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Abstract

This paper develops a theory of randomization tests under an approximate symmetry as-

sumption. Randomization tests provide a general means of constructing tests that control size

in finite samples whenever the distribution of the observed data exhibits symmetry under the

null hypothesis. Here, by exhibits symmetry we mean that the distribution remains invariant

under a group of transformations. In this paper, we provide conditions under which the same

construction can be used to construct tests that asymptotically control the probability of a

false rejection whenever the distribution of the observed data exhibits approximate symmetry

in the sense that the limiting distribution of a function of the data exhibits symmetry under

the null hypothesis. An important application of this idea is in settings where the data may

be grouped into a fixed number of “clusters” with a large number of observations within each

cluster. In such settings, we show that the distribution of the observed data satisfies our ap-

proximate symmetry requirement under weak assumptions. In particular, our results allow for

the clusters to be heterogeneous and also have dependence not only within each cluster, but

also across clusters. This approach enjoys several advantages over other approaches in these

settings. Among other things, it leads to a test that is asymptotically similar, which, as shown

in a simulation study, translates into improved power at many alternatives. Finally, we use our

results to revisit the analysis of Angrist and Lavy (2009), who examine the impact of a cash

award on exam performance for low-achievement students in Israel.
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1 Introduction

Suppose the researcher observes data X(n) ∼ Pn ∈ Pn, where Pn is a set of distributions on a

sample space Xn, and is interested in testing

H0 : Pn ∈ Pn,0 versus H1 : Pn ∈ Pn \Pn,0 ,

where Pn,0 ⊂ Pn, at level α ∈ (0, 1). The index n here will typically denote sample size. The

classical theory of randomization tests provides a general way of constructing tests that control

size in finite samples provided that the distribution of the observed data exhibits symmetry under

the null hypothesis. Here, by exhibits symmetry we mean that the distribution remains invariant

under a group of transformations. In this paper, we develop conditions under which the same

construction can be used to construct tests that asymptotically control the probability of a false

rejection provided that the distribution of the observed data exhibits approximate symmetry. More

precisely, the main requirement we impose is that, for a known function Sn from Xn to a sample

space S,

Sn(X(n))
d→ S (1)

as n→∞ under Pn ∈ Pn,0, where S exhibits symmetry in the sense described above. In this way,

our results extend the classical theory of randomization tests. Note that in some cases Sn need not

be completely known; see Remark 4.4 below.

While they apply more generally, an important application of our results is in settings where

the data may be grouped into q “clusters” with a large number of observations within each cluster.

A noteworthy feature of our asymptotic framework is that q is fixed and does not depend on n.

In such environments, it is often the case that the distribution of the observed data satisfies our

approximate symmetry requirement under weak assumptions. In particular, it typically suffices to

consider

Sn(X(n)) = (Sn,1(X(n)), . . . , Sn,q(X
(n)))′ , (2)

where Sn,j(X
(n)) is an appropriately recentered and rescaled estimator of the parameter of interest

based on observations from the jth cluster. In this case, the convergence (1) often holds for S

that exhibits symmetry in the sense that its distribution remains invariant under the group of

sign changes. Importantly, this convergence permits the clusters to be heterogeneous and also

have dependence not only within each cluster, but also across clusters. We consider three specific

examples of such settings in detail – time series regression, differences-in-differences, and clustered

regression.

Our paper is most closely related to the procedure suggested by Ibragimov and Müller (2010).

As in our paper, they also consider settings where the data may be grouped into a fixed number

of “clusters,” q, with a large number of observations within each cluster. In order to apply their

results, they further assume that the parameter of interest is scalar and that Sn(X(n)) defined
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in (2) satisfies the convergence (1) with S satisfying additional restrictions beyond our symmetry

assumption. Using a result on robustness of the t-test established in Bakirov and Székely (2006),

they propose an approach that leads to a test that asymptotically controls size for certain values of q

and α, but may be quite conservative in the sense that its asymptotic rejection probability under the

null hypothesis may be much less than α. This same result on the t-test underlies the approach put

forward by Bester et al. (2011), which therefore inherits the same qualifications. The methodology

proposed in this paper enjoys several advantages over these approaches, including not requiring

the parameter of interest to be scalar, being valid for any values of q and α (thereby permitting

in particular the computation of p-values), and, perhaps most importantly, being asymptotically

similar in the sense of having asymptotic rejection probability under the null hypothesis equal to α.

As shown in a simulation study, this feature translates into improved power at many alternatives.

See Section 2.1.1 and Section 5 for further details.

The remainder of the paper is organized as follows. Section 2 briefly reviews the classical

theory of randomization tests. Here, we pay special attention to an example involving the group

of sign changes, which, as mentioned previously, underlies many of our later applications and aids

comparisons with the approach suggested by Ibragimov and Müller (2010). Our main results are

developed in Section 3. Section 4 contains the application of our results to settings where the data

may be grouped into a fixed number of “clusters” with a large number of observations within each

cluster, emphasizing in particular time series regression, differences-in-differences, and clustered

regression. Simulation results based on the time series regression and differences-in-differences

examples are presented in Section 5. Finally, in Section 6, we use the clustered regression example

to revisit the analysis of Angrist and Lavy (2009), who examine the impact of a cash award on

exam performance for low-achievement students in Israel.

2 Review of Randomization Tests

In this section, we briefly review the classical theory of randomization tests. Further discussion can

be found, for example, in Chapter 15 of Lehmann and Romano (2005). Since the results in this

section are non-asymptotic in nature, we omit the index n.

Suppose the researcher observes data X ∼ P ∈ P, where P is a set of distributions on a sample

space X , and is interested in testing

H0 : P ∈ P0 versus H1 : P ∈ P \P0 , (3)

where P0 ⊂ P, at level α ∈ (0, 1). Randomization tests require that the distribution of the data,

P , exhibits symmetry whenever P ∈ P0. In order to state this requirement more formally, let G

be a finite group of transformations from X to X and denote by gx the action of g ∈ G on x ∈ X .
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Using this notation, the classical condition required for a randomization test is

X
d
= gX under P for any P ∈ P0 and g ∈ G . (4)

We now describe the construction of the randomization test. Let T (X) be a real-valued test

statistic such that large values provide evidence against the null hypothesis. Let M = |G| and

denote by

T (1)(X) ≤ T (2)(X) ≤ · · · ≤ T (M)(X)

the ordered values of {T (gX) : g ∈ G}. Let k = dM(1− α)e and define

M+(X) = |{1 ≤ j ≤M : T (j)(X) > T (k)(X)}|

M0(X) = |{1 ≤ j ≤M : T (j)(X) = T (k)(X)}| . (5)

Using this notation, the randomization test is given by

φ(X) =


1 if T (X) > T (k)(X)

a(X) if T (X) = T (k)(X)

0 if T (X) < T (k)(X)

, (6)

where

a(X) =
Mα−M+(X)

M0(X)
.

The following theorem shows that this construction leads to a test that controls size in finite samples

whenever (4) holds. In fact, the test in (6) is similar, i.e., has rejection probability exactly equal

to α for any P ∈ P0 and α ∈ (0, 1).

Theorem 2.1. Suppose X ∼ P ∈ P and consider the problem of testing (3). Let G be a group

such that (4) holds. Then, for any α ∈ (0, 1), φ(X) defined in (6) satisfies

EP [φ(X)] = α whenever P ∈ P0 . (7)

Remark 2.1. Let Gx denote the G-orbit of x ∈ X , i.e., Gx = {gx : g ∈ G}. The result in

Theorem 2.1 exploits that, when G is such that (4) holds, the conditional distribution X given

X ∈ Gx is uniform on Gx. Since the conditional distribution of X is known for all P ∈ P0 (even

though P itself is unknown), we can construct a test that is level α conditionally, which leads to a

test that is level α unconditionally as well.

Remark 2.2. In some cases, M is too large to permit computation of φ(X) defined in (6). When

this is the case, the researcher may use a stochastic approximation to φ(X) without affecting the

finite-sample validity of the test. More formally, let

Ĝ = {g1, . . . , gB} , (8)

where g1 = the identity transformation and g2, . . . , gB are i.i.d. Uniform(G). Theorem 2.1 remains

true if, in the construction of φ(X), G is replaced by Ĝ.
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Remark 2.3. One can construct a p-value for the test φ(X) defined in (6) as

p̂ = p̂(X) =
1

|G|
∑
g∈G

I{T (gX) ≥ T (X)} . (9)

When (4) holds, it follows that P{p̂ ≤ u} ≤ u for all 0 ≤ u ≤ 1 and P ∈ P0. This result remains

true when M is large and the researcher uses a stochastic approximation, in which case Ĝ as defined

in (8) replaces G in (9).

Remark 2.4. The test in (6) is possibly randomized. In case one prefers not to randomize, note

that the non-randomized test that rejects if T (X) > T (k)(X) is level α. In our simulations, this

test has rejection probability under the null hypothesis only slightly less than α when M is not too

small; see Sections 2.1.1, 5.1 and 5.2 below for additional discussion.

2.1 Symmetric Location Example

In this subsection, we provide an illustration of Theorem 2.1. The example not only makes concrete

some of the abstract ideas presented above, but also underlies many of the applications described

in Section 4 below.

Suppose X = (X1, . . . , Xq) ∼ P ∈ P, where

P = {⊗qj=1Pj,µ : Pj,µ symmetric distribution on Rd about µ} .

In other words, X1, . . . , Xq are independent and each Xj is distributed symmetrically on Rd about

µ, i.e., Xj − µ
d
= µ−Xj . The researcher desires to test (3) with

P0 = {⊗qj=1Pj,µ : Pj,µ a symmetric distribution on Rd about 0} .

In this case, (4) clearly holds with the group of sign changes G = {−1, 1}q, where the action of

g = (g1, . . . , gq) ∈ G on x = (x1, . . . , xq) ∈ ⊗qj=1R
d is defined by gx = (g1x1, . . . , gqxq). As a result,

Theorem 2.1 may be applied with any choice of T (X) to construct a test that satisfies (7).

2.1.1 Comparison with the t-test

Consider the special case of the symmetric location example in which d = 1 and Pj,µ = N(µ, σ2
j ),

i.e.,

P = {⊗qj=1Pj,µ : Pj,µ = N(µ, σ2
j ) with µ ∈ R and σ2

j ≥ 0} (10)

P0 = {⊗qj=1Pj,µ : Pj,µ = N(µ, σ2
j ) with µ = 0 and σ2

j ≥ 0} . (11)

5



For this setting, Bakirov and Székely (2006) show that the usual two-sided t-test remains valid

despite heterogeneity in the σ2
j for certain values of α and q. More formally, they show that for

α ≤ 8.3% and q ≥ 2 or α ≤ 10% and 2 ≤ q ≤ 14,

P{T|t-stat|(X) > cq−1,1−α
2
} ≤ α for any P ∈ P0 ,

where T|t-stat|(X) is the absolute value of the usual t-statistic computed using the data X and

cq−1,1−α
2

is the 1 − α
2 quantile of the t-distribution with q − 1 degrees of freedom. Bakirov and

Székely (2006) go on to show that this result remains true even if each Pj,µ is allowed to be a mixture

of normal distributions as well. This result was further explored by Ibragimov and Müller (2010)

and Ibragimov and Müller (2013). Ibragimov and Müller (2013) derived a related result for the

two-sample problem, while Ibragimov and Müller (2010) showed that the t-test is “optimal” in the

sense that it is the uniformly most powerful scale invariant level α test against the restricted class

of alternatives with σ2
j = σ2 for all 1 ≤ j ≤ q. In the Appendix, we establish a similar “optimality”

result for the randomization test with T (X) = T|t-stat|(X) and G = {−1, 1}q: we show that it is

the uniformly most powerful unbiased level α test against the same class of alternatives.

We compare the randomization test with T (X) = T|t-stat|(X) and G = {−1, 1}q with the t-test.

We follow Ibragimov and Müller (2010) and consider the setup in (10)-(11) with q ∈ {8, 16} and

σ2
j = 1 for 1 ≤ j ≤ q

2 and σ2
j = a2 for q

2 < j ≤ q. Figure 1 shows rejection probabilities under

the null hypothesis computed using 100, 000 Monte Carlo repetitions for α = 5%, a ranging over

a grid of 50 equally spaced points in (0.1, 5), q = 8 (left panel) and q = 16 (right panel). As we

would expect from Theorem 2.1, the rejection probability of the randomization test equals α for all

values of the heterogeneity parameter a. The rejection probability of the t-test, on the other hand,

can be substantially below α when the data are heterogeneous, i.e., a 6= 1. Comparing the right

and left panels, we see that the performance of the t-test improves as q gets larger, but it is worth

emphasizing that the results of Bakirov and Székely (2006) do not ensure the validity of the test

for q > 14 and α ≥ 8.4%.

Figure 2 shows rejection probabilities computed using 100, 000 Monte Carlo repetitions for

α = 5%, µ ∈ (0, 1.5), q = 8, a = 0.1 (left panel) and a = 1 (right panel). The similarity of the

randomization test translates into better power for alternatives close to the null hypothesis. When

a = 0.1, the rejection probability of the randomization test exceeds that of the t-test for µ less than

approximately 0.7; for larger values of µ, the situation is reversed, though the difference in power

between the two tests is smaller. When a = 1, the t-test slightly outperforms the randomization test,

reflecting the previously mentioned optimality property derived in Ibragimov and Müller (2010).

It is important to note that this does not contradict the optimality result for the randomization

test established in the Appendix, as the t-test is not unbiased. In particular, there are alternatives

P ∈ P1 under which the t-test has rejection probability < α. Moreover, the loss in power of the

randomization test relative to the t-test even in this case is arguably negligible. These comparisons
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Figure 1: Rejection probabilities under the null hypothesis for different values of a in the symmetric

location example. Randomization test (randomized and non-randomized versions) versus t-test.

q = 8 (left panel) and q = 16 (right panel).

continue to hold even if the randomization test is replaced with its non-randomized version described

in Remark 2.4.

In the context of the symmetric location example, the randomization test provides additional

advantages over the t-test approach. First, the randomization test works for all levels of α ∈ (0, 1),

which allows for the construction of p-values; see Remark 2.3. Second, the randomization test works

for vector-valued random variables, i.e., d > 1, while the result in Bakirov and Székely (2006) is

restricted to scalar random variables. Third, the construction in Theorem 2.1 works for any choice

of test statistic T (X). Finally, the condition in (4) is not limited to mixtures of normal distributions

and holds for any symmetric distribution, including even distributions with an infinite variance.

On the other hand, when q is small the rejection probability of the t-test sometimes exceeds that

of the non-randomized version of the randomization test described in Remark 2.4; see Figure 1.

3 Main Result

In this section, we present our theory of randomization tests under an approximate symmetry

assumption. Since our results in this section are asymptotic in nature, we re-introduce the index

n, which, as mentioned earlier, will typically be used to denote the sample size.

Suppose the researcher observes data X(n) ∼ Pn ∈ Pn, where Pn is a set of distributions on a
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Figure 2: Rejection probabilities for q = 8 and different values of µ in the symmetric location

example. Randomization test (randomized and non-randomized versions) versus t-test. a = 0.1

(left panel) and a = 1 (right panel).

sample space Xn, and is interested in testing

H0 : Pn ∈ Pn,0 versus H1 : Pn ∈ Pn \Pn,0 , (12)

where Pn,0 ⊂ Pn , at level α ∈ (0, 1). In contrast to Section 2, we no longer require that the

distribution of X(n) exhibits symmetry whenever Pn ∈ Pn,0. Instead, we require that X(n) exhibits

approximate symmetry whenever Pn ∈ Pn,0. In order to state this requirement more formally, we

require some additional notation. Recall that Sn denotes a function from Xn to a sample space S.

As before, let T be a real-valued test statistic such that large values provide evidence against the

null hypothesis, but we will assume that T is a function from S to R as opposed to from Xn to R.

Finally, let G be a (finite) group of transformations from S to S and denote by gs the action of

g ∈ G on s ∈ S. Using this notation, we have the following assumption:

Assumption 3.1. If Pn ∈ Pn,0 for all n ≥ 1, then

(i) Sn = Sn(X(n))
d→ S under Pn.

(ii) gS
d
= S for all g ∈ G.

(iii) For any two distinct elements g ∈ G and g′ ∈ G,

either T (gs) = T (g′s) ∀s ∈ S or P{T (gS) 6= T (g′S)} = 1 .

Assumption 3.1.(i)-(ii) formalizes what we mean by X(n) exhibiting approximate symmetry.

Assumption 3.1.(iii) is a condition that controls the ties among the values of T (gS) as g varies over
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G. It requires that T (gS) and T (g′S) are distinct with probability one or deterministically equal

to each other. For examples of S that often arise in applications and typical choices of T , we verify

Assumption 3.1.(iii) (see, in particular, Lemmas D.1-D.3 in the Appendix).

The construction of the randomization test in this setting parallels the one in Section 2 with

Sn replacing X. Let M = |G| and denote by

T (1)(Sn) ≤ T (2)(Sn) ≤ · · · ≤ T (M)(Sn)

the ordered values of {T (gSn) : g ∈ G}. Let k = dM(1 − α)e and define M+(Sn) and M0(Sn) as

in (5) with Sn replacing X. Using this notation, the proposed test is given by

φ(Sn) =


1 T (Sn) > T (k)(Sn)

a(Sn) T (Sn) = T (k)(Sn)

0 T (Sn) < T (k)(Sn)

, (13)

where

a(Sn) =
Mα−M+(Sn)

M0(Sn)
.

The following theorem shows that this construction leads to a test that is asymptotically level

α whenever Assumption 3.1 holds. In fact, the proposed test is asymptotically similar, i.e., has

limiting rejection probability equal to α if Pn ∈ Pn,0 for all n ≥ 1.

Theorem 3.1. Suppose X(n) ∼ Pn ∈ Pn and consider the problem of testing (12). Let Sn : Xn →
S, T : S → R and G : S → S be such that Assumption 3.1 holds. Assume further that T : S → R

is continuous and that g : S → S is continuous for all g ∈ G. Then, for any α ∈ (0, 1), φ(Sn)

defined in (13) satisfies

EPn [φ(Sn)]→ α (14)

as n→∞ whenever Pn ∈ Pn,0 for all n ≥ 1.

Remark 3.1. If for every sequence {Pn ∈ Pn,0 : n ≥ 1} there exists a subsequence {Pnk ∈ Pnk,0 :

nk ≥ 1} for which the statements in Assumption 3.1(i)-(iii) are satisfied with Pnk in place of Pn,

then the conclusion of Theorem 3.1 can be strengthened as follows: for any α ∈ (0, 1), φ(Sn) defined

in (13) satisfies

sup
Pn∈Pn,0

|EPn [φ(Sn)]− α| → 0

as n→∞.

Remark 3.2. As described in Remark 2.1, the validity of the randomization test in finite samples

is tightly related to fact that the conditional distribution of X given X ∈ Gx is uniform on Gx.

While this property holds for the limiting random variable S in our framework, it may not hold

even approximately for Sn for large n. The proof of Theorem 3.1 instead uses a novel argument

that exploits the Almost Sure Representation Theorem (see, e.g., Theorem 2.19 in van der Vaart,

1998).
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Remark 3.3. Earlier work on the asymptotic behavior of randomization tests includes Hoeffding

(1952), Romano (1989) and Romano (1990). The arguments in these papers involve showing that

the “randomization distribution” (see, e.g., Chapter 15 of Lehmann and Romano, 2005) settles

down to a fixed distribution as |G| → ∞. In our framework, |G| is fixed and the “randomization

distribution” will generally not settle down at all. For this reason, the analysis in these papers is

not useful in our setting.

Remark 3.4. Comments analogous to those made in Remarks 2.2-2.4 after Theorem 2.1 apply

to Theorem 3.1. In particular, Theorem 3.1 still holds when G is replaced by Ĝ defined in (8),

asymptotically valid p-values can be computed using (9), and the non-randomized test that rejects

if T (Sn) > T (k)(Sn) is also asymptotically level α.

4 Applications

In this section we present three applications of Theorem 3.1 to settings where the data may be

grouped into a fixed number of “clusters,” q, with a large number of observations within each cluster:

time series regression, differences-in-differences, and clustered regression. Before proceeding to these

specific examples, we highlight a common structure found in all of the applications.

Suppose the researcher observes data X(n) ∼ Pn ∈ Pn and considers testing the hypotheses in

(12) with

Pn,0 = {Pn ∈ Pn : θn(Pn) = θ0} ,

where θn(Pn) ∈ Θ ⊆ Rd is some parameter of interest. Further suppose that the data X(n) can

be grouped into q clusters, X
(n)
1 , . . . , X

(n)
q , where the clusters are allowed to have observations in

common. Let θ̂n,j = θ̂n,j(X
(n)
j ) be an estimator of θn(Pn) based on observations from the jth

cluster such that whenever Pn ∈ Pn,0 for all n ≥ 1,

Sn(X(n)) =
√
n(θ̂n,1 − θ0, . . . , θ̂n,q − θ0)

d→ N(0,Σ) (15)

as n → ∞, where Σ = diag{Σ1, . . . ,Σq} and each Σj is of dimension d × d. In this setting, the

conditions of Theorem 3.1 hold for G = {−1, 1}q and T (Sn) = TWald(Sn), where

TWald(Sn) = qS̄′n,qΣ̄
−1
n,qS̄n,q (16)

with

Σ̄n,q =
1

q

q∑
j=1

Sn,jS
′
n,j , S̄n,q =

1

q

q∑
j=1

Sn,j , and Sn,j =
√
n(θ̂n,j − θ0) .

See Lemma D.3 in the Appendix for details. In the special case where d = 1, the conditions of

Theorem 3.1 also hold for T (Sn) = T|t-stat|(Sn), where

T|t-stat|(Sn) =
|S̄n,q|√

1
q−1

∑q
j=1(Sn,j − S̄n,q)2

.
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See Lemmas D.1-D.2 in the Appendix for details. Equivalently,

T|t-stat|(Sn) =
| ¯̂θn,q − θ0|
sθ̂/
√
q

, (17)

with

¯̂
θn,q =

1

q

q∑
j=1

θ̂n,j and s2
θ̂

=
1

q − 1

q∑
j=1

(θ̂n,j − ¯̂
θn,q)

2 .

In each of the applications below, we will therefore simply specify X
(n)
j and θ̂n,j and argue that the

convergence (15) holds when Pn ∈ Pn,0 for all n ≥ 1.

Remark 4.1. In the special case where d = 1, the idea of grouping the data in this way and

constructing estimators satisfying (15) has been previously proposed by Ibragimov and Müller

(2010). Using the result on the t-test described in Section 2.1.1, they go on to propose a test that

rejects the null hypothesis when T|t-stat|(Sn) in (17) exceeds the 1 − α
2 quantile of a t-distribution

with q − 1 degrees of freedom. Further comparisons with this approach are provided below.

Remark 4.2. The convergence (15) permits dependence within each cluster. It also permits some

dependence across clusters. See, for example, Jenish and Prucha (2009) for some relevant central

limit theorems. The convergence (15) further allows for heterogeneity in the distribution of the

data across clusters in the sense that Σj need not be independent of j in Σ = diag{Σ1, . . . ,Σq}.

Remark 4.3. The asymptotic normality in (15) arises frequently in applications, but is not nec-

essary for the validity of the test described above. All that is required is that the q estimators

(after an appropriate re-centering and scaling) have a limiting distribution that is the product of

q distributions that are symmetric about zero. This may even hold in cases where the estimators

have infinite variances or are inconsistent. See Remark 4.9 below.

Remark 4.4. The test statistics in (16) and (17) are both invariant under scalar multiplication.

As a result, the
√
n in the definition of Sn in (15) may be omitted or replaced with another sequence

without changing the results.

Remark 4.5. Note that the convergence (15) allows the number of observations within each cluster

to differ across clusters provided that ratio of the number of observations in any pair of clusters

tends to a finite, nonzero limit as n→∞.

4.1 Time Series Regression

Suppose

Yt = Z ′tθ + εt with E[εtZt] = 0 . (18)

Here, the observed data is given by X(n) = {(Yt, Zt) : 1 ≤ t ≤ n} ∼ Pn taking values on a sample

space Xn =
∏

1≤t≤nR ×Rd. The scalar random variable εt is unobserved and θ ∈ Θ ⊆ Rd is the
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parameter of interest. We focus on the linear case here for ease of exposition, but the construction

we describe below applies more generally.

In order to state the null and alternative hypotheses formally, it is useful to introduce some

further notation. Let W (∞) = {(εt, Zt) : 1 ≤ t < ∞} ∼ Q ∈ Q taking values on a sample space

W∞ =
∏

1≤t<∞R ×Rd and An,θ : W∞ → Xn be the mapping implied by (18). Our assumptions

on Q are discussed below. Using this notation, define

Pn =
⋃
θ∈Θ

Pn(θ) with Pn(θ) = {QA−1
n,θ : Q ∈ Q} .

Here, A−1
n,θ denotes the pre-image of An,θ. The null and alternative hypotheses of interest are thus

given by (12) with Pn,0 = Pn(θ0).

As mentioned previously, in order to apply our methodology, we must specify X
(n)
j and θ̂n,j and

argue that the convergence (15) holds when Pn ∈ Pn,0 for all n ≥ 1. To this end, for a pre-specified

value of q, define

X
(n)
j = {(Yt, Zt) : t = (j − 1)bn + 1, . . . , jbn} ,

where bn = bn/qc, and let θ̂n,j be the ordinary least squares estimator of θ in (18) using the data

X
(n)
j . In other words, we divide the data into q consecutive blocks of data of size bn and estimate

θ using ordinary least squares within each block of data. For this choice of X
(n)
j and θ̂n,j , the

convergence (15) holds when Pn ∈ Pn,0 for all n ≥ 1 under a wide range of assumptions on Q.

Extensive discussions of such conditions can be found in Ibragimov and Müller (2010, Section 3.1)

and Bester et al. (2011, Lemma 1). We therefore omit further discussion of these conditions here.

Remark 4.6. Our methodology allows for considerable heterogeneity in the sense that both

E

 1

bn

∑
(j−1)bn≤t≤jbn

ZtZ
′
t

 and E

 1

bn

∑
(j−1)bn≤t≤jbn

ZtZ
′
tε

2
t

 (19)

may depend on j even asymptotically. With the exception of the t-test approach developed in

Ibragimov and Müller (2010), the competing approaches we discuss in Section 5.1 below do not

share this feature.

Remark 4.7. By replacing the time index t with a vector index, as in Bester et al. (2011), we can

accommodate more complicated dependence structures, such as those found in spatially dependent

data or in panel data.

Remark 4.8. When Q includes distributions that are heavy-tailed, the asymptotic normality in

(15) may fail, but the q esimators (after an appropriate re-centering and scaling) may still have a

limiting distribution that is the product of q distributions that are symmetric about zero. Note in

particular that the rate of convergence in this case may depend on the tail index of the distribution.

See, for example, McElroy and Politis (2002) and Ibragimov and Müller (2010). Following the

discussion in Remarks 4.3 and 4.4, the test described above remains valid in such situations.
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4.2 Differences-in-Differences

Suppose

Yj,t = θDj,t + ηj + γt + εj,t with E[εj,t] = 0 . (20)

Here, the observed data is given by X(n) = {(Yj,t, Dj,t) : j ∈ J0∪J1, t ∈ T0∪T1} ∼ Pn taking values

on a sample space Xn =
∏
j∈J0∪J1,t∈T0∪T1 R× {0, 1}, where Yj,t is the outcome of unit j at time t,

Dj,t is the (non-random) treatment status of unit j at time t, T0 is the set of pre-treatment time

periods, T1 is the set of post-treatment time periods, J0 is the set of controls units, and J1 is the

set of treatment units. The scalar random variables ηj , γt and εj,t are unobserved and θ ∈ Θ ⊆ R

is the parameter of interest.

As before, in order to state the null and alternative hypotheses formally, it is useful to introduce

some further notation. Let W (n) = {(εj,t, ηj , γt, Dj,t) : j ∈ J0 ∪ J1, t ∈ T0 ∪ T1} ∼ Qn ∈ Qn taking

values on a sample space Wn =
∏
j∈J0∪J1,t∈T0∪T1 R ×R ×R × {0, 1} and An,θ : Wn → Xn be the

mapping implied by (20). Our assumptions on Qn are discussed below. Using this notation, define

Pn =
⋃
θ∈Θ

Pn(θ) with Pn(θ) = {QnA−1
n,θ : Qn ∈ Qn} .

The null and alternative hypotheses of interest are thus given by (12) with Pn,0 = Pn(θ0).

In order to apply our methodology, we must again specify X
(n)
j and θ̂n,j and argue that the

convergence (15) holds when Pn ∈ Pn,0 for all n ≥ 1. Different specifications may be appropriate

for different asymptotic frameworks. We first consider an asymptotic framework similar to the one

in Conley and Taber (2011), where |J1| = q is fixed, |J0| → ∞, and min{|T0|, |T1|} → ∞ with
|T1|
|T0| → c ∈ (0,∞). A modification for an alternative asymptotic framework in which |J0| is also

fixed is discussed in Remark 4.14 below. For such an asymptotic framework, for each j ∈ J1, define

X
(n)
j = {(Yk,t, Dk,t) : k ∈ {j} ∪ J0, t ∈ T0 ∪ T1}

and let θ̂n,j be the ordinary least squares estimator of θ in (20) using the data X
(n)
j , including

indicator variables appropriately in order to account for ηj and γt. Note that in this case the X
(n)
j

are not disjoint. We may also express θ̂n,j more simply as

θ̂n,j = ∆n,j −
1

|J0|
∑
k∈J0

∆n,k , (21)

where

∆n,k =
1

|T1|
∑
t∈T1

Yk,t −
1

|T0|
∑
t∈T0

Yk,t .

13



It follows that for θ as in (20),

√
|T1|(θ̂n,j − θ) =

√
|T1|

 1

|T1|
∑
t∈T1

εj,t −
1

|T0|
∑
t∈T0

εj,t


−
√
|T1|

1

|J0|
∑
k∈J0

 1

|T1|
∑
t∈T1

εk,t −
1

|T0|
∑
t∈T0

εk,t

 .

For this choice of X
(n)
j and θ̂n,j , the convergence (15) (with |T1| in place of n) therefore holds when

Pn ∈ Pn,0 for all n ≥ 1 under a wide range of assumptions on Qn. In particular, it suffices to

assume that εj = (εj,t : t ∈ T0 ∪ T1) are independent across j, that for 1 ≤ ` ≤ 2

1

|J0|2
∑
k∈J0

 1

|T`|
∑
t∈T`

∑
s∈T`

E[εk,tεk,s]

→ 0 , (22)

and that  1√
|T1|

∑
t∈T1

εj,t ,
1√
|T0|

∑
t∈T0

εj,t : j ∈ J1

 (23)

satisfies a central limit theorem (see, e.g., Politis et al., 1999, Theorem B.0.1).

Remark 4.9. The construction described above relies on the fact that min{|T0|, |T1|} → ∞ in order

to apply an appropriate central limit theorem to (23). The construction remains valid, however,

even if |T0| and |T1| are small provided that

1

|T1|
∑
t∈T1

εj,t and
1

|T0|
∑
t∈T0

εj,t

are independent and identically distributed. This property will hold, for example, if |T0| = |T1|
(which may be enforced by ignoring some time periods if necessary) and the distribution of εj is

exchangeable (across t) for all j. While these assumptions may be strong, this discussion illustrates

that the estimators θ̂n,j of θ need not even be consistent in order to apply our methodology.

Remark 4.10. The construction described above applies equally well in the case where (20) in-

cludes covariates Zj,t. The estimators θ̂n,j of θ can no longer be expressed as in (21), but they may

still be obtained using ordinary least squares using the jth cluster of data. Under an appropriate

modification of the assumptions to account for the Zj,t, the convergence (15) holds when Pn ∈ Pn,0

for all n ≥ 1.

Remark 4.11. The requirement that εj are independent across j can be relaxed using mixing

conditions as in Conley and Taber (2011). In order to do so, it must be the case that the εj can be

ordered linearly.

Remark 4.12. The construction described above applies equally well in the case where there are

multiple observations for each unit j. This situation may arise, for example, when j indexes states

and individual-level data within each state is available.
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Remark 4.13. The construction above may also be used if T0 and T1 vary across j ∈ J1. In this

case, we simply define X
(n)
j = {(Yk,t, Dk,t) : k ∈ J0 ∪ {j}, t ∈ T0,j ∪ T1,j}.

Remark 4.14. The requirement that |J0| → ∞ can be relaxed by modifying our proposed test in

the following way. Suppose |J0| is fixed and that |J1| ≤ |J0| (if this is not the case, simply relabel

treatment and control). Denote by {J̃0,l : 1 ≤ l ≤ q} a partition of J0. For each j ∈ J1, define

X
(n)
j = {(Yk,t, Dk,t) : k ∈ J̃0,j ∪ {j}, t ∈ T0 ∪ T1}

and let θ̂n,j be computed as before using the data X
(n)
j . For this choice of X

(n)
j and θ̂n,j , the

convergence (15) continues to hold when Pn ∈ Pn,0 for all n ≥ 1 under appropriate modifications

of the assumptions described above.

4.3 Clustered Regression

Suppose

Yi,j = θDj + Z ′i,jγ + εi,j with E[εi,j |Dj , Zi,j ] = 0 . (24)

Here, the observed data is given by X(n) = {(Yi,j , Zi,j , Dj) : i ∈ Ij , j ∈ J0 ∪ J1} ∼ Pn taking values

on a sample space Xn =
∏
i∈Ij ,j∈J0∪J1 R×Rd × {0, 1}, where Yi,j is the outcome of unit i in area

j, Zi,j is a vector of covariates of unit i in area j, Dj is the treatment status of area j, Ij is the set

of units in area j, J1 is the set of treated areas, and J0 is the set of untreated areas. The scalar

random variable εi,j is unobserved, γ ∈ Γ ⊆ Rd is a nuisance parameter, and θ ∈ Θ ⊆ R is the

parameter of interest. The mean independence requirement is stronger than needed; indeed, all

that is required is that the εi,j is uncorrelated with Dj and Zi,j . For simplicity, we assume below

that |J0| = |J1| = q, but the arguments are easily adapted to the case where |J0| 6= |J1|.

As before, in order to state the null and alternative hypotheses formally, it is useful to introduce

some further notation. Let W (n) = {(εi,j , Dj , Zi,j) : i ∈ Ij , j ∈ J0 ∪ J1} ∼ Qn ∈ Qn taking values

on a sample space Wn =
∏
i∈Ij ,j∈J0∪J1 R × {0, 1} × Rd and An,θ,γ : Wn → Xn be the mapping

implied by (24). Our assumptions on Qn are discussed below. Using this notation, define

Pn =
⋃

θ∈Θ,γ∈Γ

Pn(θ, γ) with Pn(θ, γ) = {QnA−1
n,θ,γ : Qn ∈ Qn} ,

where, as before, A−1
n,θ,γ denotes the pre-image of An,θ,γ . The null and alternative hypotheses of

interest are thus given by (12) with

Pn,0 =
⋃
γ∈Γ

Pn(θ0, γ) .

In order to apply our methodology, we must again specify X
(n)
j and θ̂n,j and argue that the

convergence (15) holds when Pn ∈ Pn,0 for all n ≥ 1. Note that the clusters cannot be defined
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by areas themselves because θ is not identified within a single area. Indeed, Dj is constant within

a single area. We therefore define the clusters by forming pairs of treatment and control areas,

i.e., by matching each area in J1 with an area in J0. In experimental settings, such pairs are often

suggested by the way in which treatment status was determined (see, e.g., the empirical application

in Section 6). More specifically, for each j ∈ J1, let k(j) ∈ J0 be the area in J0 that is matched

with j. For each j ∈ J1, define

X
(n)
j = {(Yi,l, Zi,l, Dl) : i ∈ Il, l ∈ {j, k(j)}}

and let θ̂n,j be the ordinary least squares estimator of θ in (24) using the data X
(n)
j . For this choice

of X
(n)
j and θ̂n,j , the convergence (15) holds when Pn ∈ Pn,0 for all n ≥ 1 under a wide range of

assumptions on Qn. Some such conditions can be found in Bester et al. (2011, Lemma 1).

5 Monte Carlo Simulations

5.1 Time Series Regression

In this section, we examine the finite-sample performance of our methodology with a simulation

study designed around (18). Following Bester et al. (2011), we set

Zt = 1 + ρZt−1 + ν1,t

εt = ρεt−1 + ν2,t

with θ = 1 and {(ν1,t, ν2,t) : 1 ≤ t ≤ n} distributed in one of the following three ways:

N: (Normal) (ν1,t, ν2,t), t = 1, . . . , n i.i.d. with a bivariate normal distribution with mean zero

and identity covariance matrix.

H: (Heterogeneous) ν1,t = atu1,t and ν2,t = btu2,t, where (u1,t, u2,t), t = 1, . . . , n are i.i.d. with

u`,t ∼
1

3
N(−1,

1

2
) +

1

3
N(0,

1

2
) +

1

3
N(1,

1

2
)

for all 1 ≤ ` ≤ 2 and u1,t ⊥⊥ u2,t and the constants at and bt are given by

at =
1√
6
I{t ≤ n/2}+ I{t > n/2} and bt =

1√
6
I{t ≤ n/2}+ 3I{t > n/2} .

HT: (Heavy-Tailed) (ν1,t, ν2,t), t = 1, . . . , n are i.i.d. with ν1,t ⊥⊥ ν2,t and, for 1 ≤ ` ≤ 2, ν`,t

has a t-distribution with 2 degrees of freedom for t ≤ n
2 and a Pareto distribution with shape

parameter 1 and scale parameter 2 re-centered to have mean zero for t > n
2 .
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Design N captures a homogeneous setting in the sense that the quantities in (19) do not depend

on j. In other words, the distribution of observed data in this case is stationary. This design is

considered by Bester et al. (2011). Design H, on the other hand, captures a heterogeneous (i.e.,

non-stationary) setting in the sense that the quantities in (19) depend on j even asymptotically.

Finally, design HT is not only heterogeneous (i.e., non-stationary), but also features heavy-tailed

disturbances.

In the simulation results presented below, we compare our test (denoted Rand), the non-

randomized version of our test (denoted NR R), and the following three alternative tests:

IM: This test is the one proposed by Ibragimov and Müller (2010). It is based on the result

about the t-test developed by Bakirov and Székely (2006) and discussed in Section 2.1.1.

BCH: This test is the one proposed by by Bester, Conley and Hansen (2011). It rejects the

null hypothesis when √
n|θ̂Fn − θ0|√
Γ̂−1
n V̂nΓ̂−1

n

(25)

exceeds the 1 − α
2 quantile of a t-distribution with q − 1 degrees of freedom, where θ̂Fn is

the ordinary least squares estimator of θ in (18) based on the full sample of data, Γ̂n =

n−1
∑n

t=1 ZtZ
′
t and V̂n is a “cluster covariance matrix estimator” with q clusters.

BRL: This test is the one proposed by Bell and McCaffrey (2002), who refer to it as “bias

reduced linearization.” It is used by Angrist and Lavy (2009), whose analysis we revisit in our

empirical application in Section 6. This test replaces V̂n in (25) with a “bias reduced” version

of it and rejects when the resulting quantity exceeds the 1 − α
2 quantile of a t-distribution

with degrees of freedom no greater than q. See page 8 of Bell and McCaffrey (2002) for exact

expressions for the “bias reduced” covariance matrix estimator and the degrees of freedom

correction. Further discussion is provided by Imbens and Kolesar (2012).

Table 1 reports rejection probabilities under the null hypothesis for our tests, Rand and NR R,

as well as IM, BCH and BRL. The parameter values we use for the simulations are n = 100, α = 5%,

ρ ∈ {0, 0.5, 0.8, 0.95}, and q ∈ {4, 8, 12}. All results are based on 10, 000 Monte Carlo repetitions.

The results in Table 1 are consistent with the theoretical properties of our test. Relative to IM, Rand

has rejection probabilities closer to the nominal level across all heterogeneous specifications (designs

H and HT), while in the homogeneous specifications (design N) both tests perform similarly. This

is consistent with Theorem 3.1, which shows that Rand has asymptotic rejection probability under

the null hypothesis equal to the nominal level, while IM may have asymptotic rejection probability

under the null hypothesis substantially below the nominal level when the data exhibit heterogeneity.

Relative to BCH, Rand performs better under both heterogeneity and high levels of dependence

(i.e., ρ > 0.5). Indeed, BCH is only shown to be valid under homogeneity in the distribution of
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Design N Design H Design HT

ρ ρ ρ

q 0 0.5 0.8 0.95 0 0.5 0.8 0.95 0 0.5 0.8 0.95

Rand 5.0 5.2 5.2 5.4 5.1 5.1 5.3 5.3 5.2 5.3 5.5 5.2

IM 4.9 5.0 5.2 5.0 2.7 2.8 2.9 5.0 2.7 2.9 3.2 3.4

4 BCH 5.4 6.1 8.2 16.2 18.1 17.6 18.8 18.2 8.4 9.0 10.7 17.6

BRL 4.8 4.9 5.2 7.4 4.9 4.9 5.0 8.2 2.1 2.3 2.9 6.3

Rand 5.0 5.4 5.8 5.4 4.9 5.3 5.8 5.6 5.2 5.4 5.7 5.1

NR R 4.7 5.1 5.5 5.1 4.5 5.0 5.5 5.3 4.9 5.1 5.4 4.8

8 IM 4.7 5.2 5.6 5.0 3.7 4.0 4.4 5.4 2.9 3.2 3.6 3.6

BCH 5.4 6.9 11.3 24.7 11.1 13.0 17.9 29.9 8.6 10.0 13.8 26.2

BRL 4.7 5.3 7.0 14.6 6.9 7.4 8.7 19.2 1.8 2.3 4.1 12.7

Rand 5.1 5.6 5.9 5.5 5.2 5.6 5.9 5.6 5.2 5.7 5.5 5.3

IM 4.7 5.1 5.5 5.0 4.4 4.7 4.9 5.2 3.0 3.5 3.7 3.9

12 BCH 5.7 7.4 13.1 30.3 9.1 11.6 18.4 35.4 8.8 10.5 15.6 32.1

BRL 4.9 5.7 8.8 21.7 6.4 7.4 10.5 42.2 1.8 2.5 5.4 20.1

Table 1: Rejection probabilities (in %) under the null hypothesis for different designs in the time

series regression example.

ZtZ
′
t, which is violated in the heterogeneous specifications (designs H and HT), while Rand does

not require such homogeneity assumptions. Relative to BRL, Rand performs better in most cases,

except in design N with low levels of dependence (i.e., ρ ≤ 0.5), in which case both tests perform

well. BRL performs poorly under heterogeneity and higher levels of dependence, exhibiting both

under-rejection (1.8%) and over-rejection (42.2%).

Overall, across all specifications, the rejection rates of Rand under the null hypothesis are

between 4.9% and 5.9%. We also report results for NR R for the case q = 8. Its performance is

very similar to that of Rand. Indeed, for q = 12, both Rand and NR R are numerically identical,

so we omit these results in Table 1. Note that for q = 4, NR R is the trivial test, i.e., the test that

simply does not reject, so we do omit these results in Table 1. See also Remark 2.4.

Figure 3 reports size-adjusted power curves for NR R, IM, BCH and BRL. The results are for

designs N and H with q = 8 and ρ ∈ {0.8, 0.95}. In all scenarios, the size-adjusted power of NR R

and IM are quite similar, the size-adjusted power of BCH and BRL are quite similar, and NR R and

IM significantly outperform BRL and BCH. The difference in power is smallest for design N with

ρ = 0.8. In unreported results for design N with ρ ∈ {0, 0.5}, BCH and BRL have size-adjusted

power similar to Rand and IM. Finally, the size-adjusted power of all four tests for design HT are
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Figure 3: Size-adjusted power curves in the time series regression example with q = 8. Design N

and ρ = 0.8 (upper left panel), Design H and ρ = 0.8 (upper right panel), Design N and ρ = 0.95

(lower left panel), and Design H and ρ = 0.95 (lower right panel).

very similar, so we do not report the results here.

It is important to emphasize that Rand and NR R have additional advantages over these

competing tests that are not visible in the simulation study. First, they are available for any

α ∈ (0, 1), which, as mentioned in Remark 2.3, allows the computation of p-values. IM and BCH,

on the other hand, require α ≤ 8.3% and q ≥ 2 or α ≤ 10% and 2 ≤ q ≤ 14. Second, they allow for

inference on vector-valued parameters, while both IM and BCH are restricted to scalar parameters.

Third, the tests can be used with a variety of test statistics instead of only the t-statistic. Finally,

our approximate symmetry requirement accommodates a broader range of situations, including, for
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example, situations with an infinite variance.

Remark 5.1. Bester et al. (2011) and Ibragimov and Müller (2010) show in a simulation study that

their respective tests outperform conventional tests that replace V̂n in (25) with a heteroskedasticity-

autocorrelation consistent covariance matrix estimator and reject when the resulting quantity ex-

ceeds the 1− α
2 quantile of the N(0, 1) distribution. These tests are justified by requiring q →∞.

Bester et al. (2011) and Ibragimov and Müller (2010) also find that their tests outperform the test

proposed by Kiefer and Vogelsang (2002, 2005), in which the 1 − α
2 quantile of the N(0, 1) distri-

bution is replaced with an alternative critical value that does not require q →∞. We therefore do

not include these tests in our comparisons.

Remark 5.2. As mentioned previously, BRL involves a “bias reduced” covariance matrix estimator

and a degrees of freedom correction for the t-distribution with which the test statistic is compared.

The bias correction is highlighted by Angrist and Pischke (2008, page 320) and is used by Angrist

and Lavy (2009) without the degrees of freedom adjustment. All our simulations, however, suggest

that the good performance of BRL is largely driven by the degrees of freedom correction. For

example, for q = 8 and ρ = 0.8, the rejection probabilities under the null hypothesis of a test

that uses the 1 − α
2 quantile of a standard normal distribution instead of the 1 − α

2 quantile of

the appropriate t-distribution would be 14.7%, 19.2%, and 15.4% for each of the three designs.

The corresponding numbers using the degrees of freedom correction are 7.0%, 8.7%, and 4.1%, as

reported in Table 1.

Remark 5.3. Imbens and Kolesar (2012) propose an alternative degrees of freedom correction

for BRL. The results using this alternative correction are essentially the same as those using the

correction by Bell and McCaffrey (2002). We therefore do not include them in Table 1.

5.2 Differences-in-Differences

In this section, we examine the finite-sample performance of our methodology with a simulation

study designed around (20). Following Conley and Taber (2011), we set

Yj,t = θDj,t + βZj,t + εj,t

εj,t = ρεj,t−1 + ν1,j,t (26)

Zj,t = γDj,t + ν2,j,t

with θ = 1, β = 1, γ = 0.5. The distributions of ν1,j,t, ν2,j,t and Dj,t and the value of ρ are specified

below. The first specification is our baseline specification, and the other specifications only deviate

from it in the specified ways.
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(a): We set |J1| = 8, |J0|+ |J1| = 100, |T0|+ |T1| = 10, ρ = 0.5,

Dj,t =


0 if j ∈ J0

0 if j ∈ J1 and t < t?j

1 if j ∈ J1 and t ≥ t?j

,

where t?j = min{2j, |T0| + |T1|}, and (independently of all other variables) (ν1,j,t, ν2,j,t), j ∈
J0 ∪ J1, t ∈ T0 ∪ T1 are i.i.d. N(0, I2), where I2 is the two-dimensional identity matrix.

(b): Everything as in (a), but |J0|+ |J1| = 50.

(c): Everything as in (a), but |J1| = 12.

(d): Everything as in (a), but t?j = |T0|+|T1|
2 .

(e): Everything as in (a), but ρ = 0.95.

(f): Everything as in (a), but |T0|+ |T1| = 3.

(g): Everything as in (a), but ν1,j,t, j ∈ J0, t ∈ T0∪T1 are i.i.d. ∼ N(0, 1) and, independently,

ν1,j,t, j ∈ J1, t ∈ T0 ∪ T1 are i.i.d. ∼ N(0, 4).

(h): Everything as in (a), but ν1,j,t, 1 ≤ j ≤ 4, t ∈ T0 ∪ T1 are i.i.d. ∼ N(0, 16) and,

independently, ν1,j,t, 4 < j ≤ 100, t ∈ T0 ∪ T1 are i.i.d. ∼ N(0, 1).

In the simulation results presented below, we compare our tests, Rand and NR R, the IM and

BRL tests described in the previous subsection, and the following three additional tests:

CT: This test is the one proposed by Conley and Taber (2011). It is based on θ̂Fn , the

ordinary least squares estimator of θ in (26) based on the full sample of data. In an asymptotic

framework in which |J1| is fixed and |J0| → ∞, they show that θ̂Fn
p→ θ + W , where W is

a random variable defined in Conley and Taber (2011, Proposition 1). They then propose a

novel approach to approximate the distribution of W using simulation that is valid under the

assumption that (εj,t : t ∈ T0∪T1) is i.i.d. across j and independent of (Dj,t, Zj,t : t ∈ T0∪T1)

(see Conley and Taber, 2011, Proposition 2).

CCE: This test is the one proposed by Bertrand et al. (2004). This test replaces V̂n in (25)

with a “cluster covariance matrix estimator” with |J0| + |J1| clusters and rejects when the

resulting quantity exceeds the 1− α
2 quantile of a standard normal distribution.

CGM: This test is the one proposed by Cameron et al. (2008) based on the wild bootstrap.

The authors argue that this test provides a higher-order asymptotic refinement over some

other methods, such as CCE. See Cameron et al. (2008) for further details on implementation.
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Spec. Rejection probabilities under θ = 1 Rejection probabilities under θ = 0

Rand NR R IM CT CCE CGM BRL Rand NR R IM CT CCE CGM BRL

(a) 5.58 5.26 5.51 5.85 10.37 5.88 4.16 66.49 65.21 67.70 80.37 81.11 66.42 64.13

(b) 6.39 6.01 6.32 7.21 9.36 5.61 3.93 64.69 63.35 65.60 78.74 79.51 65.15 63.89

(c) 6.26 6.26 6.10 6.42 8.52 5.35 4.41 85.37 85.37 85.58 91.28 89.76 84.54 81.36

(d) 5.56 5.32 5.57 6.75 9.50 5.41 4.79 69.44 68.20 70.40 82.58 81.61 69.43 69.26

(e) 6.06 5.67 5.89 6.39 9.92 5.53 4.23 32.29 31.14 32.91 41.92 29.20 32.90 17.08

(f) 5.41 5.15 5.44 6.66 9.50 5.69 4.79 59.06 57.58 59.93 73.45 73.61 58.85 58.99

(g) 4.78 4.58 4.86 62.02 11.14 5.55 4.97 9.54 8.99 9.69 70.12 18.36 10.40 9.15

(h) 5.52 5.24 3.84 51.81 11.08 6.10 2.93 20.11 19.51 16.61 66.49 27.55 20.73 14.59

Table 2: Rejection probabilities (in %) under the null and alternative hypotheses for different

designs in the differences-in-differences example.

Note that with |J0|+|J1| = 100 clusters, the test proposed by Bester et al. (2011) performs similarly

to CCE. We therefore do not include it in our comparisons.

Table 2 reports rejection probabilities under the null hypothesis (i.e., θ = 1) for our tests, Rand

and NR R, as well as IM, CT, CCE, and BRL. Table 2 also reports rejection probabilities for these

tests when θ = 0. The tests are all conducted with α = 5%. All results are based on 10, 000 Monte

Carlo replications. We find that Rand and NR R perform well across all specifications. IM performs

well, although, as expected, it is has rejection probability less than the nominal level when there

is heterogenenity (specification (h)). CT, on the other hand, works very well when the conditions

in Conley and Taber (2011) are met, but it severely over-rejects when (εj,t : t ∈ T0 ∪ T1) is not

i.i.d. across j (specifications (g) and (h)). CCE over-rejects in all designs. CGM works remarkably

well across all designs, though in unreported simulations involving high levels of heterogeneity

we found that it could mildly over-reject. See also Ibragimov and Müller (2013), who find in a

clustered regression setting that CGM can over-reject dramatically. Finally, BRL under-rejects in

some specifications and typically delivers the lowest power across all specifications.

Remark 5.4. Conley and Taber (2011) show in a simulation study that their test outperforms

the test proposed by Donald and Lang (2007). We therefore do not include the test proposed by

Donald and Lang (2007) in our comparisons.

Remark 5.5. Tests Rand and CT are valid under non-nested assumptions. Unlike CT, Rand is

valid in settings where (εj,t : t ∈ T0∪T1) is not i.i.d. across j, which might arise, for example, when

there is heteroskedasticity conditional on treatment. The test by Conley and Taber (2011), on the

other hand, is valid even when q = 1, whereas NR R may have poor power when q is very small.

See Remark 2.4.

Remark 5.6. The rejection probabilities under the null hypothesis of a version of BRL without

the degrees of freedom correction are close to those of CCE across all designs. For example, in

specification (a), such a test has rejection probability equal to 8.52% instead of 4.2%.
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6 Empirical Application

In this section we revisit the analysis of Angrist and Lavy (2009, henceforth AL09), who study the

effect of cash awards on Bagrut achievement – the high school matriculation certificate in Israel.

This certificate is awarded after a sequence of tests in 10th–12th grades and is a formal prerequisite

for university admission. Certification is largely determined by performance on a series of exams

given in 10th–12th grades. AL09 find that the program was most successful for girls and that the

impact on girls was driven by “marginal” students, i.e., students close to achieving certification

based on their performance on tests given before the twelfth grade.

6.1 Program details and data

In December 2000, 40 nonvocational high schools with the lowest 1999 Bagrut rates in a national

ranking were selected to participate in the Achievement Awards demonstration. These schools were

matched into 20 pairs based on lagged values of the primary outcome of interest, the average 1999

Bagrut rate. Treatment status was then assigned randomly (i.e., with equal probability) within each

pair. Treated schools were contacted shortly after random assignment and every student in a treated

schools who received a Bagrut was eligible for a payment. Five treated schools are noncompliers

in the sense that principals in these schools did not inform teachers about the program after the

initial orientation or indicated that they did not wish to participate. Although the program was

initially intended as a program that would provide cash awards to high school students in every

grade, the actual implementation of the program focused on seniors. Thus, our analysis below,

which follows AL09, is limited to high school seniors.

Baseline data were collected in January 2001, while the main Bagrut outcome comes from tests

taken in June of 2001. One of the schools closed immediately after the start of the program, so

the sample consists of 19 pairs of schools (the 6th matched pair is omitted). The data are publicly

available at http://economics.mit.edu/faculty/angrist/data1/data/angrist. Below we in-

dex schools by j ∈ J0 ∪ J1, where J0 is the set of untreated schools and J1 is the set of treated

schools, and students in the jth school by i ∈ Ij . The data include the following variables: Yi,j is

an indicator for Bagrut achievement; Dj is an indicator for treatment; Wj is a vector of school-level

covariates, including an indicator for Arab school, an indicator for Jewish religious schools, and

indicators for each of the matched pairs; Zi,j is a vector of covariates, including parental school,

number of siblings, immigrants states, and credit-unit weighted averages of test scores prior to

January 2001.
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6.2 Model and empirical results

The model in this section fits into the framework described in Section 4.3 as follows,

Yi,j = Λ[θDj + Z ′i,jγ +W ′jδ] + εi,j with E[εi,j |Dj , Zi,j ,Wj ] = 0 , (27)

where Λ[·] is the identity or logistic transformation. The parameter of interest is θ ∈ Θ ⊆ R. While

not discussed explicitly in Section 4.3, the logistic version of this model is handled in exactly the

same way after replacing the ordinary least squares estimator of θ with the maximum likelihood

estimator.

AL09 estimate the model in (27) by ordinary least squares and maximum likelihood using the

full sample of schools. In order to circumvent the problem of having a small number of clusters

(39 clusters at the school level), they estimate standard errors using the bias-reduced covariance

matrix estimator proposed by Bell and McCaffrey (2002). AL09 do not report confidence intervals

or p-values, so we do not know the exact critical values they used. A closer look at the paper (e.g.,

on page 1395, where t-statistics range from 1.7 to 2.1, the authors write “the 2001 estimates for

girls are on the order of 0.10, and most are at least marginally significantly different from zero”)

suggests that they are using the 1− α
2 quantile of standard normal distribution. We therefore use

this approach to construct their confidence intervals in Tables 3-5. We note, however, that this is

not equivalent to the BRL test we described in Sections 5.1 and 5.2. See also Remarks 5.2 and 5.6

for a discussion of the differences between these two methods.

In order to apply our methodology, we follow Section 4.3 and divide the data into q clusters.

We require that the parameter of interest, θ, is identified within each cluster. With this in mind,

it is natural to consider the 19 clusters defined by the 19 matched pairs of schools. Unfortunately,

such an approach does not allow for certain school-level covariates in (27) because in some of the

pairs Dj and Wj are perfectly collinear. We therefore form clusters by grouping the 19 matched

pairs of schools in a way that guarantees that Dj and Wj are not perfectly collinear within each

cluster. The total number of clusters resulting from this strategy depends on the particular sub-

population under consideration. In the sample of boys and girls, we form q = 11 clusters: {1,3},
{2,4}, {5,8}, {7}, {9,10}, {11}, {12,13}, {14,15}, {16,17}, {18,20}, {19}; in the sample of girls

only, we form q = 9 clusters: {1,3}, {16,4}, {5,7}, {2,12}, {10,11}, {8,19}, {13}, {14,15}, {18,20}.
Here, the notation {a, b} means that the ath and bth matched pairs are grouped together. The

median number of students per cluster is approximately 400 when boys and girls are included and

approximately 200 when only girls are included.

Table 3 reports results for our test and the corresponding results from AL09 at the 5% and

10% significance levels for the sample of boys and girls. Table 4 reports the same results for the

sample of girls only. These results correspond to those in Table 2 on page 1394 in AL09. We report

the average of the q estimators as our point estimate and compute our confidence intervals using
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Treatment Effect: Boys & Girls

Randomization Test Angrist and Lavy (2009)

OLS Logit OLS Logit

Sch. cov. only 0.049 -0.017 0.052 0.054

90% [ -0.078 , 0.164 ] [ -0.147 , 0.093 ] [ -0.025 , 0.130 ] [ -0.016 , 0.125 ]

95% [ -0.109 , 0.182 ] [ -0.180 , 0.105 ] [ -0.040 , 0.144 ] [ -0.030 , 0.138 ]

Lagged score, micro. cov. 0.075 0.022 0.067 0.055

90% [ -0.034 , 0.178 ] [ -0.058 , 0.102 ] [ 0.008 , 0.126 ] [ -0.004 , 0.114 ]

95% [ -0.059 , 0.198 ] [ -0.077 , 0.117 ] [ -0.003 , 0.138 ] [ -0.015 , 0.125 ]

Table 3: Results corresponding to boys and girls in Table 2 in AL09.

Treatment Effect: Girls only

Randomization Test Angrist and Lavy (2009)

OLS Logit OLS Logit

Sch. cov. only 0.036 0.037 0.105 0.093

90% [ -0.132 , 0.195 ] [ -0.099 , 0.165 ] [ 0.005 , 0.205 ] [ 0.006 , 0.179 ]

95% [ -0.182 , 0.234 ] [ -0.144 , 0.183 ] [ -0.014 , 0.224 ] [ -0.010 , 0.197 ]

Lagged score, micro. cov. 0.090 0.058 0.105 0.097

90% [ -0.049 , 0.226 ] [ -0.020 , 0.140 ] [ 0.027 , 0.182 ] [ 0.021 , 0.172 ]

95% [ -0.099 , 0.256 ] [ -0.047 , 0.157 ] [ 0.012 , 0.197 ] [ 0.006 , 0.187 ]

Table 4: Results corresponding to girls only in Table 2 in AL09.

test inversion. The row labeled “Sch. cov. only” includes the case where only school covariates are

included. The row labeled “Lagged score, micro. cov.” includes the individual covariates as well.

Our results in Table 3 for the sample of boys and girls are consistent with those in AL09 and show

that θ is not statistically significantly different from zero. The conclusions change for the sample of

girls only in Table 4. While the confidence intervals for AL09 are consistent with the claim on page

1395 in AL09 of θ being “marginally significantly different from zero,” our confidence intervals do

not support this assertion.

AL09 re-estimate the logistic specification of (27) for the sample of “marginal” girls. The define

“marginal” in two different ways. The first scheme splits students into approximately equal-sized

groups according to the credit unit-weighted average test scores prior to January 2001. The second

scheme splits students into approximately equal-sized groups using the fitted values obtained by

estimating the logistic specification of (27) using the untreated sample only. We replicate AL09’s

results and apply our randomization test to the resulting samples in Table 5. The results show
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Treatment Effect: Girls on top half of cohort

Randomization Test Angrist and Lavy (2009)

by lagged score by pred. probability by lagged score by pred. probability

Sch. cov. only 0.089 0.081 0.206 0.194

90% [ -0.077 , 0.259 ] [ -0.099 , 0.262 ] [ 0.076 , 0.335 ] [ 0.067 , 0.320 ]

95% [ -0.129 , 0.289 ] [ -0.156 , 0.295 ] [ 0.051 , 0.360 ] [ 0.043 , 0.344 ]

Lagged score, micro. cov. 0.091 0.076 0.213 0.207

90% [ -0.064 , 0.252 ] [ -0.095 , 0.249 ] [ 0.083 , 0.342 ] [ 0.079 , 0.334 ]

95% [ -0.113 , 0.286 ] [ -0.150 , 0.279 ] [ 0.058 , 0.367 ] [ 0.054 , 0.359 ]

Table 5: Results corresponding to “marginal” girls only in Table 4 in AL09.

again that our test does not support AL09’s claim that θ is statistically significantly different from

zero for this subsample.

Overall, the results using our test do not support the finding in AL09 that cash awards appeared

to have generated substantial increases in the matriculation rates of “marginal” girls, though, as

in AL09, we found no evidence of negative or perverse effects of the program either.
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A Proof of Theorem 2.1

The proof of this result is not new to this paper and can be found in Hoeffding (1952) and Lehmann

and Romano (2005, Chapter 15). We include it here for completeness.

Let P ∈ P0 be given. Since for every x ∈ X , T (j)(x) = T (j)(gx) for all g ∈ G and 1 ≤ j ≤M ,∑
g∈G

φ(gx) = M+(x) + a(x)M0(x) = Mα .

In addition, since X
d
= gX under P for any P ∈ P0 and g ∈ G, we have

Mα = EP

∑
g∈G

φ(gX)

 =
∑
g∈G

EP [φ(X)] = MEP [φ(X)] ,

and the result follows.

B Optimality of Randomization Test

Define

P = {⊗qj=1Pj,µ : Pj,µ = N(µ, σ2
j ) with µ ≥ 0 and σ2

j ≥ 0}

P0 = {⊗qj=1Pj,µ : Pj,µ = N(µ, σ2
j ) with µ = 0 and σ2

j ≥ 0} .

Let X = (X1, . . . , Xq) ∼ P ∈ P consider testing (3) at level α ∈ (0, 1). Below we argue that

the randomization test with T (X) = Tt−stat(X) and G = {−1, 1}q is the uniformly most powerful

unbiased level α test against the restricted class of of alternatives with σ2
j = σ2 > 0 for all 1 ≤

j ≤ q. A similar argument can be used to establish the corresponding two-sided result for the

randomization test with T (X) = T|t−stat|(X) and G = {−1, 1}q when P and P0 according to

(10)-(11). Related results have been obtained previously in Lehmann and Stein (1949).

Consider a test φ̃(X) = φ̃(X1, . . . , Xq). Since the test is unbiased, it must be the case that

EP [φ̃(X)] ≤ α for all P ∈ P0 and EP [φ̃(X)] ≥ α for all P ∈ P1. Using the dominated convergence

theorem, it is straightforward to show that the requirement of unbiasedness therefore implies that

the test is similar, i.e., EP [φ̃(X)] = α for all P ∈ P0.

Next, note that U = (|X1|, . . . , |Xn|) is sufficient for P0. Indeed, the distribution of X|U under

any P ∈ P0 is uniform over the 2n points of the form (±|X1|, . . . ,±|Xn|). Furthermore, PU
0 , the

family of distributions for U under P as P varies over P0, is complete. To see this, for γ ∈ Rn,

define Pγ to be the distribution with density

C(γ) exp

− n∑
j=1

γjx
2
j

 ,
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where C(γ) is an appropriate constant. By construction, Pγ ∈ P0, so the desired result follows

from Theorem 4.3.1 in Lehmann and Romano (2005). Therefore, by Theorem 4.3.2 in Lehmann

and Romano (2005), we see that all similar tests have Neyman structure, i.e., EP [φ̃(X)|U = u] = α

for all P ∈ P0 and all u except those in a set N such that supP∈P0
P{U ∈ N} = 0.

To find an optimal test, we therefore maximize the power of the test under P = ⊗qj=1N(µ, σ2)

where µ > 0 and σ2 > 0. Under the null, the distribution of X|U is uniform, as described above.

Under this alternative, the conditional probability mass function is proportional to

∏
1≤i≤n

exp

(
− 1

2σ2
(xi − µ)2

)
= exp

− 1

2σ2

 ∑
1≤i≤n

x2
i − 2µ

∑
1≤i≤n

xi + µ2

 .

Since
∑

1≤i≤nX
2
i is constant conditional on U = u, the Neyman-Pearson Lemma implies that the

optimal (conditional) test rejects when
∑

1≤i≤nXi > c(u) and rejects with probability γ(u) when∑
1≤i≤nXi = c(u), where the constants c(u) and γ(u) are chosen so that the test has (conditional)

rejection probability equal to α. Such tests are, of course, randomization tests with underlying

choice of test statistic equal to
∑

1≤i≤nXi, and this test is identical to the randomization test with

underlying choice of test statistic equal to Tt−stat(X) (see Example 15.2.4 in Lehmann and Romano

(2005) for details). Denote this test by φ(X).

It remains to show that φ(X) is indeed unbiased. By construction, it is similar and therefore

has rejection probability = α for all P ∈ P0. To see that the rejection probability is ≥ α under

any P ∈ P1, note that φ(X) is weakly increasing in each of its arguments. We therefore have that

EP [φ(X1 +µ, . . . ,Xn+µ)] ≥ α for all µ > 0 and any P ∈ P0, from which the desired result follows.

Remark B.1. It is important to emphasize that this optimality result, like the one in Ibragimov

and Müller (2010), is only for a restricted class of alternatives. On the other hand, it can readily be

shown that the specified randomization test is in fact admissible whenever the set of alternatives

contains this class and α is a multiple of 1
2q . The argument hinges on the fact that the above

argument using the Neyman-Pearson lemma together with Lemma D.1 below guarantees that the

optimal test is non-randomized for these values of α.

Remark B.2. The argument presented above in fact shows that the specified randomization test

remains uniformly most powerful unbiased against the same class of alternatives even if P0 is

enlarged so that each Pj,µ is only required to be symmetric about zero.

C Proof of Theorem 3.1

Let {Pn ∈ Pn,0 : n ≥ 1} be given and define M = |G|. By Assumption 3.1(i) and the Almost

Sure Representation Theorem (c.f van der Vaart, 1998, Theorem 2.19), there exists S̃n, S̃, and
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U ∼ U(0, 1), defined on a common probability space (Ω,A, P ), such that

S̃n → S̃ w.p.1 ,

S̃n
d
= Sn, S̃

d
= S, and U ⊥ (S̃n, S̃). Consider the randomization test based on S̃n, this is,

φ̃(S̃n, U) ≡

1 T (S̃n) > T (k)(S̃n) or T (S̃n) = T (k)(S̃n) and U < a(S̃n)

0 T (S̃n) < T (k)(S̃n)
.

Denote the randomization test based on S̃ by φ̃(S̃, U), where the same uniform variable U is used

in φ̃(S̃n, U) and φ̃(S̃, U).

Since S̃n
d
= Sn, it follows immediately that EPn [φ(Sn)] = EP [φ̃(S̃n, U)]. In addition, since

S̃
d
= S, Assumption 3.1(ii) and Theorem 2.1 imply that EP [φ̃(S̃, U)] = α. It therefore suffices to

show

EP [φ̃(S̃n, U)]→ EP [φ̃(S̃, U)] . (28)

In order to show (28), let En be the event where the orderings of {T (gS̃) : g ∈ G} and

{T (gS̃n) : g ∈ G} correspond to the same transformations g(1), . . . , g(M). We first claim that

I{En} → 1 w.p.1. To see this, note that by Assumption 3.1(iii) and S̃
d
= S, any two g, g′ ∈ G are

such that either

T (gs) = T (g′s) ∀s ∈ S , (29)

or

T (gS̃) 6= T (g′S̃) w.p.1 under P . (30)

It follows that there exists a set with probability one under P such that for all ω ∈ Ω in this set,

S̃n(ω) → S̃(ω) and T (gS̃(ω)) 6= T (g′S̃(ω)) for any two g, g′ ∈ G not satisfying (29). For any ω in

this set, let g(1)(ω), . . . , g(M)(ω) be the transformations such that

T (g(1)(ω)S̃(ω)) ≤ T (g(2)(ω)S̃(ω)) ≤ · · · ≤ T (g(M)(ω)S̃(ω)) .

For any two consecutive elements g(j)(ω) and g(j+1)(ω) with 1 ≤ j ≤ M − 1, there are only two

possible cases: either T (g(j)(ω)S̃(ω)) = T (g(j+1)(ω)S̃(ω)) or T (g(j)(ω)S̃(ω)) < T (g(j+1)(ω)S̃(ω)).

If T (g(j)(ω)S̃(ω)) = T (g(j+1)(ω)S̃(ω)) then by (29) it follows that

T (g(j)(ω)S̃n(ω)) = T (g(j+1)(ω)S̃n(ω)) ∀n ≥ 1 .

If T (g(j)(ω)S̃(ω)) < T (g(j+1)(ω)S̃(ω)), then

T (g(j)(ω)S̃n(ω)) < T (g(j+1)(ω)S̃n(ω)) for n sufficiently large ,

as S̃n(ω) → S̃(ω) and the continuity of T : S → R and g : S → S imply that T (g(j)(ω)S̃n(ω)) →
T (g(j)(ω)S̃(ω)) and T (g(j+1)(ω)S̃n(ω))→ T (g(j+1)(ω)S̃(ω)). We can therefore conclude that

I{En} → 1 w.p.1 ,
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which proves the first claim.

We now prove (28) in two steps. First, we note that

EP [φ̃(S̃n, U)I{En}] = EP [φ̃(S̃, U)I{En}] . (31)

This is true because, on the event En, if the transformation g = g(m) corresponds to the mth largest

value of {T (gS̃) : g ∈ G}, then this same transformation corresponds to the mth largest value of

{T (gS̃n) : g ∈ G}. In other words, φ̃(S̃n, U) = φ̃(S̃, U) on En. Second, since I{En} → 1 w.p.1 it

follows that φ̃(S̃, U)I{En} → φ̃(S̃, U) w.p.1 and φ̃(S̃n, U)I{Ecn} → 0 w.p.1. We can therefore use

(31) and invoke the dominated convergence theorem to conclude that,

EP [φ̃(S̃n, U)] = EP [φ̃(S̃n, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

= EP [φ̃(S̃, U)I{En}] + EP [φ̃(S̃n, U)I{Ecn}]

→ EP [φ̃(S̃, U)] .

This completes the proof.

D Auxiliary Lemmas

Lemma D.1. Let S = (S1, . . . , Sq) where Sj ⊥⊥ Sj′ for all j 6= j′ and each Sj is symmetrically

distributed about 0. Let W = {w = (w1, . . . , wq) ∈ Rq : wj 6= 0 for at least one 0 ≤ j ≤ q}. If for

every w ∈W and w0 ∈ R

w0 +

q∑
j=1

wjSj 6= 0 w.p.1 , (32)

then Assumption 3.1(iii) is satisfied for T (S) = Tt-stat(S), where

Tt-stat(S) =
S̄q√

1
q−1

∑q
j=1(Sj − S̄q)2

with S̄q =
1

q

q∑
j=1

Sj ,

and G = {−1, 1}q. In particular, if the distribution of Sj is absolutely continuous with respect to

Lebesgue measure for all 1 ≤ j ≤ q, then the requirement in (32) holds.

Proof: We prove the result by contradiction. Suppose there exist two distinct elements g, g′ ∈ G

such that T (gS) = T (g′S) with positive probability, where

T (gS) =

1
q

∑q
j=1 gjSj√

1
q−1

∑q
j=1 S

2
j −

q
q−1(

∑q
j=1 gjSj)

2
. (33)

We first claim that the denominator in (33) is nonzero w.p.1 for all g ∈ G. Let σ̃2
S = 1

q−1

∑q
j=1 S

2
j ,

w̃0 =
√

q−1
q σ̃2

S , and note that σ̃2
S −

q
q−1(

∑q
j=1 gjSj)

2 = 0 with positive probability if and only if

w̃0 +

q∑
j=1

gjSj = 0 or − w̃0 +

q∑
j=1

gjSj = 0

30



with positive probability. Since gj 6= 0 for all 1 ≤ j ≤ q, (g1, . . . , gq) ∈ W and (32) implies this

cannot happen.

We next note that T (gS) = T (g′S) implies that

1

q

q∑
j=1

gjSj

σ̃2
S −

q

q − 1

 q∑
j=1

g′jSj

2
1/2

=
1

q

q∑
j=1

g′jSj

σ̃2
S −

q

q − 1

 q∑
j=1

gjSj

2
1/2

.

Additional algebra using this last expression implies that T (gS) = T (g′S) with positive probability

if and only if
q∑
j=1

∆gjSj = 0 or

q∑
j=1

(gj + g′j)Sj = 0 , (34)

where ∆gj = gj − g′j . Since g and g′ are distinct, it follows that ∆gj 6= 0 for at least one 1 ≤ j ≤ q
and so (∆g1, . . . ,∆gq) ∈ W. By (32),

∑q
j=1 ∆gjSj 6= 0 w.p.1. In addition, since g 6= g′, it

follows that gj + g′j 6= 0 for at least one 1 ≤ j ≤ q and so (g1 + g′1, . . . , gq + g′q) ∈ W. By (32),∑q
j=1(gj + g′j)Sj 6= 0 w.p.1. We conclude that (34) cannot hold with positive probability and this

completes the first part of the proof.

To prove the last claim of the Lemma, let Z(w) =
∑q

j=1wjSj and suppose by way of con-

tradiction that the requirement in (32) fails. Then, there exists w0 ∈ R and w ∈ W such that

Z(w) = −w0 holds with positive probability. However, since wj 6= 0 for at least one 0 ≤ j ≤ q and

Sj is continuously distributed for all 1 ≤ j ≤ q, it follows that Z(w) is continuously distributed for

all w ∈W, which leads to a contradiction.

Lemma D.2. Let S = (S1, . . . , Sq) where Sj ⊥⊥ Sj′ for all j 6= j′ and each Sj is symmetrically

distributed about 0. Let W = {w = (w1, . . . , wq) ∈ Rq : wj 6= 0 for at least one 0 ≤ j ≤ q}. If for

every w ∈W and w0 ∈ R,

w0 +

q∑
j=1

wjSj 6= 0 w.p.1 , (35)

then Assumption 3.1(iii) is satisfied for T (S) = T|t-stat|(S) defined in (17) and G = {−1, 1}q. In

particular, if the distribution of Sj is absolutely continuous with respect to Lebesgue measure for all

1 ≤ j ≤ q, then the requirement in (35) holds.

Proof: Let T (S) = T|t-stat|(S) as defined in (17). Take any two distinct elements g, g′ ∈ G and

consider the following two cases. If g 6= −g′, then the same arguments as those in the proof of

Lemma D.1 show that T (gS) 6= T (g′S) w.p.1. On the other hand, if g′ = −g, then it follows that

for any s ∈ S,

T (gs) =

∣∣∣∣∣
1
q

∑q
j=1 gjsj

1
q−1

∑q
j=1 s

2
j −

q
q−1(

∑q
j=1 gjsj)

2

∣∣∣∣∣ =

∣∣∣∣∣−
1
q

∑q
j=1(−gj)sj

1
q−1

∑q
j=1 s

2
j −

q
q−1(−

∑q
j=1 gjsj)

2

∣∣∣∣∣ = T (g′s) .

The result follows. Finally, the proof of the last claim follows from the proof of Lemma D.1.
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Lemma D.3. Let S = (S1, . . . , Sq) where Sj ⊥⊥ Sj′ for all j 6= j′ and each Sj ∈ Rd is symmetrically

distributed about 0. Let W = {w = (w1, . . . , wq) ∈ Rq : wj 6= 0 for at least one 0 ≤ j ≤ q}. If for

every w ∈W and w0 ∈ Rd

w0 +

q∑
j=1

wjSj 6= 0 w.p.1 , (36)

then Assumption 3.1(iii) is satisfied for T (S) = TWald(S) defined in (16) and G = {−1, 1}q. In

particular, if the distribution of Sj is absolutely continuous with respect to Lebesgue measure on Rd

for all 1 ≤ j ≤ q, then the requirement in (36) holds.

Proof: Let T (gS) = qS̄q(g)′Σ̄−1
q S̄q(g), where Σ̄q = q−1

∑q
j=1 g

2
jSjS

′
j and S̄q(g) = q−1

∑q
j=1 gjSj ,

noting that Σ̄q is invariant to sign changes since g2
j = 1 for 1 ≤ j ≤ q. Take two distinct elements

g, g′ ∈ G = {−1, 1}q and consider the following two cases: either g′ = −g or g 6= −g′. If g′ = −g,

then for any s ∈ S, qs̄q(g) =
∑q

j=1 gjsj = −
∑q

j=1−gjsj = −qs̄q(g′). It follows immediately

that T (gs) = qs̄q(g)′Σ̄−1
q s̄q(g) = qs̄q(g

′)′Σ̄−1
q s̄q(g

′) = T (g′s). If g 6= −g′, then we claim that

T (gS) 6= T (g′S) w.p.1. To this end, note that Σ̄q is symmetric by definition and positive definite

w.p.1 by (36). We can then write

T (gS)− T (g′S) = q(S̄q(g)− S̄q(g′))′Σ̄−1
q (S̄q(g) + S̄q(g

′)) .

Since Σ̄q is positive definite w.p.1, it follows that T (gS) = T (g′S) with positive probability if and

only if

S̄q(g)− S̄q(g′) = 0 or S̄q(g) + S̄q(g
′) = 0 , (37)

with positive probability. First, note that S̄q(g) − S̄q(g′) = q−1
∑q

j=1 ∆gjSj . Since g and g′ are

distinct, it follows that ∆gj 6= 0 for at least one 1 ≤ j ≤ q and so (∆g1, . . . ,∆gq) ∈W. By (36),

S̄q(g)− S̄q(g′) 6= 0 w.p.1. Second, note that S̄q(g) + S̄q(g
′) = q−1

∑q
j=1(gj + g′j)Sj . Since g+ g′ 6= 0,

it follows that gj + g′j 6= 0 for at least one 1 ≤ j ≤ q and so (g1 + g′1, . . . , gq + g′q) ∈W. By (36),

S̄q(g) + S̄q(g
′) 6= 0 w.p.1. We conclude that (37) cannot hold with positive probability and this

completes the proof.

The proof of the last claim follows from arguments similar to those used in the proof of Lemma

D.1.
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