
Randomized algorithms for binary search and

load balancing on fixed connection networks

with geometric applications

(Preliminary Version)

John H. Reif* and Sandeep Sen*
Computer Science Department

Duke University
Durham, N.C. 27706

Abstract

There are now a number of fundamental problems in

computational geometry that have optimal algorithms
on PRAM models. We present randomized parallel

algorithms which execute on an n-processor butterfly
inter-connection network in O(log n) time for the follow-

ing problems of input size n: trapezoidal decomposition,

visibility, triangulation and Z-D convex hull. These are

based on some previous work of the authors on PRAM

algorithms and a new algorithm for doing binary search

on fixed connection network. Apart from a 2-D convex
hull algorithm, these are the first non-trivial geomet-
ric algorithms which attain this performance on fixed

connection networks. The techniques developed in this
paper rely on random sampling methods to do load-
balancing on fixed-connection networks; it seems likely

that they will have wider applications.

1 Introduction

1.1 Motivation and overview

In the past decade, we have witnessed a systematic
growth in the state-of-art of parallelizing algorithms in

the PRAM environment. As a result of this, a number
of basic problems have been recognized and many so-

phisticated techniques have been developed which can

*Research supported

in part by DARPA/ARO contract DAAL03-88-K-0195, Air Force

Contract AFOSR-87-0386, DARPA/ISTO contract NOOOl4-88-K-

0458, NAkA subcontract 550-63 of prime contract NASS-30428

permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

be viewed as a ‘tool-kit’ for tackling increasingly

complex problems. There is a general consensus that
PRAM models are appropriate for the algorithm de-

signer but these algorithms have to be implemented on
fixed-connection networks to be of any practical sig-

nificance. By well known general-purpose emulation
schemes, all these algorithms can be implemented to run

on butterfly (or a hypercube) network with a O(logn)

multiplicative factor degradation in time complexity. So

the crucial question is if the PRAM algorithms can be
extended to fixed-connection networks without this log-
arithmic penalty in running time.

In a top-down approach to algorithm design, compli-

cated algorithms are built on top of less complex proce-

dures. The answer to the above question would depend
on how far down in this hierarchy can one go without

running into problems that cannot be mapped optimally
on the fixed-connection network. Moreover, this would

also depend on the nature of the algorithm itself. One of

the most basic problem in this hierarchy is that of sort-

ing. For example, Reishchuk’s[lS] O(log n) time, n pro-
cessors randomized PRAM sorting algorithm was suc-

cessfully extended to networks by Reif and Valiant[l7] to
run in O(logn) time by using additional new sampling
techniques for problem-size control. In contrast, Cole’s

deterministic O(log n) time parallel mergesort algorithm
seems prohibitively difficult to implement (without a

logarithmic slowdown) on the networks because of its
liberal use of pointers. Consequently a number of algo-

rithms that use this approach on PRAM models would
be at least as difficult to be adapted to network models.

Although the eventual goal of this paper is to present
efficient algorithms on interconnection networks, we

would like the reader to view this in the more general
context of mapping certain kinds of PRAM algorithms

on fixed-connection networks and the difficulties associ-
ated therewith. We encountered several problems which

0 1990 ACM 089791-370-l/90/0007/0327 $1.50 327

appear to be very basic for this line of research and we

believe that these will have much wider applications.

REMARK: In this paper, the term fixed-connection
network has been used to allude to networks which have
O(logn) diameter for n-node networks. There already

exists a large body of literature for geometric algorithms
on grid-like networks where the diameter is a bottleneck

for achieving the kind of time complexity we are aiming

f or.

One of the underlying problems is doing binary search

optimally in a model that does not allow concurrent

reads. A common scenario is the following: we are given

a tree whose leaves represent intervals and n keys for

which we have to determine the interval that each key

lies in. If the depth of this tree is d then it is trivial to do
this sequentially in O(nd) time. In case of PRAM mod-

els which allow concurrent reads, the problem is again

quite simple. With n processors, we can simultaneously

do the search for all keys in O(d) parallel time, thus
resulting in an optimal speed-up. The main difficulty
associated with this problem stems from the possibility

that the keys may be very unevenly distributed among

the intervals. In this paper we have outlined a ran-

domized algorithm to do this in an EREW PRAM in

O(logn) time and refined it further to run in the same
asymptotic time on an n-node butterfly network.

An additional problem is that of allocation of sub-

problems to sub-networks for recursive calls. Unlike

PRAM models the network topology imposes severe
constraints on processor allocation - not only the num-

ber of processors should match with the sub-problem
sizes but should also be inter-connected in a certain
manner. Our solution to this problem could be applied

to a more general situation than the applications de-

scribed in this paper. Some of the ideas are similar

to Flashsort where one does splitter-directed routing to

route the keys to the appropriate sub-networks. How-

ever, unlike the Flashsort we may be confronted with

situations where we have to dynamically allocate re-
sources as the sub-problems could have varying sizes.

One of our results is that we have near-optimal solutions
to the above problems that should have applications to

a wide class of algorithms. These basic procedures serve
as crucial link between the PRAM algorithms and inter-
connection networks.

1.2 Geometry on fixed-connection net-
works and main results

Designing efficient parallel algorithms for various fun-

damental problems in computational geometry has re-

ceived much attention in the last few years. There have

been two fundamentally distinct approaches to this area

of research, namely the deterministic methods and al-

gorithms that use random sampling. One of the earliest
work in this. area is due to Chow [4], who developed al-

gorithms for a number of fundamental problems which
were deterministic and executed in inter-connection net-

works with polylogarithmic running time. A more gen-

eral approach for deterministic PRAM algorithms was

pioneered by Aggarwal et al. [l] who developed some

new techniques for designing efficient parallel algorithms

for fundamental geometric problems. However a major-
ity of the algorithms were not optimal in P . T bounds.

A number of the the most efficient deterministic PRAM

algorithms are due to Atallah, Cole and Goodrich [2]

who extended the techniques used by Cole [8] for his

parallel mergesort algorithm. Their technique is called
Cascaded merging and has been subsequently used (in-

dependently by Chandran [3]) for a number of other

problems. Note that most of the geometric problems
in the context of research in parallel algorithms have

sequential time complexity of Q(nlogn) and a typical
performance that one aims for is O(logn) parallel time

using an optimal number of processors.

In an independent development, Reif and Sen [I51

were also able to derive O(logn) time optimal algo-
rithms for point-location and trapezoidal decomposi-

tion which were randomized. Later they extended their
methods to give optimal algorithms for 3-D convex

hulls (and hence 2-D Voronoi diagrams) on the CREW

PRAM model. At the core of their algorithms were

random sampling techniques which had also been intro-

duced by Clarkson [5, 6, 71 and Haussler and Welzl [lo].

In addition, a new resampling technique called Polling
was used successfully to derive the parallel algorithms.
While no deterministic algorithms have been developed

for some of the above problems that attain optimal

bounds, we feel that the real impact of randomized tech-

niques will be in the domain of parallel algorithms on

fixed-connection networks.

In spite of interesting developments in the PRAM

world, the state-of-art of geometric algorithms in the

case of small diameter fixed-connection networks is lag-
ging far behind. Presently, the only known O(log n)

time algorithm for the network model is a 2-D convex

hull algorithm due to Miller and Stout [13]. Conse-

quently, the Cascaded-merge technique of Atallah, Cole
and Goodrich [2], in spite of its elegance on the PRAM

models appear to be of little use in a fixed-connection
model. The only obvious way to implement pointer up-

dates takes O(logn) time per step of the PRAM al-

gorithm which would result in an @log2 n) time algo-

rithm.

The randomized algorithms seem to be more

amenable to mapping on fixed-connection networks al-
though it is far from straight-forward. We derive an

optimal O(logn) time randomized algorithms for con-

328

strutting the trapezoidal decomposition. Using this, we

can triangulate a simple polygon in O(log n) time.

1.3 Model of computation and notation

Throughout this paper we will be using the butterfly
inter-connection model where the processors operate in

a synchronous fashion and have bounded buffer size.

At each step, a processor is allowed to perform a real-

arithmetic operation consistent with standard models

used for sequential geometric algorithms. Moreover,
each processor has access to a random-number gener-

ator that returns in unit time a truly random number

of O(logn) bits. One of the primary reasons for choos-

ing the butterfly network is because of its nice ‘recur-
sive’ nature. A butterfly network of size L (will be re-
ferred to as BFk) has k levels of 2” nodes each (i.e. it

has k2” nodes). Each node has an address (w, t) where

w E (0, 1)” and 0 2 t < k (see Figure 1). The signifi-

cance of this network is that there are numerous ‘copies’
of BBI in BBk for 1 < k. We shall make crucial use of
the following fact.

Fact 1 For any ~1,202 such ihat]wi] + lw2] = k -
1, then the subgraph of BFk spanned by the nodes

{(www2, i)lw E (0, 1)‘) and lwll 5 i 5 Iq I + 1 is

isomorphic to BFl.

Moreover, we may have to use emulate a larger but-
terfly in a work-preserving fashion. The following simple
result can be used.

Fact 2 A BBk can emulate a BBk+, within O(2’ + c)
slowdown where c is a positive integer.

This is similar to Brent’s slowdown lemma except that
we have to construct a mapping of the processors of

BBa+e to BBk respecting the interconnection topology.
In this case it is very straightforward. Assume that c =

1 and map the processors with addresses (zw,~) where

z E {O,l} and]w] = k and i 5 k to (w,i). One can

verify that the processors of B.Fk+r that were neighbors
are neighbors in the smaller network. Each processor in

the smaller network has to do at most twice the amount

of work and require twice the amount of local memory.

Only the processors of rank k have to do the extra work

of emulating the processors of rank k + 1. This scheme
can be extended directly to yield the claimed bound.
For a fixed c, this implies that there a constant factor
slow-down. In this paper this scheme will be often used

with the value of c being 1 or 2.
The term very high lilcelihood (probability) is used in

this paper to denote probability > 1 - nSa for some
cr > 1 where n is the input size. Just like the big-0
function serves to represent the complexity bounds of
deterministic algorithms, we shall use 6 to represent

complexity bounds of the randomized algorithms. We

say that a randomized algorithm has resource bound 6
(f(n)) if there is a constant c such that the resource used

by the algorithm is no more than ccuf(n) with probabil-

ity 1 1 - l/no f or any cy > 1 for an input of size n. (An

equivalent definition will be bounding the resource by

a-f(n) with probability greater than 1 - n-ccr and in the
rest of the paper they will be used in an interchangeable

manner).

The rest of the paper is organized as follows. In
section 2, we briefly review two very important sub-

routines in fixed-connection network, namely that of

sorting and routing. In section 3, we describe an al-

gorithm for doing binary search. This is used in sec-

tion 4 to develop fast methods for searching in arrange-
ments. We give a brief description of the algorithm for

trapezoidal decomposition. We focus mainly on those
portions for which we need different methods from the

PRAM algorithms - the reader is referred to a previous

paper (Reif and Sen [15]) f or a more detailed description

of the algorithms that were developed for the CREW

PRAM model.

2 Overview of sorting and rout-

ing on fixed-connection net-

works

Our algorithms use sorting and routing extensively at

various stages and a brief review of these routines will
help us in understanding the latter algorithms that use

them as building blocks. The problem of packet rout-
ing involves routing a message from processor i to II(i)
where II is a permutation function. There has been a

long and rich history of routing algorithms for fixed con-

nection networks (see [22, 21, 14, 111) and these can be

summarized as following

Lemma 1 There ezists an algorithm for permutation
routing on a n-node butterfly network that executes in

@logn) steps and uses only constant size queues to
achieve this running time.

A more general result has been proved by Maggs et

al. [21] for layered networks. A layered network is one

whose nodes can be assigned layer numbers and the
edges connects a layer i node to a layer i + 1 node
(butterfly is an example of such a network). Let d de-

note the maximum distance traveled by any packet and
c the largest number of packets that must traverse a
single edge (c is also called the congestion of the net-
work). These parameters are fixed for a given selection
of paths by all the packets to be routed. Then there

exists a scheme for scheduling the movements of the

329

packets such that with high probability the routing can

be completed in O(c + d + logn) steps where n is the
size of the network and O(n) packets are being routed.

REMARK Given Ihe above result and also the fact

that d = O(logn) for most path selection strategies (es-

pecially in a butterfly network), it remains to bound the

value of c to get a bound on the routing time. For pack-
ets being routed to a random location, c can be bounded

by O(log n) with high probability.
The first optimal d(log n) time sorting algorithm for

the butterfly network was due to Reif and Valiant [17].

It was based on a PRAM sorting algorithm due to
Reishchuk [19] but required several additional tech-

niques because of the constraints imposed by the net-
work connectivity. A slightly simplified version can be

presented as the following.

1. Select n’, e c l/2 size random subset from the given

set of n keys.

2. Sort these, using a simple method like doing all the
pairwise comparisons and ranking them.
3. Use these keys to set up a binary tree such that the

leaves of the tree correspond to the intervals defined

by a pair of consecutive splitter keys. Over-sampling

techniques are used to ensure that these intervals parti-

tion the remaining keys into roughly equal sized subsets.
This eliminates the need for dynamic load-balancing in

the special case of sorting. The keys are assumed to

be in random locations initially. For each subset a sub-

network of appropriate size is set aside and the keys

that belong to this subset are routed to this part of the
network. This is done using a procedure called Splitter

Directed Routing which will referred as SDR in future
references. Since this is a crucial component of our al-

gorithm, we describe it in more detail in the appendix.
4. These steps are applied recursively until the size of
the subproblems is no more than log2 n.

Although the original analysis showed that @logn)

buffer size may be required the more recent results on

routing enables one to do with a constant amount of
storage in each buffer([21]). The overall running time

of the sorting algorithm was analyzed using the property

that the problem size at recursive call at depth i is no

more than nC* and an appeal to the following theorem

(Reif and Sen [IS])

Lemma 2 Given a process-tree which has the property

that a procedure at depth i from the root takes time Ti

such that

then, all the leaf-level procedures are completed in

O(log n) time.

The above theorem will be used repeatedly in the

course of the remaining paper.

3 Binary search without Con-

current Reads

One of the frequently encountered problems in case of

sequential and parallel a.lgorithms is that of doing a bi-
nary search on a tree structure. In particular, given
a binary tree of depth O(logn) whose leaves represent

certain intervals, and O(n) keys with one processor per
key, we would like to locate the interval that the key

belongs to in O(logn) parallel time (for each key simul-
taneously). This problem is trivial in a model allowing

concurrent-reads. However, the problem becomes more
complicated when concurrent reads are not permitted in

the model which is the case with inter-connection net-

works. The simple algorithm uses concurrent reads in

an inherent fashion and for situations where the distri-

bution of the keys is not known, this problem appears

even more formidable. To make the exposition simpler

we shall first describe a scheme for the EREW PRAM

and then modify it for the butterfly network. We also

note that in certain cases where the intervals and the

keys are chosen from the same total ordering the prob-
lem reduces to that of merging which can be done effi-

ciently. However, we are concerned about cases where

the intervals may induce an ordering different from the
ordering among the keys (see Figure 2).

We shall look at a special case where the number of
leaves is nC for 0 < c < l/2 and the search tree is bal-

anced i.e. it has depth O(Iogn). The basic strategy

is the following. We first try to get a reasonably ac-
curate estimate of the number of keys associated with

each of the leaf nodes. Following this, we simulate an
inter-connection network like the butterfly and allocate

appropriate number of sub-networks based on the esti-

mate. Next we route the keys to their destination sub-
networks using a scheme similar to the splitter directed

routing (SDR) used in Flashsort.

The analysis for SDR carries through in this case

although some of the nodes of the splitter tree may be

‘artificial’ (i.e. both the edges departing from a node

leaves the packet in the same interval which is a large

sub-network in our case). We show that each of these

steps succeeds with high probability.

We start by selecting each key with probability --&;

the exact value of ,B will be determined later. From
Chernoff bounds it follows that the number of keys in

the sample is O(no) with high probability. For each of
these keys, we can determine which interval they be-

long to by using a brute-force method (simply checking
each key against every interval). This can be done in
O(logn) time if we choose e + /? < 1. Using the anal-

ysis for Polling (Reif and Sen [16]), it can be shown
that if the total number of keys iVi in an interval i ex-

ceeds cn’-s log n, where c is a constant independent of

330

n, we can get estimates Ei (of Ni) within a constant
factor. So we can set aside max(cn*-s log n, Ei), space
for each interval. For n’-s. n’ log n < n, the total space
can be bounded by kn for some constant k. A possible
choice for the parameters e and p can be 0.49 and 0.5 re-
spectively. After routing (i.e. by simulating a bounded

queue butterfly network), we have the keys in _the ap-
propriate interval. We can now sort them in O(logn)

time and determine exactly how many keys are there in

each interval.

3.1 Binary search and splitter directed
routing

From the scheme described in the previous paragraph,
we set aside max(cnl-s logn, Ei) sized sub-network for

keys in interval i, K;. The number of addresses (rows)
allocated to a particular interval j is Ej/L. It can be
shown that the total number of packets that arrive at

any fixed address (that is over all the L levels) does not
exceed O(L) with high likelihood.

REMARK Note that the ‘sub-networks’are not iso-
morphic to ‘butterjty’ networks of that site - they have

to be routed to ‘sub-butterflies’ after the termination of

the splitter directed routing when we map the algorithm
for butterfly network.

We can assume that Ei divides cn’-@ log n, so that

we can refer to this size as a ‘unit’ of sub-network. We
can also assume for simplicity that this is a power of

two. Therefore, we can allocate a number of ‘units’ of

sub-networks from our estimates. As seen from Figure
3 the number of these subnetworks may not be aligned
with the binary search data-structure, More specifically

at a particular node, there could be sub-networks al-

located (for a particular interval) on both the left and

right subtrees. We can handle this problem as following:
Each packet i that could go either left or right, goes left

with probability Lk(i)/(Lk(i>+Rk(i)) where Lk(i> (J&(i))

is the number of ‘units’ on the left (right) subtree for

the interval k(i). The packet goes right with the com-

plementary probability. The number of packets going
left (right) is a binomial random variable with mean at

least n’-Plogn and hence the probability that it devi-
ates from the mean by a small (constant) factor is less

than l/n” for any fixed CY from Chernoff bounds. The
probabilities for this branching can be assigned when
the datastructure is set up.

We can now use arguments similar to Maggs [12] to
bound the congestion. The number of packets that en-

ter any sub-butterfly is within a constant factor of the
size of the sub-butterfly. For a switch at level 1, at most
L. 2=-’ rows of the butterfly can be reached for a BFL.
Moreover a switch at level 1 can be reached from 2’ dif-
ferent inputs. If a packet begins at a random node, the

probability of reaching a particular switch is 2’-=. The

number of packets that pass through a given switch is

a binomial random variable. Using Chernoff bounds it
can be shown that this number (and hence the conges-
tion) exceeds L (1 O(logn)) is less than n-” for any

fixed CY.

We now apply this procedure recursively in the fol-
lowing manner: For each interval with Ni keys we make
[Ni/nlSeJ ‘copies’ of the subtree with Li as its root.

The number of processors allocated to each of these
problems is n’+. For the remaining keys, say ri, we

round it to the nearest power of 2 and ‘copy’ a subtree

with that many nodes and apply this strategy recur-
sively. Clearly, the problem size is decreasing as nl-’

and it can be shown (using Lemma 2) that the en-

tire procedure terminates in G(logn) time. Notice that
when the problem size becomes O(logn), we can solve

the problem in O(log n) time by pipelining a sequential

search algorithm.

Mapping this algorithm on the interconnection is not

straight-forward since we do not have the luxury of al-

locating the required space as in case of PRAMS. In-

stead, we have to simulate a larger size butterfly network

(larger by a constant factor). Moreover, between suc-

cessive recursive stages we have to do a careful routing
to set up the search tree. Unlike the PRAM model this

may force us to do global routing to access the appropri-
ate subtrees. So, each recursive call could take d(logn)
time. Moreover, the sorting algorithm is randomized.

Consequently, the expected running time increases by a

O(log log n) multiplicative factor.

To circumvent the above difficulty we take a different
approach. Once the problem size becomes [O(logP n),

O(logPn)J (the number of keys and the size of data-

structure respectively), we can solve the problem by em-
ulating PRAM algorithms in an additional O(log log2 n)
deterministic time. Here p is some fixed integer. This

has the following consequence - we can look at a pruned
search tree of size O(n/ 10~ n) since if we can determine

the subtree where each key belongs to, in an additional

log log2 n) time we can complete the entire search pro-
cedure. We need some further observations:

Lemma 3 Given a tree data structure T of size [Tl,

we slice ofi the tree at a certain depth and execute a
search on this truncated tree. Then we allocate space to

the sub-trees which are not empty i.e. there are keys in
that interval and make copies of the sub-trees such that

the number of keys in any subtree is no more than the

subtree size. Then the total size of the sub-problems is
no more than 2 IT] + N where N is the total number of

keys.

Proof For the sub-trees that are full, we can charge
the space to the keys in it. For the partially full trees,

331

there can be at most one for each subtree and the lemma

follows. 0.
This lemma implies that after completing the search

on the O(n/lo$ n) size tree, the total space required

is less than 2n which can be simulated on the network

with only a constant factor increase in running time.

Moreover, the lemma also says that if we use the above
processor allocation strategy, the size of the network
required at stage i of the recursion can be bounded as

following:

Lemma 4 The total sire of the sub-networks at level i
is no more than i(N + ITI), where N is the number of

keys and T is the data structure.

Proof The total amount of space wasted from the

‘completely full’ subnetworks can be charged to the keys
which increases by N at every level. For the partially

filled sub-networks (i.e. the ones where the sub-tree size

is larger than the number of keys), the extra space can
be charged to the subtree-size. Hence the proof follows

by induction on i. • I

From the above observations, we proceed as follows.
We look at a reduced problem where the number of keys

N = n/logn and the size of the tree is n/ log3n. The

O(n/ logn) keys are chosen uniformly at random and

the tree is pruned to this size. The processor-allocation

strategy is to allocate sub-networks proportional to size

(loglogn-i)lZl+ if n or subproblem with sub-tree size

ITil and ni keys. Notice that even if the number of re-

cursive levels is O(loglogn), we can do a global routing
after every loglogn levels, so that the size is no more

than 3n after each of those processor-allocation proce-
dure.

From the previous lemmas, we have enough proces-

sors to carry out the reduced search problem. If the

keys are chosen uniformly at random with probability

l/log n, then, for all the subtrees (of size log3 n), which
have more than log’ n keys we have very accurate es-

timates (recall use of ‘Polling’). So we can set aside
muz(clogn, El) sized sub-networks for sub-tree 1 where

Er is an estimate. Note that cn/logn + XI El < O(n)

and perform the SDR on all the n keys this time. Subse-
quently we count explicitly the number of keys in each

subtree and allocate subnetworks with the maximum

problem size of O(log3 n). We can then emulate any

PRAM algorithm adding O(log log’ n) to time complex-

ity.

3.2 Load balancing and processor real-
location

The previous strategy for processor allocation would
work if the size of the subproblems always matches with
the sub-butterfly size; however it may not always be the

case. For example we may be off by a factor of two.
So, we have to design a more general processor allo-

cation procedure which can be done dynamically and
also evenly distribute the work-load among the sub-

butterflies.

Let us denote the subproblem j as Pj and a sub-
butterfly to which the sub-problem is allocated as h”j.

Let ISI denote the size of set S. We assume that we have
an allocation procedure which achieves the following.

Lemma 5 Given that C I’Pjl < clN, where N is -the

total sire of the network and cl is a constant, there is a
processor allocation scheme such that for all j, l7’jl <

c2lNjl where C-J is another constant.

Proof Assume that the network size N 1 k c I’Pj I since

we can always simulate a network of a larger by a factor

k. Suppose N=h.2 *. Moreover, wlog assume that all

the sub-problem sizes are of the form t2t. (Again this

increases the network size by at most a factor of 3). Let

S denote the subproblems whose sizes are larger than

[h/2J2Lh/2] and the rest by 3. Allocate subnetworks
greedily (the actual procedure is described later) and

since the height of the sub-network is at least l/3 of the

total size, we will have misused at most a factor of 3.

To apply the same procedure recursively to problems in
3, we may be forced to waste another row of subnet-

work of same size. Thus the amount of network left is

k(lS(+ IsI) - 6154 2 (k - 6)lSl + klSI. For k 2 6, the

inductive assumption holds (that we have a network k

times the sum of subproblems) and moreover we have at
least two levels of sub-networks where the sub-problems
of 3 can be accommodated. Algorithmically, this al-

location strategy can be accomplished by sorting the

sub-problem sizes and doing a prefix followed by rout-

ing to appropriate subnetworks all of which can be done

in 6(log N) time. 0

Clearly, this scheme is not sufficient to guarantee that

over the entire course of a recursive algorithm a sub-
network would not be loaded by more than a constant

factor. For example, if we were to continue with this

scheme recursively, a network could be loaded by a fac-

tor of Q((cz)“) in the next recursive call. Clearly this

is undesirable if the depth of recursion is O(loglogn).

However, we can use the previous lemma in the following
useful manner. We can apply it for a constant number

of levels of recursive calls without increasing the run

time by more than a constant factor (in every call the

load on a processor increases by a constant factor). We

shall show that this suflices for our processor allocation
strategy, where we redistribute the load ‘evenly’ after
a fixed number of levels of recursive call. The network

topology, where the subnetworks are of sizes hZh (h is an

integer) necessitates this kind of rebalancing strategy.

We shall start with a special case where the network

332

size is h2h where h = 2’ for some integer 1. In two levels
of recursive call we can reduce the sub-problem sizes to

2h/2. (One call is not sufficient since the subproblem
sizes have to be larger than n112 which is 2h/2S’osh in

this case). Now we can pack h/2 sub-problems into a

sub-network of size (h/2) . 2h/2. Moreover, there are

2. 2h/2 sub-networks of this size (Fact 1) which implies

that the entire network is being used (instead of a frac-

tion). Now we are in sub-networks of size (h/2) . 2h/2

and hence the procedure can be applied inductively.
Notice however that we have h/2 sub-problems in the

network (instead of one) and we have to use the pre-

vious lemma to allocate sub-networks, thereby loading
the sub-network by a constant factor in the next recur-

sive call. But this is only for a fixed (at most 2) levels
of recursive call and hence we can maintain the same

asymptotic run-time.

To generalize this to arbitrary value of network-size,

we reduce the problem sizes to 22k for some 6. This can

be done in a constant number of recursive calls since

22 ‘+I 5 (22k)2 Using previous lemma, we can allocate
sub-problems such that only a constant fraction of the

network is unused. But from this stage we can use the
scheme described in the previous paragraph without in-

creasing the load-factor any further.

In a more general scenario (as will be required later),

the subproblems could be of different sizes. However,

a key fact is that we can bound the size of the maxi-
mum sized subproblem by n lvc where nC is a sample size

(similar to the previous case). Let [i] denote the largest
number less than i which is a power of 2, i.e. if [i] = 2j,

then 2j 5 i < 2j+l. By choosing the sample sizes ap-

propriately (nC for some E > 0 , we can reduce the max-

imum sub-problem size to 1 21’ . We then greedily pack

as many subproblems as we can in a sub-network of size
[h] . 21hl. Th is is done as described before viz. by sorting

the sub-problem sizes and an application of parallel pre-

fix followed by actually routing the sub-problems to the

assigned sub-networks. We pack in subproblems as long

as there is space, so that we do not ‘load’ a subnetwork

by more than a factor of (1 + l/n’-‘). By ‘loading’ we
mean the ratio of the sub-problem to the sub-network

size (which is unity to begin with).

We apply this procedure recursively such that the ex-
tra loading factor at level i of recursion is no more than

1 + l/n(‘-“1’. Note that in the first level of recursion,
we could misuse a constant fraction of the network (be-

cause of problem size mismatch) but thereafter the de-

gree of misuse can be bound by the above quantity by

our processor reallocation strategy. If the subproblems

are never larger than log n then the load-factor can be

bound by fl~~~l”g”)(l + l/n(l-‘)i) which is less than
e.

We summarize our result as follows.

Theorem 1 Given a binary search tree witi~ O(k)
leaves, we‘can do binary search for O(k) keys in O(log k)
lime in a butterfly network using k processors.

4 Applications to

Computational Geometry

In this section we apply the techniques developed in

the previous sections to map some geometric algorithms

efficiently on the butterfly network. Because of lack of

space, the description relies heavily on the work of the

authors on randomized PRAM algorithms. For a better

understanding, the reader is encouraged to refer to the

papers [15, 161.

4.1 Searching in Arrangements

We focus our attention the following problem. Given an

arrangement of ny lines, 7 < 1, we want to find out for n
given points the region that it belongs to. In particular

we would like to do this in O(logn) time on a butterfly

network. Dobkin and Lipton had described a very sim-

ple method for solving this problem using the following

data structure. Find out all the pairwise intersections

(th ere are n2T in this case) and project them on the X
axis. Within each interval, the lines can be totally or-

dered and one can set up a binary tree corresponding
to this ordering. Thus, there are n2y binary trees each

of size nr. To find the region (which is a trapezoid by

the above partitioning scheme) that a point belongs to,
we do two binary searches - one along each direction.

To implement this algorithm in parallel, the data

structure can be set up very easily in parallel by sorting.

To search n points, we first sort the n points by their z
coordinates and merge them with the end-points of the

intervals. This saves the binary search in the x direction.

If 1i is the set of points in the i-th interval, we allocate

a subcube of size]Ii] + 7x7 nodes. Since n + n37 < 2n,

for appropriate choice of 7 and moderately large n, this

can be done by simulating a network twice the size. The

binary search can then be done within each sub-cube in

d(log n) time using the procedure outlined in the previ-
ous section. Thus the overall algorithm runs in 8(log n)
time.

We shall see in the next section that these trapezoidal

regions define a finer partition of equivalence classes

(which are the regions in the original partition).

4.2 napezoidal decomposition

Given a set of non-intersecting line-segments and points,
we wish to determine for each point, the line segment(s)
that are the first to intersect the vertical rays drawn

333

through these points. There may be 0,l or 2 such edges

which are called the trapezoidal edges.

Let us recapitulate the main steps of the algorithm for

trapezoidal-decomposition described in [20] in a more
general context of a divide-and conquer algorithm

(1) Select O(logn) subsets of random objects

(in case of 2-D hulls these were half-planes)
each of size]neJ for some 0 < E < 1.

(2) Select a ‘good’ sample using Polling. A
sample is ‘good’ if the maximum sub-problem

size is less than n 1--C log n and the sum of the

sub-problem sizes is less than cn for some con-

stant E.

(3) Divide the original problem into smaller

sub-problems (the maximum size can be
bounded by O(nlWt logn)) using the ‘good’

sample.

(4) Use a Filtering algorithm to bound the sum
of the sub-problem sizes by some fixed measure
like the output size or input size. This step is
problem dependent and uses the specific geom-

etry properties of a problem. The purpose is
to bound the number of processors.

(5) If the size of a sub-problem is more than a
threshold (usually it is chosen to be O(log” n)

for some constant k), then call the algorithm

recursively else solve the problem using some

direct method.

The algorithms presented in this paper are based on

this approach. However the implementation of some of
these steps depend heavily on the specific problem. The

probabilistic bounds used in step 3 were proved in Reif

and Sen [15] for some specific problems and by Clark-
son [7] for very general situations which are applicable

to our problems. The procedure used for dividing the
subproblems depends on the problem at hand. Perhaps

the step that is most specific to a problem is the Filter-

ing step where we have to use some geometric properties

of the problem.

In the context of mapping algorithms to inter-

connection networks, step 3 turns out to be the most
difficult. Steps 1 and 2 are inherently parallel and step

4 for this problem is not very involved. We shall show
that this step turns out to be searching in an arrange-

ments of lines in two dimensions.

For trapezoidal decomposition, we sample line-

segments and build its convex-map (see Figure 4). We

can build this using the following brute-force approach.

For every segment end-point, we order the line-segments
by their y coordinates. For every segment, we order the

projection of the end-points those are visible (from the
bottom and top). From this information, we can con-

struct the trapezoids by simulating ‘pointer-jumping’ a

fixed (at most 6) number of times.

Lemma 6 The trapezoidal _map of nc segments seg-
ments can be constructetf in O(logn) time in a n3C pro-

cessor butterfly network..

The remaining segments (not part of the sample) are

partitioned into subproblems defined by the trapezoidal

map. The partitioning step in trapezoidal decomposi-
tion can also be reduced to the problem of searching in

two dimensions (see Reif and Sen [15]). For the filtering

step, we need to keep track of parts of segments that

completely span a trapezoid. Such segments within a

trapezoid have to be processed for binary search such

that for end-points lying within the trapezoid, we can
quickly determine its closest visjble (upper and lower)
segments. This can be done in O(logn) time using the

search algorithm described earlier. Moreover, only the
segments that partially or completely lie within a trape-

zoid are needed for further recursive calls.

At each stage we keep track for each end-point, which

are its closest (upper and lower) segments and hence at

the end we have its trapezoidal edge(s). From this infor-

mation, we can decompose a simple polygon into one-

sided monotone polygons by an application of sorting

and prefix computation (Goodrich [9]). Using Yap’s [23]
observation, another call to trapezoidal decomposition

within these special polygons enables us to determine

all the triangulation edges. Trapezoidal decomposition

also enables us to solve the problem of determining vis-

ibility of a set of non-intersecting line segments when
they are projected orthogonally. We can state the main

result of this section as the following.

Theorem 2 There exist algorithms for problems of
Trapezoidal Decomposition, Triangulation of Simple

Polygons and Visibility that execute in time d(logn)

on an n-processor butterfly network where n is the in-
put size of the problem.

An algorithm for constructing convex-hull of points

on a plane can be designed on similar lines. The details

are omitted from this abstract for lack of space.

5 Concluding Remarks

In this paper, we have described a strategy for imple-

menting PRAM algorithms for geometric problems on
fixed-connection networks. These methods involve tack-

ling some of the very basic problems like binary search
and dynamic load-balancing that we take for granted in

PRAM models. Our techniques use a number of ideas
from Flashsort but they have to be modified to handle

334

more difficult situations, namely searching in partial or-

ders and dynamically allocate sub-networks to recursive

calls.
An important goal of our research is to build up a hi-

erarchy of fundamental geometric algorithms for fixed
connection networks similar to that of PRAM alga
rithms. A very important problem in this regard is
that of constructing 3-D convex hull in optimal (or near-

optimal) time.

References

Dl

PI

[31

PI

PI

I61

PI

PI

PO1

A. Aggar-

wal, B. Chazelle, L. Guibas, C. O’Dunlaing, and
C. Yap. Parallel computational geometry. Proc. of
25th Annual Symposium on Foundations of Com-

puter Science, pages 468 - 477, 1985. also appears
in full version in Algorithmica, Vol. 3, No. 3, 1988,

pp. 293-327.

M.J. Atallah, R. Cole, and M.T. Goodrich. Cascad-
ing divide-and-conquer: A technique for designing

parallel algorithms. Proc. of the 28th Annual Sym-
posium on the Foundations of Computer Science,

pages 151 - 160, 1987.

S. Chandran. Merging in Parallel Computational
Geometry. PhD thesis, University of Maryland,

1989.

A. Chow. Parallel Algorithms for Geometric Prob-
lems. PhD thesis, University of Illinois at Urbana-

Champaign, 1980.

K.L. Clarkson. A probabilistic algorithm for the

post-office problem. Proc of the 17th Annual

SIGACT Symposium, pages 174 - 184, 1985.

K.L. Clarkson. New applications of random sam-

pling in computational geometry. Discrete and
Computational Geometry, pages 195 - 222, 1987.

K.L. Clarkson. Applications of random sampling in

computational geometry ii. Proc of the 4th Annual
ACM Symp on Computational Geometry, pages 1

- 11, 1988.

R. Cole. Parallel merge sort. Proc. of the 27th

Annual IEEE Symp. on Foundations of Computer

Science, pages 511 - 516, 1986.

M.T. Goodrich. Efjkient Parallel Techniques for
Computational Geometry. PhD thesis, Purdue Uni-

versity, 1987.

D. Haussler and E. Welzl. e-nets and simplex range
queries. Discrete and Computational Geometry,
2(2):127 - 152, 1987.

P13

WI

1131

1141

I151

WI

P71

WI

P91

PO1

I211

PA

t231

6

6.1

A. Karlin and E. Upfal. Parallel hashing - an effi-
cient implementation of shared memory. Proc. of

the 18th ACM STOC, pages 160-168, 1986.

B. Maggs. Locality in Parallel Computation.

PhD thesis, Massachusetts Institute of Technology,

1989.

R. Miller and Q. Stout. Efficient parallel convex

hull algorithms. IEEE Transaction on Computers,

37(12):1605-1618, 1988.

A. Ranade. How to emulate shared memory. Proc.

of the 28th IEEE FOCS, pages 185-194,1987.

J.H. Reif and S. Sen. Optimal randomized parallel

algorithms for computational geometry. Proc. of

the 16th International conference on Parallel Pro-
cessing, 1987. To appear in Algorithmica.

J.H. Reif and S. Sen. Polling: A new random sam-

pling technique for computational geometry. Proc.

of 2lst STOC, pages 394 - 404, 1989.

J.H. Reif and L.G. Valiant. A logarithmic time sort

for linear size networks. Journal of the ACM, 34:60

- 76, 1987.

R. Reischuk. A fast probabilistic parallel sorting

algorithm. Proc. of the 22nd IEEE FOCS, pages

212 - 219, 1981.

R. Reischuk. A fast probabilistic parallel sorting

algorithm. Proc. of the 22nd Annual FOCS, pages

212 - 219, 1981.

Sandeep Sen. Random Sampling Techniques for Ef-
ficient Parallel Algorithms in Computational Ge-
ometry. PhD thesis, Duke University, 1989.

B. Maggs T. Leighton and S. Rao. Universal packet

routing algorithms. Proc. of the 29th IEEE FOCS,

pages 256-269,1988.

L.G. Valiant. A scheme for fast parallel commu-

nication. SIAM J. on Computing, 11:350 - 361,

1982.

C.K. Yap. Parallel triangulation of a polygon in two

calls to the trapezoidal map. Algorithmica, 3:279

-288,1988.

Appendix

Splitter Directed Routing

Let X be the set of cN keys that are totally ordered by
the relation <. V is the set of nodes in the network.

335

Suppose that for some I (1 5 1 5 n) we are given a set

of splitters C E X of size]C] = 2’ - 1. We index each

splitter U[W] E C by a distinct binary string w E (0, l}L
of length less than L. Let -< denote the ordering defined

as follows: For U, 21, w E (0, lJL,wOu + w 4 wlv. We

require that for all ~1, wz E (0, l}L, a[wJ < u[wz] if

and only if w1 4 ~2. We assume that a copy of each
splitter a[w] is available in each node V[w]. V[w] is the

set of nodes with rank]w] with addresses prefixed by w

(same as in Reif and Valiant [17].

Let X[A] = X where A is the empty string. Initially

we assume that the keys of X[X] are located in V[A], that
is, the nodes of V having stage 0. The splitter directed
routing tree is executed in 1 temporarily overlapping

stages i = 0, 1, ../-I. For each w E (0, 1)’ the set of keys

X[w] that are eventually routed through V[w] is defined
recursively. The splitter u[w] partitions X[w]-U[UJ] into

disjoint subsets

X[wO] = {z E X[w]lz < u[w]}

and

X[wO] = (2 E X[w]lz > u[w]}

which are subsequently routed through V[wO] and

V[w l] respectively.

In our case, we assume that after each recursive call,

the sub-networks (of varying sizes corresponding to dif-
ferent subroutine calls) are relabeled aa if these were

isolated networks. The V[w]‘s are then defined accord-
ingly. The time analysis for this procedure is carried out

using a delay-sequence argument and it can be shown

that this takes a(logn) time in a BP,,.

6.2 Probabilistic inequalities

We say a random variable X upper-bounds another ran-

dom variable Y (equivalently Y lower bounds X) if for
all x such that 0 5 c 5 1, Prob(X 5 Z) 5 Prob(Y 5

4.
A Bernoulli trial is an experiment with two possible

outcomes viz. success and failure. The probability of

success is p.
A binomial variable X with parameters (n,p) is the

number of successes in n independent Bernoulli trials,

the probability of success in each trial being p. The

probability mass function of X can be easily seen to be

Prob(X 5 x) =

c;=, (;) PV -PY

Figure 1: A butterfly network of size 4. The solid lines

illustrates a sub-network isomorphic to BF2

Figure 2: Points 4 and 5 are in different relative order-

ings with respect to each-other and the segments

Prob(X 2 m) 5 (z)mem-nJ’ (1)

Prob(X 5 m) 5 (!$)me-np+m (2)

Prob(X 5 (I- c)pn) 5 ezp(-c2np/2) (3)

Prob(X 2 (1 + c)np) 5 ezp(-t2np/3) (4)

forallO<c<l.

The tail end of the Binomial distribution can be

bounded by Chemofl bounds. In particular the follow-
ing approximations due to Angluin and Valiant are fre-

quently used:

336

Figure 1: Intervals l-2 and 2-3 are not aligned with the

binary tree. The labels at the nodes indicate the range

and the probability that a key in the range taking the
left branch. Keys outside this range take the conven-

tional routes.

Figure 2: Convex Map of non-intersecting line-segments

337

