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Abstract

With the evolution of various advanced driver
assistance system (ADAS) platforms, the design
of autonomous driving system is becoming more
complex and safety-critical. The autonomous
driving system simultaneously activates multiple
ADAS functions; and thus it is essential to coor-
dinate various ADAS functions. This paper pro-
poses a randomized adversarial imitation learning
(RAIL) method that imitates the coordination of au-
tonomous vehicle equipped with advanced sensors.
The RAIL policies are trained through derivative-
free optimization for the decision maker that co-
ordinates the proper ADAS functions, e.g., smart
cruise control and lane keeping system. Especially,
the proposed method is also able to deal with the
LIDAR data and makes decisions in complex multi-
lane highways and multi-agent environments.

1 Introduction

With the increasingly growing interests in autonomous driv-
ing, the various forms of advanced driver assistance sys-
tem (ADAS) functions such as smart cruise control (SCC),
lane keeping system (LKS) and collision-avoidance systems
(CAS) have been developed with high potentials in the en-
hanced convenience of drivers for limited on-driving situ-
ations. Especially, in multi-lane highway environments, it
is essential to form efficient long term assistance strategies
while maintaining safety because the malfunctions in safety
cause on-road accidents and road congestion. The various
ADAS functions presented in modern autonomous driving
have high interdependence; thus it has to be regarded as a sin-
gle integrated system. Therefore the strategies that properly
coordinate the ADAS functions are required.

A conventional system hierarchy of autonomous vehicle is
as illustrated in Fig. 1. The low-level ADAS controllers are
directly connected to the LIDAR sensors accessible in au-
tonomous vehicle. The controllers determine the informa-
tion needed to control the autonomous vehicle and transmit
the determined operations to mechanical components. As a
single integrated system, it is expected that multiple ADAS
functions simultaneously cooperate to manage the systems

Figure 1: Simplified learning hierarchy to control vehicle systems.

operation of the vehicle. Therefore, a supervisor that coor-
dinates the low-level controllers needs to select appropriate
ADAS functions when the vehicle acts in dynamic on-road
environments [Korssen et al., 2018]. The objective of the su-
pervisor is to be a decision maker of the overall system dur-
ing driving operation. The problem is that the driving poli-
cies of the supervisor should satisfy the robustness regard-
less of various traffic environments. Prior research results
on autonomous driving consist of diverse approaches with
rule-based driving policies. However, these policies have
been difficult to cope with time-varying environments (i.e.,
huge observation spaces and action spaces) [Gipps, 1986;
Ahmed, 1999]. Recently, the emergence of deep reinforce-
ment learning (DRL), which utilizes powerful function ap-
proximations such as neural networks, allows the supervisor
to obtain robust driving policies; it has made revolutionary
progresses in the autonomous driving [Mnih et al., 2015;
Silver et al., 2016; Sallab et al., 2016; Hoel et al., 2018;
Mukadam et al., 2017]. However, there are challenges with
DRL when the driving policies try to learn the policies that
maximize the expected rewards during operation. The criteria
for what should be the reward function of autonomous driv-
ing is still in progress in many studies. Furthermore, since
there are undesirable policies to maximize the expected re-
wards at the expense of violating the implicit rules of the en-
vironments, it is difficult to learn the robust and safe poli-
cies through DRL in autonomous driving [Pan et al., 2018].
These problems motivate the researchers to adopt imitation
learning (IL) to optimize the driving policy instead. The
IL trains the driving policies based on the desired behav-
ior demonstrations rather than the configuration of the spe-
cific reward functions as well as the IL can leverage domain
knowledge. Based on the advantages of IL, it has been proved
that the IL performs remarkably in the areas of robotics,
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navigation, autonomous vehicle, and etc [Pomerleau, 1991;
Pomerleau, 1989; Pan et al., 2018]. However, the main
challenge faced by many researchers is the techniques that
combine DRL and IL algorithms require too much data to
achieve reasonable performance, and the corresponding fa-
mous example is generative adversarial imitation learning
(GAIL) [Schulman et al., 2015; Schulman et al., 2017]. To
address this issue, the algorithm models become complicated;
and thus the models lead to reproducibility crisis. Further-
more, the models are sensitive to the implementation struc-
ture of the same algorithms and rewards from environments.
For example, in GAIL, the discriminator of Generative Ad-
versarial Networks (GAN) takes a role of the reward func-
tion. With the combination of discrimination and the com-
plex DRL algorithms, e.g., TRPO and PPO, the GAIL trains
the policies. As a result, the reconstruction results do not
have always reasonable performance, and can stuck in sub-
optimal even with marginal differences. These problems
make the difficulties in training robust autonomous driving
policies; the trained policies have not yet been successfully
deployed to autonomous vehicles [Henderson et al., 2017b;
Islam et al., 2017]. Recently, augmented random search
(ARS) that consists of the natural gradient policy algorithm
is proposed [Rajeswaran et al., 2017]. Because the ARS is
a derivative-free simple linear policy optimization method,
it is relatively easy to reconfigure the robust trained policy
that shows reasonable performance. In this work, we present
an IL-based method that combines the concepts of ARS and
GAIL. For more details, random search based randomized
adversarial imitation learning (RAIL) algorithm is proposed
in this paper; and the RAIL algorithm trains policies using
randomly generated matrices where the random matrices are
used to search update directions that lead to optimal policies.
This approach is advantageous in terms of computation (such
as back-propagation) overhead reduction whereas DRL algo-
rithms that use gradients to optimize weights. Furthermore,
by leveraging expert demonstrations, our system can learn
the driving policies of supervisor that achieves similar perfor-
mance compared to the expert in terms of average speeds and
lane changes. Through the data-intensive performance eval-
uation, it is demonstrated that the proposed RAIL algorithm
can train the autonomous driving decision maker as desired.

Our proposed RAIL method shows that the random search
in the space of policy parameters can be adapted to IL for
autonomous driving policies. For more details, our contribu-
tions are as follows: (i) self-driving mechanism is proposed
inspired by IL. Our method can successfully imitate expert
demonstrations; and the corresponding static and linear poli-
cies can achieve similar speeds with many lane changes and
overtakes. (ii) previous IL methods are based on conventional
RL methods which show complicate configurations to control
autonomous driving. However, RAIL has simplicity based on
derivative-free random search. (iii) this method has not been
previously applied to learn the robust driving policies in au-
tonomous driving.

The rests of this paper are as follows: Sec. 2 and Sec. 3 de-
scribe the previous work and background knowledge. Sec. 4
defines our problem, i.e., training policies for autonomous
driving. Sec. 5 designs the RAIL algorithm. Sec. 6 shows

the experiment results by expert demonstrations in highway
autonomous vehicle control. Sec. 7 concludes this paper.

2 Related Work

Imitation Learning (IL)

The IL methods are divided into two categories, i.e., behav-
ioral cloning (BC) and inverse reinforcement learning (IRL).
The BC is considered as the simplest IL method. To restore
expert policy, it works by collecting training data from the
expert drivers behaviors, and then uses it to directly learn the
corresponding policy. If the policy deviates from trajectories
that is trained in the training procedure, the agent tends to be
fragile. This is because behavior cloning tries to reduce the
1-step deviation error of training data, not to reduce the er-
ror of entire trajectories. Prerequisites for reasonable policy
restoration is a sufficient number of expert driving demon-
strations. On the other hand, IRL has an intermediate pro-
cedures to estimate and recover the hidden reward function
which explains the expert demonstration [Ziebart et al., 2008;
Finn et al., 2016b]. Since IRL has to optimize the policy as
well as the reward function, IRL generally implies significant
computational costs. In [Finn et al., 2016a] an [Ho and Er-
mon, 2016], the theoretical and practical considerations of
connections between IRL and adversarial network is stud-
ied. GAIL framework learns a policy that can imitate ex-
pert demonstration using the discriminator network, which
bypasses the reward function optimization.

Simplest Model-Free RL

The simplest model-free RL method that can solve standard
benchmarks of RL has been studied under the two different
directions: linear policies via natural policy gradients [Ra-
jeswaran et al., 2017] and a derivative-free policy optimiza-
tion [Salimans et al., 2017]. [Rajeswaran et al., 2017] shows
that complicated structures of policies are not needed to solve
continuous control problems. The authors train linear poli-
cies via natural policy gradients. The trained policies ob-
tain competitive performance on the complex continuous en-
vironments. In[Salimans et al., 2017], the authors showed
that evolution strategies (ES) offers less data efficiency than
traditional RL, but offers many advantages. Especially, a
derivative-free optimization allows ES to be more efficiently
in distributed learning. Furthermore, the trained policies tend
to be more diverse compared to policies trained by traditional
RL methods. In [Mania et al., 2018], the connection be-
tween [Salimans et al., 2017] and [Rajeswaran et al., 2017]

is studied to obtain the simplest model-free RL method yet, a
derivative-free optimization for training linear policies. The
proposed simple random search method showed state-of-art
sample efficiency compared to competing methods in Mu-
JoCo locomotion benchmarks.

3 Background

Markov Decision Process (MDP)

MDP is formalized by (S,A, p(s), p(s′|s, a), r(s, a, s′), γ)
where S, A, p(s), p(s′|s, a), r(s, a, s′), and γ stand for set
of states, set of actions, initial state distribution, environmen-
tal dynamic represented as conditional state distribution, re-

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4591



ward functions, and discount factor, respectively. The envi-
ronment interactions between a subject and its environment
is unbounded in the continuing tasks; and thus the returns are
defined as Rt =

∑∞

i=t γ
i−tr(si, ai, si+1). The objective of

MDP is to find a policy that maximizes the expected returns.

Generative Adversarial IL (GAIL)

GAIL is used for reward function in this paper. Based on
GAN, the GAIL trains a binary classifier, D(s, a), referred to
as the discriminator, to distinguish between transitions sam-
pled from an expert demonstration and those generated by the
trained policies. With GAIL, an agent is able to learn a pol-
icy that imitates expert demonstrations using the adversarial
network. The objective of GAIL is defined as follows:

argmin
θ

argmax
φ

{Eπθ
[logDφ(s, a)] +

EπE
[log(1−Dφ(s, a))]− λH(πθ)} . (1)

where πθ, πE are the policy which is parameterized by θ and

an expert policy. In (1), H(πθ) , Eπ [− log π(a|s)] is en-
tropy regularization. Dφ(s, a) → [0, 1] is the discriminator
parameterized by φ [Ho and Ermon, 2016]. In GAIL, the
policy is instead provided a reward for confusing the discrim-
inator, which is then maximized via some on-policy RL op-
timization schemes. The Dφ takes the role of a reward func-
tion; and thus it gives learning signal to the policy [Ho and
Ermon, 2016; Guo et al., 2018; Henderson et al., 2017a].

Augmented Random Search (ARS)

ARS is a model-free RL algorithm. Based on random search
in the parameter spaces of policies, ARS uses the method
of finite differences to adjust its weights and learn the way
how the policy performs its given tasks [Matyas, 1965;
Mania et al., 2018]. Through the random search in the param-
eter spaces, the algorithm can conduct a derivative-free opti-
mization with noises [Matyas, 1965; Mania et al., 2018]. To
update the weights effectively, ARS selects update directions
uniformly and updates the policies along with the selected
direction. For updating the parameterized policy πθ, the up-

date direction is as
r(πθ−νδ)−r(πθ+νδ)

ν
where δ is a zero mean

Gaussian vector, ν is a positive real number which represents
the standard deviation of exploration noise, and r(πθ ± νδ)
means the rewards from environments when the parameter of
policies is πθ ± νδ. Let θt be the weight of policy at t-th
training iteration. N denotes that the number of sampled di-
rections per iteration. The update step is configured as:

θt+1 = θt +
α

N

∑N

i=1
[r(πθ+νδi)− r(πθ−νδi)] δi. (2)

However, the problem of random search in the parame-
ter spaces of policies is large variations in terms of the re-
wards r(πθ ± νδ) which are observed during training pro-
cedure. The variations make the updated policies to be per-
turbed through the update steps [Mania et al., 2018]. To ad-
dress the large variation issue, the standard deviation σR of
the rewards which is collected at each iteration is used to ad-
just the size of the update steps in ARS. Based on the adaptive
step size, ARS shows better performance compared to DRL
algorithms (i.e., PPO, TRPO, etc.) in specific environments.

4 Problem Definition

Motivation

By coordinating the ADAS functions in the limited situations
such as highways, the autonomous driving can be realized. To
coordinate the ADAS functions for autonomous driving, the
supervisor determines the appropriate ADAS functions based
on the nearby situations. However, the complete states of the
environment are not known to the autonomous vehicle super-
visor. The supervisor receives an observation that is condi-
tioned on the current state of the system. The host vehicle in-
teracts with the environment including surrounding vehicles
and lanes; and thus it uses partially observable local informa-
tion. Therefore, we need to model the observation of agent as
an (O,A, T,R, γ) tuple representing a partially observable
Markov decision process with continuous observations and
actions for autonomous driving. Similar to MDP in Section
3, there are the set of partial observation states denoted by O,
instead of S. In this paper, LIDAR data is regarded as the
observation by vehicles.

In this paper, a finite state space O ∈ R
n and a finite action

space A ∈ R
p are considered. The goal of IL for autonomous

driving is to learn a policy πθ ∈ Π : O × A → R
p which

imitates expert demonstration from GAN Dφ(s, a) → [0, 1]
where θ ∈ R

n are the policy parameters and φ ∈ R
n+p are

the discriminator parameters [Ho and Ermon, 2016].

The State Space

For sensor model, we use a vector observation that consists of
LIDAR sensor data. In particular, N beams are spread evenly
over the field of view [ωmin, ωmax]. The LIDAR sensor de-
tects around the vehicle. Each sensor data has a maximum
range of rmax. The sensor returns the distance between the
first obstacle it encounters and the host vehicle, or rmax if
no obstacle is detected. Then, the observation is described as
O = (o1, . . . , oN ). Furthermore, based on the distance infor-
mation, the relative speed of the obstacle and the host vehicle
can be calculated. Here, the relative speed observation is de-
scribed as Vr = (v1, . . . , vN ).

The Action Space

The policy is considered as a high-level decision maker which
determines optimal actions based on observation on the high-
way. We assume that the autonomous vehicle utilizes the
ADAS functions; and thus the determined actions of driving
policy activate each ADAS function. The driving policy is
defined in a discrete action space. The high level decisions
can be break down into the following 5 actions as follows:
(1) maintain current status, (2) accelerate speed for a con-
stant amount velcur + velacc, (3) decelerate speed for a con-
stant amount velcur − veldec, (4) make a left lane change, (5)
make a right lane change. The actions expect that the vehi-
cle is adjusted with autonomous emergency braking (AEB)
and adaptive cruise control (ACC) [Mukadam et al., 2017;
Min and Kim, 2018; Hoel et al., 2018].

The Reward Function

In the GAIL framework, the reward from adversarial network
is defined rπθ

(s, a) = − log(1 − Dφ(s, a)) or rπθ
(s, a) =

log(Dφ(s, a)) [Ho and Ermon, 2016]. The former type of the
reward is used to encourage agent to train survival policies
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Figure 2: Structure of RAIL.

through a survival bonus in the form of positive reward based
on their lifetime. The latter is often used to train policies with
a per step negative reward, when a reward function consists
of a negative constant for the state and action. However, in
this case, it is hard to learn the survival policies [Kostrikov
et al., 2019]. The prior knowledge of environmental ob-
jectives is important, but the environment-dependent reward
function is undesirable when the agent requires interactions
with a training environment in order to imitate an expert pol-
icy. Therefore, we defined the reward function as follows:
log(Dφ(s, a))− log(1−Dφ(s, a)).

5 Randomized Adversarial IL (RAIL)

The approach in this paper, named randomized adversarial
imitation learning (RAIL), adopts IL through adversarial net-
work paradigm (i.e., GAIL). The main concept of RAIL is en-
hance an conventional algorithm called ARS and GAIL [Ho
and Ermon, 2016; Mania et al., 2018]. RAIL aims to train
the driving policy πθ to imitate expert driver’s demonstration.
This section describes the details of RAIL and makes a con-
nection between GAIL and a derivative-free optimization.

In Fig. 2, the overall structure of RAIL is described. The
supervisor of host vehicle is considered as an agent which has
policy πθ. From the environment (i.e., multi-lane highway),
the host vehicle receives the observation. Then, the random
noise matrices of small values can be generated. The noise
matrices are added to or subtracted from the policy param-
eters θ. As a result, several different temporary policies are
produced. The agent interacts with the environments multiple
times based on the generated noisy policies and the results are
collected as sample trajectories. Based on the samples, the
main policy πθ is trained to control the autonomous driving
successfully with fully utilizing ADAS functions which guar-
antee safety. In the training process, the policy πθ attempts to
fool a discriminator Dφ into believing the sample trajectories
of the agent come from expert demonstrations. The Dφ tries
to distinguish between the distribution of trajectories which
are sampled by the policies πθ and the expert trajectories TE .
The trajectories consist of state-action pair (s, a). The dis-
criminator takes the role of the reward module in RAIL, as
shown in Fig. 2; and thus the policy πθ is trained against the
discriminator. Therefore, the performance of the discrimina-
tor has a significant impact on convergence and agent.

As shown in Fig.2, the discriminator is trained based on
sample trajectories and expert demonstration. However, in
training procedure, since the policy πθ is updated every it-
eration, the distribution of the sample trajectories changes.
As a result, the training of the discriminator is not stabi-
lized; and thus it gives the inaccurate reward signal to the

policy. Consequently, the policy can be perturbated during
update step [Guo et al., 2018]. In RAIL, the loss function
of least square GAN (LS-GAN) is used to train a discrimina-
tor Dφ [Mao et al., 2017], and the objective function of the
discriminator is as follows:

argmin
φ

LLS(D) =
1

2
EπE

[

(Dφ(s, a)− b)2
]

+

1

2
Eπθ

[

(Dφ(s, a)− a)2
]

(3)

where a and b are the discriminator labels for the sampled
trajectories from the policy πθ and the expert trajectories.

In this paper, least-squares loss function is used to train the
discriminator. When the loss function of original GAN Eq.1
is used, sampled trajectories which are far from the expert tra-
jectories but on the correct side of the decision boundary are
almost not penalized by sigmoid cross-entropy loss. In a con-
trast, the least-squares loss function (3) penalizes the sampled
trajectories which are far from the expert trajectories on either
side of decision boundary [Mao et al., 2017]. Therefore, the
stability of training is improved; and it leads the discrimi-
nator to give accurate reward signals to the update step. In
LS-GAN, a and b have relationship b − a = 2 for (3) to be
Pearson X 2 divergence [Mao et al., 2017]. However, we use
a = 0 and b = 1 as the target discriminator labels. The results
of the discriminator Dφ are in the range of 0 to 1 (experimen-
tally determined). In RAIL, the discriminator is interpreted
as a reward function for policy optimization. Forementioned
in Sec.4, the form of reward signal is as follows:

rπθ
(s, a) = log(Dφ(s, a))− log(1−Dφ(s, a)) (4)

This means that if the trajectories sampled from the pol-
icy πθ is similar to expert trajectories, the policy πθ gets
higher reward rπθ

(s, a). The policy πθ is updated to max-
imize the discounted sum of rewards given by the discrimi-
nator rather than the reward from the environment as shown
in Fig. 2. The objective of RAIL can be described as
argmax

θ

E(s,a)∼πθ
[r(s, a)], and then, it is as follows by (4):

argmax
θ

E(s,a)∼πθ
[log(Dφ(s, a))− log(1−Dφ(s, a))] (5)

where this (5) represents the connection between adversarial
IL and randomized parameter space search in RAIL.

Algorithm

As mentioned, RAIL is related to ARS which is model-
free reinforcement algorithm. Thus, RAIL utilizes parame-
ter space exploration for a derivative-free policy optimization.
The parameters of πθ are denoted by θ. The πθ consists of πi

θ,
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Algorithm 1: RAIL

Hyperparameters: α step size, N number of sampled
directions per iteration, δi and δo Gaussian
vectors from zero mean and ν a positive
real number standard deviation of the
exploration noise, h hidden layer size

Initialize : θi, θo from behavior cloning,
µ0 = 0 ∈ R

n, and
∑

0 = In ∈ R
n×n

1 while t ≤ Episode Length do
2 i.i.d. Random Sampling with

δt =
{

δ1, δ2, ..., δN ; δik ∈ R
h×n, δok ∈ R

p×h
}

3 Collect 2N rollouts and corresponding rewards using the
2N noisy policies for k ∈ {1, 2, . . . , N}.

4 πt,(k),+ = (θt + νδk)diag(
∑

t)
−1/2(s− µt)

5 πt,(k),− = (θt − νδk)diag(
∑

t)
−1/2(s− µt)

6 Update discriminator parameter φt :

7 ∇φtLLS = 1
2
EπE

[

(∇φtDφt(s, a)− b)2
]

8 + 1
2
Eπθ

[

(∇φtDφt(s, a)− a)2
]

9 Update the policy parameter θt :

10 θt+1 = θt +
α

NσR

∑N
i=1

[

r(πt,(k),+)− r(πt,(k),−)
]

δ(k)

11 where trajectories T sampled from π(t,(k),±)

12 r(πt,(k),±) =
E(s,a)∼πt,(k),±

[log(Dφ(s, a))− log(1−Dφ(s, a))]

13 Set µt+1,
∑

t+1 to be the mean and covariance of the
states encountered from the start of training.

14 t = t+ 1
15 end

πo
θ , and activation function. The πi

θi is the input layer of πθ

where θi ∈ R
n×h are the parameters of the input layer. In ad-

dition, πo
θo is the output layer where θo ∈ R

h×p. The noises

δi and δo of parameter space for exploration are n × h and
h × p matrices where they are sampled from zero mean and
ν standard deviation Gaussian distribution. In this paper, let
θ be a set of θi and θo. δ means a set of δi and δo.

The pseudo-code of RAIL is represented in Algorithm 1.
The policy parameters θi and θo are initialized from be-
havior cloning. In training procedure, the noises δiandδo

which mean the search directions in parameter space of pol-
icy are chosen randomly for each iteration (line 2). Each
set of selected N noises makes two policies in the current
policy πθ. We collect 2N rollouts and rewards from N
noisy policies πt,k,± = θt ± νδk (line 3-6). The high di-
mensional complex problems have multiple state components
with various ranges; and thus it makes the policies to result
in large changes in the actions when the same sized changes
are not equally influence state components. Therefore, the
state normalization is used in RAIL (line 4-5,14); and it al-
lows policy πt,i,± to have equal influence for the changes
of state components when there are state components with
various ranges [Mania et al., 2018; Salimans et al., 2017;
Nagabandi et al., 2018]. The discriminator Dφ gives the re-
ward signal to update step. However, since the trajectories for
the training of the discriminator can only be obtained from
current policies πθt , a discriminator is trained whenever the
policy θt is updated. The discriminator Dφ finds the param-
eter φ which minimizes the objective function (3) (line 7-9).

Average RAIL (Stacked) RAIL (Linear) Expert

Speed [km/h] 70.38 65.00 68.83
# Overtake 45.04 40.03 44.48
# Lane change 15.01 13.05 14.04
Longitudinal 2719.38 2495.57 2642.11
Lateral -122.98 -175.6 -132.52

Table 1: Performance (Avg. 16 Episodes, 40 Trajectories)

By using the reward signals from the discriminator, the policy
weight is updated in the direction of +δ or −δ based on the
result of r(πt,(k),+)− r(πt,(k),−) (line 10-13). The state nor-
malization is based on the information of the states encoun-
tered during training; and thus µ and

∑

are updated (line 14).

6 Experiments

In this section, we compare the performance between RAIL
and baselines. Furthermore, in order to assess the perfor-
mance gaps between the single-layer and multi-layer policies
trained by RAIL, the single-layer and two-layer (i.e., multi-
layer) policies was implemented.

Simulator

The simulated road environment is a highway driving road-
way composed of five lanes. Other vehicles are generated in
the center of the random lanes within a certain distance to
the host vehicle. In addition, it is assumed that other vehi-
cles do not collide with others while randomly changes the
lanes. Aforementioned in Sec. 4, the observation is based on
LIDAR sensor result. We assume LIDAR sensor detects a
range of 360 degrees with one ray per 15 degree. The ray re-
turns the distance between the first obstacle it encounters and
the host vehicle. If there are no obstacles, it returns the maxi-
mum sensing range. We make the expert demonstration using
PPO with specific action controls. The results present the av-
erage of 16 experiment results. In the experiments, the trained
weights by BC are used to fast convergence in GAIL and
RAIL. This simulation is inspired by [Min and Kim, 2018].
We implemented the RAIL simulator based on Unity.

Results

The purpose of experiments in Fig. 3 is to show the sample
efficiency. In order to assess the efficiency, average speed,
number of lane changes, number of overtakes, longitudinal
reward, and lateral reward were considered as shown in Fig.
3 and Fig. 4. In Table 1, it can be seen that the two-layer
policy resulted in the highest values of average speed and av-
erage overtaking statistics where the values are 70.38 km/h
and 45.04, respectively. This is because the trained policies
sometimes can achieve higher performance than experts since
GAIL-based frameworks perform policy optimization based
on the interaction with the environment. On the other hand,
the performance of single-layer policy shows 90% perfor-
mance compared to expert. This is because the single-layer
is not enough to handle high dimensional observations prop-
erly. Aforementioned, BC tries to minimize 1-step deviation
error along the expert demonstration. As a result, the single-
layer policy shows undesirable performance due to distribu-
tion mismatch between training and testing. In Fig. 4, a lon-
gitudinal reward is used to analyze the environmental reward.
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(a) Normalized Speed. (b) Normalized Lane change. (c) Normalized Overtake.

Figure 3: The performance of trained policy according to the set number of expert trajectories (Average of 5 episodes).

(a) Normalized Longitudinal Rewards. (b) Lateral Rewards.

Figure 4: The rewards of trained policy according to the set number of expert trajectories (Average of 5 episodes).

The longitudinal reward is proportional to the speed; and thus
the normalized result shows the same result as the average
speed as shown in Fig 3a. In order to assess sensitivity to
action decisions, a lateral reward was used. Until the lane
change is completed, the host vehicle can change the deci-
sion according to the observation. Because the lateral reward
occurs continuously during lane change, the frequent changes
during the operation lead to reward reduction. In Fig. 4b, the
two-layer policy obtains a large lateral reward in the last case.
However, the two-layer policy shows more lane changes than
the expert. This is because the two-layer policy is less likely
to change the decision during the operation. On the other
hand, the single-layer policy shows the frequent lane changes
than the expert. The single-layer policy obtains the smallest
lateral reward. This is because the single-layer policy changes
its decision frequently. BC shows the least number of lane
changes. However, the trained policy obtains larger reward
than the single-layer policy trained by RAIL. The number
of lane change is considerably smaller than the single-layer
policy; and thus it leads to the trained policy obtains larger
lateral reward than the single-layer policy. The experiment
of Fig. 3c was conducted to measure appropriate decisions to
imitate the expert demonstration. In order to achieve the sim-
ilar number of overtakes as the expert, the lane change point
and decision should be similar to the expert during the sim-
ulation. In Fig. 3c, the two-layer policy shows the desired
performance compared to expert. This result is related to the
tendency (i.e., meaningless lane change and decision change)
which is shown in Fig. 3b and Fig. 4b. Furthermore, the deci-
sion points and actions are similar to the expert. However, the
single-layer policy shows a lower number of overtakes than
the expert because the average speed is low as well as makes
inappropriate lane change decisions based on observation.

In summary, we verified that the proposed RAIL improves

the average speed and reduces the number of unnecessary
lane changes rather than BC. This means that the RAIL trains
driving policies in the correct directions. The experimental
results show that the two layer policy achieves desired per-
formance similar to driving experts.

7 Conclusion

This paper proposes randomized adversarial imitation learn-
ing (RAIL) for effect autonomous driving policy training
which utilizes ADAS functions to guarantee the safety of ve-
hicles. The RAIL is not only a derivative-free but also the
simplest model-free algorithm. Through the proposed algo-
rithm, the policies that successfully drive autonomous vehi-
cles are trained via derivative free optimization. During the
training procedure, the simple update step makes the algo-
rithm to be facile; and thus it makes the reconstruction results
which get reasonable performance easily. By comparing the
performance of the proposed model with complex deep rein-
forcement learning based methods, we demonstrate that the
proposed RAIL trains the policies that achieve desired per-
formance during autonomous driving. This results can be a
breakthrough to the common belief that random search in the
parameter space of policies can not be competitive in terms
of performance. The evaluation shows the possibility that au-
tonomous vehicles can be controlled by the RAIL policies.
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