
Ursinus College
Digital Commons @ Ursinus College

Mathematics and Computer Science Faculty
Publications Mathematics and Computer Science Department

12-2015

Randomized Algorithms for Approximating a
Connected Dominating Set in Wireless Sensor
Networks
Akshaye Dhawan
Ursinus College, adhawan@ursinus.edu

Michelle Tanco
Ursinus College

Aaron Yeiser
Ursinus College

Follow this and additional works at: https://digitalcommons.ursinus.edu/math_comp_fac

Part of the OS and Networks Commons, and the Theory and Algorithms Commons
Click here to let us know how access to this document benefits you.

This Conference Proceeding is brought to you for free and open access by the Mathematics and Computer Science Department at Digital Commons @
Ursinus College. It has been accepted for inclusion in Mathematics and Computer Science Faculty Publications by an authorized administrator of
Digital Commons @ Ursinus College. For more information, please contact aprock@ursinus.edu.

Recommended Citation
A. Dhawan, M. Tanco and A. Yeiser, "Randomized algorithms for approximating a Connected Dominating Set in Wireless Sensor
Networks," 2015 International Conference on Computing and Network Communications (CoCoNet), Trivandrum, 2015, pp.
589-596.

http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp_fac?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp_fac?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.ursinus.edu/math_comp_fac?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/149?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.ursinus.edu%2Fmath_comp_fac%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ursinus.co1.qualtrics.com/jfe/form/SV_1RIyfqzdxsWfMQ5
mailto:aprock@ursinus.edu


Randomized Algorithms for Approximating a Connected Dominating Set in
Wireless Sensor Networks

Akshaye Dhawan, Michelle Tanco, Aaron Yeiser

Department of Mathematics and Computer Science
Ursinus College
Collegeville, PA

adhawan@ursinus.edu, mitanco@ursinus.edu, aayeiser@ursinus.edu

Abstract

A Connected Dominating Set (CDS) of a graph rep-
resenting a Wireless Sensor Network can be used as a
virtual backbone for routing through the network. Since the
sensors in the network are constrained by limited battery
life, we desire a minimal CDS for the network, a known
NP-hard problem. In this paper we present three random-
ized algorithms for constructing a CDS. We evaluate our
algorithms using simulations and compare them to the two-
hop K2 algorithm and two other greedy algorithms from
the literature. After pruning, the randomized algorithms
construct a CDS that are generally equivalent in size to
those constructed by K2 while being asymptotically better
in time and message complexity. This shows the potential of
significant energy savings in using a randomized approach
as a result of the reduced complexity.

Keywords—Distributed Computing; Wireless Sensor Net-
works; Dominating Sets;

I. Introduction

Constructing a dominating set is a key approach to
creating a backbone for data gathering and communication
in a Wireless Sensor Network [1] [2]. In this paper, we
use a graph G = (V,E) to represent the wireless sensor
network, where V is the set of sensors in the network
and an edge (u, v) ∈ E represents a link between two
sensors u, v that are within communicating distance of
each other. We also assume that all sensors are deployed
on a 2-dimensional plane and have a uniform transmission
range.

Given such a representation of a sensor network, a
dominating set (DS) of a graph G is a subset D ⊂ V
such that for all u ∈ V either u ∈ D or u is adjacent to a

node in D (i.e., (u,w) ∈ E for some w ∈ D). Nodes
in the dominating set D are referred to as dominators
and the remaining nodes in V − D are referred to as
dominatees. A variation to this problem is that of the
Connected Dominating Set (CDS) which can be defined as
a set that is dominating and induces a connected subgraph.
In other words, it is a set of nodes C ⊂ V such that the
nodes in C are both dominating and connected.

The construction of a CDS provides the network with
a virtual backbone over which routing, multicast and
broadcast can be performed since every node is either in
the backbone or has a neighbor in the backbone. Also,
the construction of a CDS, allows the network to adapt
to changes in the topology since only the nodes in the
CDS need to be aware of routing information. By being
connected the backbone can relay a message to either the
destination directly (if the destination is in the CDS) or
through the dominator of the destination. Since the nodes
in the CDS are actively draining their batteries by serving
as relay nodes for the network, it is desirable to construct
a minimum size CDS. However this has been shown to
be a NP-hard problem in [3]. Numerous centralized and
distributed algorithms have been presented in the literature
with the size of the CDS they construct being a key
performance metric. This is because the greater the size
of the CDS, the more nodes there are participating in the
network. As a result of this, the nodes in the CDS burn
more energy. Hence, a smaller size CDS is desirable.

In this paper, we present and assess three new ran-
domized algorithms. We compare them to the 2-phase
distributed algorithm K2 [4] and to another 2-phase greedy
algorithm called GreedyConnect [5]. Although the ran-
domized algorithms initially create large dominating sets,
their performance can be improved significantly by utiliz-
ing the second phase of K2 to trim unnecessary sensors
from the set. This results in the randomized algorithms
having very similar performance to K2 with a much lower
time and message complexity since they are more efficient



in Phase 1. They are slightly worse in performance to
GreedyConnect but the larger CDS size may be a worthy
tradeoff for energy savings resulting from a lower time
and message complexity for the randomized algorithm.
Our simulations also showed that for networks of a given
density, the randomized algorithm could be repeated at
each sensor a certain number of times and would result
in a CDS with a very high probability. This allowed us
to implement a distributed version of the algorithm. The
most efficient of our algorithms had a time and message
complexity of O(n), where n is the size of the network
when compared to a time complexity of O(∆2) and a
message complexity of O(∆) for Phase 1 of K2, where
∆ is the maximum degree in the network.

The remainder of this paper is organized as follows.
In Section II we present related work on this problem
and introduce the K2 and GreedyConnect algorithm in
some detail since we use ideas from both algorithms in
our algorithms. Section III presents a centralized random-
ized algorithm and two distributed greedy algorithms for
constructing a CDS. Our simulation studies comparing the
three randomized algorithms to K2 and GreedyConnect are
presented in Section IV. Finally, we conclude in Section
V.

II. Related Work

In this section we briefly summarize the literature
on connected dominating sets for sensor networks. Both
distributed and centralized algorithms are presented in the
literature. As a comprehensive survey on this area, readers
are referred to [6].

The applications of a connected dominating set to
routing in ad hoc networks were first outlined in [7]
where they presented the idea of constructing a connected
dominating set and using it as a backbone in the network
for routing.

Several approximation algorithms were presented in
the literature. [8] presents a centralized algorithm with a
O(H∆) approximation factor where ∆ is the maximum
degree and H is the harmonic function. In [9] the authors
present a 1-phase greedy algorithm that has a performance
ration of 2 + ln∆.

[10] was one of the first distributed algorithms to show
an improved analysis of the relationship between the size
of a maximal independent set and a minimum CDS in a
unit disk graph, which yields better bounds for many other
algorithms. [11] presents a distributed algorithm for CDS
construction by constructing a spanning tree first and then
marking every node in the tree as a dominator node or
dominated node. The Performance Ratio for this algorithm
was shown to be 8. In [12] the same author noticed the
difficulty of maintaining a CDS and designed a localized
2-phase algorithm that uses a Maximal Independent Set

but this algorithm has a PR of 192. [13] presents the best
known PR of 4.8 + ln5 in a centralized algorithm. The
algorithm is known as S-MIS and uses a Steiner Tree to
construct a CDS. In this algorithm they build a Maximal
Independent Set in Phase 1. Then in Phase 2, they employ
a greedy algorithm to construct a Steiner tree with minimal
number of Steiner nodes to connect the nodes in the MIS.
They mention that a distributed implementation is possible
but do not elaborate on this algorithm or its PR.

[14] considers the problem of constructing a strongly
connected dominating set in asymmetric wireless net-
works. They build on the work of [15] and present an
improved algorithm for CDS construction in a digraph
which has polynomial time and logarithmic approximation
ratio. [16] presents an approximation algorithm based on
dynamic programming for finding a minimum weighted
dominating set in a node-weighted graph.

To the best of our knowledge, [17] and [18] are the only
work in the literature that look at randomization. However
they only use it to break ties in a greedy algorithm and to
generate a random delay respectively.

A. K2 Marking and Pruning

The K2 [4] algorithm has two phases, first the con-
struction of a connected dominating set, then the reduction
of unnecessary vertices from the CDS. In phase 1, each
sensor adds itself to the dominating set if any two of its
neighbors are not neighbors. It is clear that if we start with
a connected graph we will get a CDS since any two non-
connected sensors that share a neighbor will be connected.
This phase has a time complexity of O(∆2) where ∆ is
the maximum degree in the graph. In a dense graph with
n nodes, ∆ = O(n).

However, this set is likely to contain many more nodes
than necessary since the marking process was very simple.
In order to reduce the size of the set, the authors use a k-
reduction (where k is the number of hops the algorithm
is looking at) to remove unnecessary sensors from the set.
For each sensor in the dominating set we consider every
k-hop group of neighbors where each member of the group
is in the dominating set. If one of these groups contains
every neighbor of the original sensor in its neighbor
set, we remove the original sensor from the dominating
set. The dominating set is still connected by the group
of k neighbors. We call this the K2 algorithm because
we compare ourselves against the 2-hop version of this
algorithm.

As k increases the size of the connected dominating
set decreases. However, the message and time complexity
does increase because we have to check each size k group
of neighbors for each sensor. For the purposes of this paper
we let k = 2 as larger values of k have a message and time
complexity which would drain the network more it would
benefit it by creating a path for routing. This algorithm has



the benefit of the CDS being easy to maintain. Combining
both phases, we get a time complexity of O(∆2) and a
message complexity of O(∆).

B. Greedy Connect

In [5] the authors introduced a 2-phase greedy algorithm
for constructing a CDS and showed that it constructed a
CDS smaller in size to K2. We now briefly describe this
work.

Phase 1: At the start of the algorithm, each sensor
is initialized to the color white (uncovered). Each sensor
broadcasts its ID thereby allowing sensors to discover their
neighbor set. Sensors then broadcast their white neighbor
count. If a sensor discovers that its white count is highest
or tied highest, it adds itself to the CDS. This heuristic is
greedy because it selects sensors who will maximize the
number of white (uncovered) sensors covered at a specific
stage of the algorithm. Once added to the dominating set, a
sensor colors itself black (dominating) and colors all of its
neighbors grey (covered but not dominating). This denotes
that those sensors are adjacent to a node in the dominating
set. When a sensor’s color is updated, it broadcasts this
to its neighborhood so that they can update their white
neighbor counts. A second pass ensures that every sensor
has been dominated.The result of phase 1 is that each
sensor is either in or adjacent to the dominating set.

Phase 2: Phase 2 connects the dominating components
formed by phase 1. The algorithm starts by initializing the
component id of each dominator to their unique id number
and each dominatee to −1. Dominators then recursively
share the highest component number in their neighborhood
such that each dominating component will have a unique
identifier - the highest sensor id of that component. Next,
if a grey node discovers that two of its neighbor have
different component numbers, it will add itself to the CDS
and update the now connected two components to share
one identifier. From a lemma in the paper, we know that
each component is at most two hops way. Dominatees
then share the component they are adjacent to with their
neighbors. Two sensors add themselves to the CDS if they
discover they are each adjacent to different components.

From phase one and two we see that the time complex-
ity of the GreedyConnect algorithm is O(n2). Also, the
message complexity is O(n2).

III. Randomized Algorithms

In this section we present three randomized algorithms:
one for dominating set construction and two for connected
dominating set construction.

A. Notation

We assume every sensor node to have a unique identi-
fier. The properties of a sensor node are shown in Table I.
In each algorithm we also use a color scheme to track the
role of a particular sensor in the CDS. We summarize the
meaning of these colors in Table II.

TABLE I. Fields for a given sensor node v
Field Meaning

v.COLOR The current color of the sensor
v.ID Unique identifier for the sensor

v.WhiteCount Number of white nodes in N(v)

TABLE II. Node color assignments
Color Meaning
White Undiscovered by the Dominating Set
Grey Dominated but has white neighbors
Black Dominated and has no white neighbors

B. Centralized Random Selection

Our first algorithm takes a simple approach to creating
a CDS. This algorithm randomly selects sensors and adds
them to the future CDS. The algorithm stops selecting
sensors when it sees that a CDS has formed. This is the
primary reason that the algorithm is centralized - an outside
source is needed to manage the construction of the CDS
and determine that a CDS has been formed. The base
station for the network would typically serve in this role.

This algorithm requires the CDS constructor to be
aware of two sets: C which represents the CDS under
construction and R with represents vertices to be poten-
tially selected. These sets are initially empty. The manager
selects a random vertex to be added to C. Each time
a vertex is added to C, all of its neighbors not already
dominated by nodes in C are added to R. The manager
continues to select sensors from R for C until a CDS is
formed. It is clear that the formed CDS is connected since
only vertices adjacent to a vertex in C can be selected.

The time complexity is bounded by O(n) since for each
vertex v ∈ V , can be added to R only once. The message
complexity for this is minimal, since the central manager
is doing all calculations, the only messages passed is at
the end of the algorithm to inform sensors if they are in
the CDS. This is bounded by O(n).
Require: ∀ v ∈ V , v.COLOR ← WHITE
C = φ
R = φ
Pick random v ∈ V
R = R

⋃
v

while C is not a CDS do
Pick a random u in R
R = R− u



C = C
⋃
u

u.COLOR ← BLACK
for every neighbor w ∈ N(u) do

if w.COLOR == WHITE then
R = R

⋃
w

w.COLOR=GREY
end if

end for
end while

C. Deriving the probability for each sensor
to join the DS

We derive the probability p for a sensor to be a part of
the Dominating Set in the following manner. Assume that
G is a d-regular graph (i.e., each vertex v ∈ V has degree
d).

Let R be a random subset of V in which each vertex
appears with independent probability p. Let D be the union
of R and the set of all vertices not adjacent to a vertex in
R. Note that D is a dominating set.

Let Xv be the indicator for the event v ∈ D for some
sensor v. Then, Xv = 1 if v ∈ R or if v and all d of its
neighbors are not in R. The probability that v ∈ R is p
and the probability that v and all d of its neighbors are
not in R is (1 − p)d+1. Adding these probabilities gives
E[Xv] = p+ (1− p)d+1 as the expected value of x ∈ D.

We multiply this by n, the total number of vertices since
this is independent, to get E|D| = n(p+ (1− p)d+1). To
optimize E|D| we wish to find the minimum for E[Xv]
by differentiating with regards to p and setting this equal
to 0. We then solve for p to get p = 1− (d+ 1)

−1
d .

While we do not have d-regular graphs in practice, this
allows us to derive a theoretical value for p. Since the
process described above adds all nodes not in R to D
to give a dominating set, our assumption of a d-regular
graph does not impact correctness. For the purpose of our
algorithms, each sensor works with its local degree instead
of d.

D. Probability with Rounds

Like most randomized algorithms, the premise behind
our first randomized algorithm was simple: randomly add
sensors until a CDS has been formed. However, since
it requires an algorithm manager to check if C is a
CDS, it would imply centralized control. Keeping this
in mind, we experimented with designing a distributed,
localized algorithm in order to have sensors randomly add
themselves to the CDS.

We next attempt to use the probability derived in the
previous section to design an algorithm that can converge

on a CDS in a fixed number of rounds.Through our
simulations we have experimentally found that there is a
small value k based on the density of the network such that
k iterations of randomly selecting nodes with the derived
probability were sufficient every time to create a CDS.
For example, when simulating several networks of one
hundred sensors disbursed in a 100 by 100m region, we
found that k = 6 flips per sensor would suffice. Although a
CDS was often created after 4 rounds, in our experiments
we found that 6 rounds always sufficed for this topology
density - in other words every sensor flipping a coin
with a probability p six times is enough to form a CDS
for this network size. In practice, this algorithm would
very quickly form a large CDS. The distributed nature
of this algorithm is seen through each sensor tossing a
coin k times simultaneously. Although the simulations are
explained in detail in section IV, figure 1, shows another
way to look at this experimental observation. The figure
shows the variation in the number of rounds needed based
on the density (as measured by the number of neighbors) of
the graph. This figure was generated through experiments
conducted on a few hundred randomly generated graphs.
As can be seen from the figure, at higher density, a smaller
number of rounds suffices. This demonstrates a very useful
property of the randomized algorithm which allows us to
let each sensor flip a coin p times and leaves us with a CDS
with a high probability. The algorithm is shown below.

Fig. 1. Number of rounds based on density of
graph

To analyze the time complexity of this algorithm we
note that there are two phases. In the first phase, each
sensor asynchronously broadcasts its id so that its neigh-
bors know that it exists. During this time, each sensor can
count how many neighbors it has. In the second phase,
each sensor calculates the probability based on its neighbor
count and flips a coin with that probability at most k times.
If a sensor adds itself to the CDS, it stops tossing the coin.
Since each sensor is tossing the coin independently of all
other sensors the time complexity of this phase is constant.

We see that the time complexity for this algorithm
is O(k) where k is the number of times each sensor
must repeat the random selection process. Each sensor



provides its ID to its neighborhood and then tosses a coin
a constant number of times. All sensors in the network
perform the decision at the same time. For analyzing the
message complexity, we note that in phase one each sensor
broadcasts its ID so a total of n messages are passed. At the
end of the algorithm sensors that have added themselves to
the CDS would broadcast this information to inform their
neighbors. Hence there is a message complexity of O(n).
As a tradeoff for minimal time and message complexity,
this algorithm produces a larger CDS. On average, it is at
least twice the size of the GreedyConnect algorithm.
Require: ∀ v ∈ V , v.COLOR ← WHITE
C = φ
flips = 0
k initialized by density
while flips < k do

for Each white or grey sensor v ∈ V do

if Coin flip in range of 1 − (|v.Neighbors| +
1)−( 1

|v.Neighbors| ) then
v.COLOR ← BLACK C = C

⋃
v

end if
end for

flips++
end while

E. Random Distributed Dominating Set

Since the distributed with rounds algorithm could be
implemented in a centralized or localized manner (central-
ized when an observer told sensors when to stop adding
themselves, localized when k tosses were used) we next
looked at a purely localized algorithm. Due to the ran-
domized nature of the previous algorithm, k tosses would
not necessarily create a CDS every time, although a CDS
not being formed would be statistically unlikely. In this
section, we present an algorithm for forming a dominating
set (not connected). To compare this algorithm to the others
in terms of size of CDS, we connect the components using
phase 2 connection algorithm from GreedyConnect [5].

Each sensor tosses a coin weighted with the probability
p as derived above. When the graph is sparse, a sensor
is more likely to add itself to the dominating set than
when the graph is dense. Any sensor which adds itself
to the DS then alerts its neighbors to update their color
to grey. Next, any remaining white sensor adds itself to
the set. This ensures a dominating set because any non-
dominated sensor will add itself and also dominate any
white neighbors. This also limits the algorithm to two
rounds. We assume that Phase 1 is completed in round
0 and Phase 2 in round 1. Using rounds to distinguish
phases is a common technique in WSNs and these are
usually implemented by using a fixed interval of time after
a message signaled by the base station.

The number of messages passed is O(|DS| ∗∆) since
upon joining the DS a sensor alerts its neighbors, this is

bounded by O(n2). Since sensors are doing the coin tosses
asynchronously, the time complexity is constant.
Require: ∀ v ∈ V , v.COLOR ← WHITE
C = φ
for Each sensor v ∈ V do

if Coin flip in range of 1 − (|v.Neighbors| +

1)−( 1
|v.Neighbors| ) then
v.COLOR ← BLACK
for every neighbor u ∈ N(v) do

if u.COLOR == WHITE then
u.COLOR ←GREY

end if
end for

end if
end for
for Each sensor v ∈ V do

if v.COLOR == WHITE then
v.COLOR ← BLACK
for every neighbor u ∈ N(v) do

if u.COLOR == WHITE then
u.COLOR ←GREY

end if
end for

end if
end for

IV. Simulation Results

We compared the size of the CDS created by our
three randomized algorithms with that of K2 [4] and
GreedyConnect [5].

For each of our algorithms, our simulation takes in
a randomly generated graph with a specified number of
sensors distributed randomly across a 100 by 100 region
and returns the size of the CDS after running a specific
algorithm.

For the remainder of this section we discuss the results
of running the simulation on each algorithm with the
following conditions:

1) Five random graphs were created with sensors in
each having the following ranges: 15, 20, 25, 30

2) Each graph consisted of 100 sensors distributed
in a 100 by 100 region

3) Each algorithm was run on each graph five times

The algorithms we simulated would run asynchronously
on actual sensor networks. For this reason we randomized
the order of the sensors in our data structure and ran each
algorithm multiple times on each graph. This simulates
how even on the same graph, each algorithm may create
a different CDS each time it is run.



A. Dominating Set Construction

The Random Distributed Dominating Set algorithm we
discussed in Section III-E created a dominating set (not
connected). In this section we compare the size of this
DS with the greedy DS created by GreedyConnect [5]
and presented in section II-B. In the following sections of
this chapter we use the connection algorithm from Greedy
Connect to connect the components and create a CDS.

In Figure 2 each point represents the average of the five
runs of a particular algorithm on a particular graph. We see
that the greedy DS is fairly consistent in size and that the
randomized algorithm varies depending on the topology of
the graph.

Fig. 2. Comparing the size of the DS for the
Greedy and the Random Distributed Algo-
rithm

Figure 3 contains the average DS size for a particular
range. We note the greedy algorithm creates a DS 50% to
60% smaller than the size of the randomized algorithm for
every range.

B. Connected Dominating Set Construc-
tion

In this section we compare the size of the CDS created
by each algorithm. From Figure 4 we see that the size
of the centralized randomized algorithm is not consistent
based on range. This is because the results can vary
significantly based on what order the nodes are picked in
at random. The other four algorithms fairly consistently
make the same size CDS based on sensing range. As can
be seen from the figure, the Random Distributed algorithm
presented in Section III-E performs the best and is pretty
close to K2 even without any modifications, particularly at
higher densities.

We next consider the average size of the CDS by
sensing range as shown in Figure 5. The randomized

Fig. 3. Comparing the size of the DS for the
Greedy and the Random Distributed Algo-
rithm

Fig. 4. Comparing the size of the CDS for
each graph

CDS algorithms consistently performed worse than the
other three algorithms and were particularly poor when
the graphs were sparse. Greedy consistently out-performs
every other algorithm and out-performs our reference al-
gorithm, K2, by roughly 15%. The Random Distributed
algorithm was about 10% percent worse than K2 but it
should be noted that this can be a tradeoff for improved
message and time complexity.

C. Trimming the CDS

The randomized algorithms were out-performed by both
GreedyConnect and K2. However, all three randomized
algorithms created their DS or CDS with less message
passing and less time complexity. A CDS that can be
formed very quickly would be useful, but not if it contains



Fig. 5. Comparing the size of the CDS for the
average of each range

most of the sensors in the WSN as was sometimes the case
for our centralized algorithm.

For this reason, we ran the simulation again with the
only change being the addition of the trimming algorithm
from Phase 2 of K2 as explained in Section II-A. For
every algorithm, after a CDS was found, the K2 trimming
algorithm was run. This resulted in a dramatic drop in
the size of the CDS for all three randomized algorithms.
Comparing Figure 6 to Figure 4 the reduction in size for all
three randomized algorithms is evident. Note that K2 does
not change since its original implementation included both
phases and no further reduction will result from repeating
the trimming process.

Fig. 6. Comparing the size of the CDS after
trimming

We also compare the average CDS size by range after
trimming in Figure 7. GreedyConnect still holds the lead
for creating the smallest CDS by almost 25% for every
range. However, all three randomized algorithms now out-
perform K2 slightly except for range 15 where they are
very close in size. We note that although the trim was run
on GreedyConnect as well, the average size dropped very
little. This can be seen in Table 8 which compares the size
of the CDS before and after trimming. This is as expected
since the GreedyConnect has fewer unnecessary vertices
than the other algorithms. The randomized CDS algorithms
were reduced in size by roughly 50% after trimming.

Fig. 7. Comparing the size of the CDS after
trimming

Fig. 8. Size of CDS before and after Trim

Next we summarize the time and message complexity
of all the algorithms. As can be seen from the Table III all
three randomized algorithms are better than both K2 and
GreedyConnect in time and message complexity and make
for excellent candidates to replace Phase 1 of K2. This
lower complexity would translate into significant energy
savings. Recall that the O(n2) upper bound for the message
complexity of Random Distributed a loose upper-bound
and O(|DS| ∗∆) is a more accurate representation.

V. Conclusion and Future Work

Using the CDS size as a metric, the GreedyConnect
algorithm clearly out-performs K2 and the three new



TABLE III. Time and Message Complexity
Comparison

Algorithm Time Message
Greedy Connect O(n2) O(n2)

K2 (Phase 1) O(∆2) O(∆)
K2 (Phase 2) O(∆2) O(∆)

Random Centralized O(n) O(n)
Neighbor Probability O(k) O(n)
Random Distributed O(1) O(n2)

randomized algorithms. However, it sends a large num-
ber of messages. The results clearly show that the three
algorithms presented exhibit a similar performance to K2
with lower time and message complexity. Since passing
messages drains the battery, this may result in a significant
improvement in the lifetime of the network. Further studies
using implementation on a test bed are planned in order
to quantify this gain.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A
survey on sensor networks,” IEEE Communications, vol. 38, no. 4,
pp. 102–114, 2002.

[2] C.-Y. Chong and S. Kumar, “Sensor networks: evolution, oppor-
tunities, and challenges,” Proceedings of the IEEE, vol. 91, no. 8,
pp. 1247–1256, Aug. 2003.

[3] B. Clark, C. Colbourn, and D. Johnson, “Unit disk graphs,”
Discrete Mathematics, vol. 86, pp. 165–177, 1990.

[4] F. Dai and J. Wu, “An extended localized algorithm for connected
dominating set formation in ad hoc wireless networks,” IEEE
Trans. Parallel Distrib. Syst., vol. 15, no. 10, pp. 908–920, Oct.
2004. [Online]. Available: http://dx.doi.org/10.1109/TPDS.2004.48

[5] A. Dhawan, M. Tanco, and N. Scoville, “A distributed greedy
algorithm for constructing connected dominating sets in wireless
sensor networks,” in SENSORNETS 2014 - Proceedings of the 3rd
International Conference on Sensor Networks, Lisbon, Portugal, 7
- 9 January, 2014, 2014, pp. 181–187.

[6] J. Yu, N. Wang, G. Wang, and D. Yu, “Connected dominating sets
in wireless ad hoc and sensor networks–a comprehensive survey,”
Computer Communications, vol. 36, no. 2, pp. 121–134, 2013.

[7] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A design
concept for reliable mobile radio networks with frequency hopping
signaling,” Proceedings of the IEEE, vol. 75, no. 1, pp. 56–73,
1987.

[8] S. Guha and S. Khuller, “Approximation algorithms for connected
dominating sets,” Algorithmica, vol. 20, no. 4, pp. 374–387, Apr.
1998.

[9] L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K.-I. Ko, “A greedy
approximation for minimum connected dominating sets,” Theor.
Comput. Sci., vol. 329, no. 1-3, pp. 325–330, 2004.

[10] S. Funke, A. Kesselman, U. Meyer, and M. Segal, “A simple
improved distributed algorithm for minimum cds in unit disk
graphs,” ACM Trans. Sen. Netw., vol. 2, no. 3, pp. 444–453, Aug.
2006.

[11] P.-J. Wan, K. M. Alzoubi, and O. Frieder, “Distributed construc-
tion of connected dominating set in wireless ad hoc networks,”
in INFOCOM 2002. Twenty-First Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings.
IEEE, vol. 3. IEEE, 2002, pp. 1597–1604.

[12] K. M. Alzoubi, P.-J. Wan, and O. Frieder, “Message-optimal
connected dominating sets in mobile ad hoc networks,” in Pro-
ceedings of the 3rd ACM international symposium on Mobile ad
hoc networking & computing. ACM, 2002, pp. 157–164.

[13] Y. Li, M. T. Thai, F. Wang, C.-W. Yi, P.-J. Wan, and D.-Z. Du, “On
greedy construction of connected dominating sets in wireless net-
works: Research articles,” Wirel. Commun. Mob. Comput., vol. 5,
no. 8, pp. 927–932, Dec. 2005.

[14] D. Li, H. Du, P.-J. Wan, X. Gao, Z. Zhang, and W. Wu, “Construc-
tion of strongly connected dominating sets in asymmetric multihop
wireless networks,” Theoretical Computer Science, vol. 410, no.
810, pp. 661 – 669, 2009.

[15] M. T. Thai, R. Tiwari, and D.-Z. Du, “On construction of virtual
backbone in wireless ad hoc networks with unidirectional links,”
Mobile Computing, IEEE Transactions on, vol. 7, no. 9, pp. 1098–
1109, 2008.

[16] F. Zou, Y. Wang, X.-H. Xu, X. Li, H. Du, P. Wan, and
W. Wu, “New approximations for minimum-weighted dominating
sets and minimum-weighted connected dominating sets on
unit disk graphs,” Theoretical Computer Science, vol. 412,
no. 3, pp. 198 – 208, 2011, combinatorial Optimization
and Applications {COCOA} 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397509004162

[17] W. Duckworth and B. Mans, “Randomized greedy algorithms
for finding small k-dominating sets of regular graphs,” Random
Structures & Algorithms, vol. 27, no. 3, pp. 401–412, 2005.

[18] G. Cao, “Distributed services for mobile ad hoc networks,” Ph.D.
dissertation, Citeseer, 2005.


	Ursinus College
	Digital Commons @ Ursinus College
	12-2015

	Randomized Algorithms for Approximating a Connected Dominating Set in Wireless Sensor Networks
	Akshaye Dhawan
	Michelle Tanco
	Aaron Yeiser
	Recommended Citation


	tmp.1462200748.pdf.yjhaP

