBM PC-compatible version (Koehler & Levin, 2000). 
We already created an R package, SCRT-R, to perform 
randomization tests on data from single-case phase and 
alternation designs (Bulté & Onghena, 2008). Here, we 
present an extension for multiple-baseline AB data. R runs 
on a variety of UNIX platforms, as well as on Windows 
and MacOS (Hornik, 2008). As an open-source imple-
mentation of the S-PLUS language, it can be downloaded 
at no cost from the Comprehensive R Archive Network 
Web site (CRAN; cran.r-project.org). R is extremely flex-
ible and can be used for statistical modeling as well as for 
graphical applications (Crawley, 2005; Dalgaard, 2002; 
Kelley, 2007).

Before being able to use the R functions, the R pack-
age needs to be installed. The installation process is very 
straightforward. Hornik (2008) gives a detailed descrip-
tion of how to download and install R for Windows, Mac-
intosh, or UNIX. The R functions explained below can be 
found on ppw.kuleuven.be/cmes/SCRT-R.html. For easy 
access and use, we suggest saving the files containing the 
functions on the local disk; afterward, they can be read 

Table 1 
Data Obtained in Ziegler’s (1994) Experiment

Subject 1 Subject 2 Subject 3 Subject 4

Phase  Score  Phase  Score  Phase  Score  Phase  Score

“A” 4 “A” 4 “A” 3 “A” 4
“A” 3 “A” 3 “A” 3 “A” 4
“A” 3 “A” 4 “A” 4 “A” 4
“A” 3 “A” 3 “A” 5 “A” 4
“A” 3 “A” 3 “A” 4 “A” 4
“A” 3 “A” 4 “A” 5 “A” 4
“B” 4 “A” 4 “A” 5 “A” 4
“B” 4 “A” 4 “A” 5 “A” 5
“B” 5 “B” 4 “A” 5 “A” 5
“B” 6 “B” 5 “A” 5 “A” 5
“B” 7 “B” 5 “B” 6 “A” 5
“B” 7 “B” 7 “B” 7 “A” 5
“B” 8 “B” 8 “B” 7 “B” 6
“B” 7 “B” 8 “B” 7 “B” 7
“B” 8 “B” 8 “B” 8 “B” 7
“B” 8 “B” 8 “B” 9 “B” 8
“B” 9 “B” 8 “B” 8 “B” 8
“B” 9 “B” 8 “B” 9 “B” 9
“B” 9 “B” 8 “B” 9 “B” 9
“B” 10 “B” 9 “B” 10 “B” 9
“B” 10 “B” 8 “B” 10 “B” 10
“B” 10 “B” 9 “B” 10 “B” 10
“B” 10 “B” 9 “B” 10 “B” 10
“B”  10  “B”  9  “B”  10  “B”  10



482    BULTÉ AND ONGHENA

Diggle, 1977; Recchia & Rocchetti, 1982). The accompa-
nying function is pvalue.random. Besides the already 
known design argument, it has three additional argu-
ments: With statistic, the user can define the test sta-
tistic that should be used, by choosing “A-B”,  “B-A”, 
or  “|A-B|”. These are multivariate test statistics that 
stand for the (absolute value of the) mean difference be-
tween the condition means. If needed, other test statistics, 
such as differences in slopes or intercepts, can be adopted 
easily by means of small adjustments to the R script. Ac-
tually, any test statistic sensitive to the predicted treat-
ment effect could be used with randomization tests. In 
our example, we expect a difference in level, which can 
be reflected by a difference between means. Because we 
expect the scores in the B phases to be larger than the 
scores in the A phases, we will use the directional test sta-
tistic “B-A”. With the save argument, one can indicate 
whether the randomization distribution should be saved 
into a file (save ”yes”). And finally, the number 
argument serves to specify the required number of ran-
domizations (e.g., 1,000). So, for our example, pvalue 
.random(design ”MBD”,statistic ”B-
A”,save ”yes”,number 1000)  should be 
typed into the R console; then, several pop-up windows 
will open. In the first, the location of the data should be 
specified, and in the second, the location of the possible 
start points. When save is set to ”yes”, a third win-
dow will appear in which the user can indicate where the 
randomization distribution should be saved. This can be 
an existing file chosen by name from the list, or a new 
file that can be created by submitting the file name with 
a .txt extension. In this latter case, R will ask for confir-
mation (“The file does not exist yet. Create the file?”). 
When save ”no”, this last window will not be shown. 
The resulting p value for our example is .006. This means 
that the mean difference between the phase means is sta-
tistically significant at a 5% level. The null hypothesis of 
no treatment effect can thus be rejected, as was already 
suggested by a visual inspection of the data. Note that, 
because a random sample of the test statistics is used with 
this Monte Carlo randomization test, this p value could 
be slightly different each time the function is used. If the 
number of possible assignments is smaller, the function 
 pvalue. systematic can be used, with the same ar-
guments, except here number is not needed. The Appen-
dix gives an overview of all R functions explained above, 
with some additional ones.

When designing an experiment with a multiple-
baseline design, the functions assignments and 
 selectdesign can be convenient. With the first one, 
all possible permutations, given the potential start points 
for each unit provided by the user, can be displayed as 
output in the R console or saved into a file. Observe that 
R returns the possible combinations of start points for the 
units: For each unit, a start point is randomly chosen, and 
the combinations are then shuffled to randomly assign 
the different subjects, behaviors, or settings to the units. 
The second function, selectdesign, randomly selects 
one of these data arrangements on the basis of which data 
can be collected in the experiment. If knowing the ob-

the possible intervention start points for the units in our 
example.

Of course, when one wants to assure a staggered admin-
istration of the intervention, no overlap between the pos-
sibilities of the different units can exist. With response-
guided designs, one could for example start counting the 
measurement times, beginning with the first observation 
after stable baseline data have been obtained for all units. 
This way, when the randomly chosen start point of the in-
tervention for the first unit is 5, the treatment should start 
on the 5th day after baselines have stabilized.

After the experiment has been conducted, the data can 
be analyzed statistically. With randomization tests, as in-
dicated before, the p value is calculated by locating the 
observed test statistic within the randomization distribu-
tion. So, first the observed test statistic has to be calcu-
lated from the observed raw data. Then the randomization 
distribution is derived by calculating the test statistic for 
every possible permutation of the data. (Note that with 
this particular randomization test, the randomization dis-
tribution is not constructed by shuffling all observations, 
because that would arrange the data in an unrealistic order. 
With multiple-baseline AB designs, all A measurements 
precede all B measurements, so the only thing that can 
be shuffled is the start of the B phase.) Finally, the ran-
domization test’s p value can be calculated as the propor-
tion of test statistics in the randomization distribution that 
exceeds or equals the observed test statistic. However, 
with multiple-baseline designs it is often not feasible to 
compute this p value by hand; because of the large data 
sets and a lot of possible permutations, it can become too 
cumbersome even for computers. To form an idea of the 
computational time needed to calculate the p value, the 
function quantity(design ”MBD”) can be used. 
This returns the number of possible assignments, given 
the possible start points for each unit, as if there were no 
overlap, according to the formula of Koehler and Levin 
(1998):

 N ki
i

N

!
1

(with N  number of units and ki  number of possibili-
ties for unit i). After typing this command, R will ask in 
which file the possible start points can be found. In our ex-
ample, it resulted in 15,000 possible permutations. Since it 
would take a lot of computer time to calculate the “exact” 
p value that would use all of the test statistics, in this case 
it would be better to use the “Monte Carlo” version of the 
randomization test, which uses only a simulated distribu-
tion, to reduce the required calculation capacity (Besag & 

Table 2 
Hypothetical Possible Start Points Associated  

With the Units in the Example

 Unit  Possible Start Points  

1 3     4     5    6    7
2 5     6     7    8    9
3 7     8     9  10  11

 4  9   10   11  12  13  
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and the significance level of .05 is nothing but an arbi-
trarily chosen measure (Turk, 2000; Wilson, 2007), it also 
is only a part of the whole story. Attention should be paid 
to the magnitude or importance of the effect, not only to 
whether or not an observed effect is statistically signifi-
cant (Robinson & Levin, 1997). Visual analysis, statistical 
significance, and effect size measures should be combined 
to obtain a comprehensive view of the results of the study. 
For the future, it would be interesting to investigate which 
measure of effect size is most suited for multiple-baseline 
data (d, percentage of nonoverlapping data, or others) and 
to develop tools in R to calculate these measures.
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APPENDIX
Overview of the Different Functions, Their Specific Arguments, What They Do,  

and the Purpose of the Pop-Up Windows
Function  Arguments  Description  Windows

quantity design: “MBD” (multiple-baseline design) Calculates how many possi-
ble data arrangements there 
are for a specific design

1. Start points

assignments design: “MBD” (multiple-baseline design)

save: “yes” (save the possible assignments to a 
file) or “no” (display the possible assignments 
as output in the R console)

Generates all the possible 
data arrangements for a spe-
cific design

1. Start points 
2. Save

selectdesign design: “MBD” (multiple-baseline design) Randomly selects one data  
arrangement among all 
theoretically possible 
permutations

1.Start points

graph design: “MBD” (multiple-baseline design) Makes a graphical represen-
tation of the data 

1. Data

observed design: “MBD” (multiple-baseline design)

statistic: “A B” (mean phase A minus mean 
phase B), “B A” (mean phase B minus mean 
phase A), or “|A B|” (absolute value of the 
difference between the phase means)

Calculates the observed test  
statistic from the obtained 
raw data

1. Data

distribution.systematic design: “MBD” (multiple-baseline design)

statistic: “A B” (mean phase A minus mean 
phase B), “B A” (mean phase B minus mean 
phase A), or “|A B|” (absolute value of the 
difference between the phase means) 

save: “yes” (save the distribution to a file), 
or “no” (see the distribution as output in the 
R console)

Constructs the systematic 
randomization distribution 
under the null hypothesis

1. Data 
2. Start points  
3. Save

distribution.random design: “MBD” (multiple-baseline design) 

statistic: “A B” (mean phase A minus mean 
phase B), “B A” (mean phase B minus mean 
phase A), or “|A B|” (absolute value of the 
difference between the phase means) 

save: “yes” (save the distribution to a file), 
or “no” (see the distribution as output in the 
R console) 

number: how many randomizations are 
required

Constructs the random 
randomization distribution 
under the null hypothesis, 
where all the test statistics 
are calculated

1. Data  
2. Start points  
3. Save

pvalue.systematic design: “MBD” (multiple-baseline design) 

statistic: “A B” (mean phase A minus mean 
phase B), “B A” (mean phase B minus mean 
phase A), or “|A B|” (absolute value of the 
difference between the phase means) 

save: “yes” (save the distribution to a file), 
or “no” (see the distribution as output in the 
R console)

The statistical significance 
of the outcome is obtained 
by locating the observed test 
statistic in the randomiza-
tion distribution

1. Data  
2. Start points  
3. Save

pvalue.random 
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