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Abstract 
Query optmuzatton for relatmnal database systems IS a combma- 
tonal optumzahon problem, whtch makes exhaustrve search unac- 
ceptable as the query size grows Randomrzed algortthms. such as 
Simulated Annealmg (SA) and Iteratrve Improvement (II), are 
viable altemattves to exhaushve search We have adapted these 
algonthms to the optrmizatton of proJect-select-Jam queries We 
have tested them on large quertes of various types wrth drfferent 
databases, concludmg that m most cases SA tdentrfies a lower cost 
access plan than II To explain thts result, we have studied the 
shape of the cost funchon over the solutmn space associated with 
such queues and we have conJectured that tt resembles a ‘cup’ 
with relatively small vsrtatrons at the bottom Thus has msptred a 
new Two Phase Optrmtzatton algonthm, which 1s a combmatton 
of Sunulated Annealing and Iteratrve Improvement Expenmental 
results show that Two Phase Gpttmtzatron outperforms the ongt- 
nal algonthms m terms of both output quality and runnmg tune 

1. INTRODUCTION 

Query opttmrzatron 1s an expensive process, pnmartly 
because the number of alternative access plans for a query grows 
at least exponentrally with the number of relations partrcipatmg in 
the query The apphcatton of several useful heunsttcs ehmmates 
some altematrves that are hkely to be suboptlmal [Sell791 , but rt 
does not change the combmatorral nature of the problem Future 
database systems will need to optunrze queries of much lugher 
complextty than current ones Thts mcrease in complexity may be 
caused by an increase m the number of relattons m a query 
[Kns86], by an mcrease m the number of queries that are opttm- 
rzed collecttvely (global optrmrzatron) [GranSl. Se1188], or by the 
emergence of recursive queues The heunstrcally pnmmg, almost 
exhaustive search algonthms used by current ophmtzers are 
madquate for queries of the expected complexny Thus, the need 
to develop new query opbmtzatton algonthms becomes apparent 

Randomized algonthms have been successfully applied to 
various combmatortal optmuzatron problems Two such algo- 
rnhms, Smulated Annealrng [Ktrk83] and Iterative Improvement 
[Naha86]. are the best known such algornhms and have been pro- 
posed for query optlmtzahon of large quenes as well Ioanm&s 
and Wong applied Stmulated Annealmg to the optmnzatton 
of 
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some recurstve quenes [Ioan87] Swami and Gupta apphed both 
Simulated Annealmg and Iterattve Improvement on opttmtzauon 
of select-project-Jam quenes [Swam881 

In thrs paper, we address the problem of usmg randomtzed 
optmuzatton algorithms for select-project-jam queries The major 
contnbutrons of the paper are the followmg Fast, we compare 
the performance of Srmulated Armeahng and Iterattve Improve- 
ment by conductmg several expenments wtth a variety of quenes 
and databases We show that the former almost always produces 
a better output, whrch 1s dfferent from the results of the study of 
Swam1 and Gupta [Swam881 Second. we map the shape of the 
cost functron over the space of altemattve access plans by a senes 
of expenments on that space We conclude that the shape of the 
cost functton resembles a ‘cup’, which leads to an explanatton of 
the behavior of Sunulated Annealmg and Iterattve Improvement 
and the dtfference with the results of Swamt and Gupta Thud, 
msptred by the above analysrs, we propose a new query opumtza- 
tton algorithm that exhtbtts supertor performance m terms of both 
output quality and nmnmg ume 

Ths paper 1s orgamzed as follows In Sectton 2, we 
describe the specifics of our adaptatton of Stmulated Annealmg 
and Iteratrve Improvement to query optrmrzatron and introduce 
the Two Phase Gpomtzatton algorithm In sectton 3, we present 
the results of an extensive experrmental performance evaluatton of 
the three algonthms In sectron 4, we descnbe an analysis of the 
shape of the cost functton over the space of altemattve access 
plans for a query. based on whrch we explam the behavior of the 
algonthms Sectron 5 describes the results of a hnnted set of 
expenments wrth the three algonthms on an enhanced set of query 
processmg altemattves Finally, Sectton 6 contams some related 
work and Sectron 7 concludes and discusses future work 

2. RANDOMIZED ALGORITHMS FOR QUERY 
OPTIMIZATION 

Each solution to a combmatonal opttmtzatron problem can 
be thought of as a state m a space, 1 e , a node m the graph, that 
includes all such sohmons Each state has a cost assoctated wrth 
rt, which 1s given by some problem-specrfic cost functton The 
goal of an optrmtzauon algorithm 1s to find a state wtth the glo- 
bally mmmum cost. Randomtzed algontbms usually perform 
random walks in the state space via a series of moves The states 
that can be reached m one move from a state S are called the 
n&hors of S A move 1s called uphJl (downlull) rf the cost of 
the source state IS lower (higher) than the cost of the destmauon 
state A state 1s a local muumum d m all paths startmg at that 
state any downhrll move comes after at least one uplull move A 
state 1s a global mtmtnum d rt has the lowest cost among all states 
A state 1s on a plateau d rt has no lower cost neighbor and yet rt 
can reach lower cost states without uphtll moves Usmg the above 
termmology we descnbe three randomtzed opttmtzatron algo- 
nthms We also discuss how we adapted these algonthms to query 
optimizatton 
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2 1. Generic Algorithms 

In the descnpnons below, we make use of a fictmous state 
S, whose cost 1s 00 Also, cost(S) 1s the cost of state S, and 
neighbors(S) 1s the set of neighbors of state S 

2.1.1. Iterative Improvement (II) 

The genenc Iterative Improvement (II) algorithm 1s shown 
m Figure 2 1 The mner loop of II 1s called a locaf optunczatron 
A local ophmlzahon starts at a random state and unproves the 
solution by repeatedly acceptmg random downhill moves until it 
reaches a local mmlmum II repeats these local opurmzauons 
until a stoppmng-con&ton 1s met, at which pomt It returns the 
local nummum with the lowest cost found As tie approaches 
m, the probability that II will vlsd the global mmunum approaches 
1 [Naha86] However, given a fimte amount of tune, the 
algonthm’s performance depends on the charactenstlcs of the cost 
funcnon over the state space and the connect~vlty of the latter as 
determined by the neighbors of each state 

procedure lI() ( 
mmS = S,, 
while not (stoppmng~condt~on) do ( 

S = random state, 
while not (foc~~mmunum(S)) do ( 

S’ = random state m neighbors(S), 
if cost(S) c cost(S) then S = S’, 

1 
if cost(S) c cost(mmS) then mmS = S, 

1 
retum(mmS), 

Figure 2.1. Iterabve Improvement 

2.1.2. Simulated Annealing (SA) 

A local ophmlzatlon m II performs only downhdl moves 
In conbask Srmulated Annealmg (SA) does accept uphlll moves 
with some probablhty, trymg to avold bemg caught m a high cost 
local mlmmum The genenc algonthm+ 1s shown m Figure 2 2 
SA was ongmally derived by analogy to the process of annealmg 
of crystals We use the same termmology for the algorithm 
parameters as in the ongmal proposal (The termmology was 
adopted from the analogous physical process ) The mner loop of 
SA 1s called a stage Each stage 1s performed under a fixed value 
of a parameter T. called temperature, wluch controls the probabll- 
lty of acceptmg uphill moves This probabihty 1s equal to e-Ac’T, 
where AC 1s the difference between the cost of the new state and 
that of the ongmal one Thus, the probablhty of acceptmg an 
uphill move 1s a monotomcally mcreasmg function of the tem- 
perature and a monotomcally decreasmg function of the cost 
difference Each stage ends when the algonthm 1s consldered to 
have reached an equdtbrrum Then, the temperature 1s reduced 
accordmg to some function and another stage begms, 1 e , the tem- 
perature 1s lowered as time passes The algorithm stops when It 1s 
considered to be frozen, 1 e , when the temperature 1s equal to 
zero It has been shown theoretlcally that, under certam 

’ In Ftgure. 2 2. we keep track of the mtnmmm cost state found 
(mmS) In the end, tt ts mmS that ts reported as the answer, whereas a 
pure verston of SA would report the state to whtch the algortthm has con- 
verged The version tn Figure 2 2 can only tmprove an the results of the 
pure verston and IS the one that we use tn thts study 

con&hons satisfied by some parameters of the algonthm, as tem- 
perature approaches zero, the algorithm converges to the global 
mmunum [Rome851 Agam, given a fimte amount of tune to 
reduce the temperature, the algonthm’s performance depends on 
the charactenstics of the cost function over the state space and the 
comechvUy of the latter 

procedure SA() ( 
s = so, 
T=To, 
mmS=S, 
while not wozen) do ( 

while not (equhbruun) do ( 
S’ = random state m neighbors(S). 
AC = cost@‘) - cost(S), 
if (AC < 0) then S = S’, 
if (AC > 0) then S = S’ with probability e-Ac’T, 
if cost(S) c cost(mmS) then mmS = S, 

1 
T = reduce(T), 

1 
retum(mmS). 

1 
Figure 2.2: Sunulated Annealmg 

2.13. Two Phase Optimization (2PO) 

In this subsechon, we mtroduce the Two Phase Optrmrza- 
tron (2pO) algorithm, which 1s a combmauon of II and SA As 
the name suggests, 2F’O can be divided mto two phases In phase 
1. II 1s run for a small period of hme. I e , a few local ophmlza- 
tlons are performed The output of that phase, wluch 1s the best 
local mmunum found, 1s the lmfial state of the next phase In 
phase 2, SA IS run with a low lmt.ml temperature Intmtlvely, the 
algorithm chooses a local mmunum and then searches the area 
around it, still bemg able to move m and out of local mmuna, but 
pract&ly unable to chmb up very high hills Thus, 2P0 1s 
appropnate when such an ab&ty 1s not necessary for proper 
OptitIIlZah~, wluch is the case for select-project-Jam query 
optmuzauon as we demonstrate m the followmg sechons 

2.2. Problem Specific Parameters 

When genenc randomized optmuzatlon algorithms are 
applied to a partu~lar problem, there are several parameters that 
need to be specified based on the specific charactensbcs of the 
problem For II, SA, and 2P0. they are the state space, the nelgh- 
bors function. and the cost function 

2.2.1. State Space 

Each state m query optmuzahon corresponds to an access 
plan (strategy) of the query to be optmuzed Hence, m the sequel, 
we use the terms state and strategy m&stmgmshably Usmg the 
heunstlcs of performmg selections and projections as early as pos- 
sible and excludmg unnecessary Cartesian products [Seh79], we 
can ehmmate certam subophmal strategies to mcresse the 
efficiency of the optmuzahon Thus. we reduce the goal of the 
query optumzer to finding the best JOT order, together with the 
best JOT method for each JOUI In dus case, each strategy can be 
represented as a Join processrng tree, 1 e , a tree whose leaves are 
base relations. mtemal nodes are Jam operators, and edges mdl- 
cate the flow of data. If all mtemal no&s of such a tree have at 
least one leaf as a chdd, then the tree IS called hear Otherwise, 
it is called bushy Most Jam methods d&mgmsh the two JOT 
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operands. one bemg the outer relation and the other bemg the 
inner relabon An outer linear jorn processrng tree (left-deep 

tree) IS a hnear Jam processmg tree whose mne~ relations of all 
JOISIS are base relations In our study, the strategy space mcludes 
all possible Jam processing trees, 1 e , both linear and bushy ones 

2.2.2. Neighbors Function 

The neighbors of a state, which IS a Jam processmg tree 
(I e , a strategy), are determmed by a set of transformauon rules 
Each rule 1s apphed to one or two Internal no&s of the state, 
replaces them by one or two new nodes, and usually leaves the 
rest of the nodes of the state unchanged With A, B, and C bemg 
arbitrary JOUI processmg formulas, the set of transformation rules 
that we used m our study 1s given below 

(1) Jam method chorce A wnurlloq B + A w,,,,~, B 

(2) Jam comutatrvrty AwB+BwA 

(3) Jorn ammamrty (AwB)wCt,Aw(BwC) 

(4) L.t$join exchange (AwB)oaC+(AwC)wB 

(5) RqhtJoln exchange Aw(BwC)-+Bw(AwC) 

Rule (1) changes the Jam method of a Jam operator, e g , 
from nested-loops to merge-scan Together with the algebrruc 
rules (2) and (3), it ts enough for the space of all mterestmg stra- 
tegles to be connected Each of the addItiona exchange rules 1s 
equivalent to applymg rules (2). (3), and (2) m that order Their 
advantage IS that they avold the use of JOUI commutatn%y 

Applymg JOIII commutativity does not change the state cost for 
some Jam methods, e g , merge-scan. which tends to create pla- 
teaux m the state space The algonthms do not usually use the 
precise defimuon of a local mmunum to recognize one but use 
approxlmatlons, and plateaux can be mistaken for local mmuna. 
Havmg many such false local mlmma m the state space degrades 
the output quality of randomlzed algonthms. especially II The 
Jam exchange rules reduce the number of plateaux by addmg 
direct paths that bypass them 

Most of the time, applymg one of the above rules on some 
Jam nodes of a state does not affect the cost of the remammg 
nodes of the state Thus, the cost of a nerghbor can be evaluated 
from the cost of the ongmal state m constant tune, takmg into 
account the local changes performed by the transformattons An 
unavoidable exception occurs when mterestmg sort order changes 
[Seh79], and the change must be propagated to the ancestors of 
the transformed nodes 

2.2.3. Cost Function 

The cost fun&on that we used m our study only accounts 
for the I/O required by each strategy The precise formulas are 
not presented here due to lack of space They are based on the 
followmg assumphons (a) no pipelmmg, I e , temporary relahons 
are created for the mtermedlate results, (b) mmunal buffenng for 
all operations, (c) on-the-fly execution of proJecuons, and (d) no 
duplicate ehrnmatlon on proJections 

2.3. Implementatron Specific Parameters 

Several parameters of randomized optunlzatlon algonthms 
are implementation specific These can be tuned to Improve per- 
formance and/or output quahty The followmg tables summarize 
our choices for the parameters of II, SA, and 2F’O We amved at 

them after some expenmentatlon with various altematlves, and 
also based on past expenence with the algorithms m query optmn- 
zahon [Ioan87] and other fields [John871 

Table 2.1: Implementabon specific parameters for II 

next state random neighbor 
temperature reduction T,, = 0 95*T0u 

Table 22: Implementation specific parameters for SA 

parameter value 
stoppmng-conditwn (II phase) 10 local optmuzatlons 
~mhal state Sn GA Dhasel mmS of n Dhase 
~mtml temperi&e ?, (SA phase) ) 0 l*cost(Si) 

Table 2.3 Implementation specific parameters for 2F’O 

The only parameter that needs some explanation m the above 
tables IS the definmon of a local mmunum for II Because there IS 
a sign&ant cost mvolved m exhaustively searchmg all neighbors 
of a strategy (let alone in verifymg the truth of the precise 
defimuon of a local muumum), we use an approxnnatlon to Iden- 
tlfy a local mmnnum In particular, a state IS consldered to be a 
local mmunum after n randomly chosen neighbors of It are tested 
(with repetmon), where n IS the actual number of its neighbors, 
none of which has lower cost Note that thus does not guarantee 
that all neighbors are tested, smce some may be chosen multlple 
tunes A state that sat.&ies the above operatlonal defimhon IS 
called an r-local mmmum, to dlstmgursh It from an actual local 
mmunum Clearly, every local mmunum 1s an r-local mmlmurn, 
but the converse 1s not true Usmg the ldent&icatlon of an r-local 
mmunum as the stoppmg cntenon for a local opbmlzation unplies 
that some dotill moves may be occasionally missed, and a 
state may be falsely consldered as a local mmunum We chum, 
however, that the savmgs m execuuon tune by usmg this approxt- 
mation far outwelgh the potential nusses of real local mlmma 
This claun was venfied m a hrmted number of experiments that 
we performed 

3. PERFORMANCE EVALUATION 

In this sechon, we report on an expemnental evaluation of 
the performance and behavior of SA, II, and 2F’O on query optun- 
lzatlon First, we descnbe the testbed that we used for our expen- 
ments, and then we discuss the obtamed results 

3.1. Testbed 

We expenmented only with tree queries [Ullm82] contam- 
mg only equahty moms he to known dlfficulties m then optum- 
zatton [Ono88], specific attention was given to star quenes Tree 
and star quenes were generated randomly The query size ranged 
from 5 to 100 Jams Each query was tested m conJuncuon with 
three different types of relation catalogs. I e , dtiferent relabon 
cardmahues and Jam selectlvltles We made the usual assump- 
tions about umform &smbutlon of values and mdependence of 
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values m the Jam attnbutes [Seh79. Whan85] Because of these 
assumptions, we used the number of umque values m the Join 
attrlbutes to control Jam selectlvltles The catalogs that we used 
are summarized m Table 3 1 

~1 

Table 3.1: Relation catalogs 

As an example for the meanmg of the enmes m Table 3 1, m the 
‘relcat3’ catalog, relauon cardmahtles were randomly chosen 
between 1000 and 1OOOOO tuples. and the number of umque 
values m the Jam columns was randomly chosen between 10% 
and 100% of the cardmahty of the correspondmg relmon The 
catalogs were selected so that we could test quenes with different 
degrees of variance m the relation cardmahtles and pm selecnvl- 
hes, and thus, with different cost dlsmbutlons m the state space 
This degree of variance mcreases as we move from ‘relcatl’ to 
‘relcat3’ 

Each relation page contamed 16 tuples All relations had 
four atmbutes and were clustered on one of them There was a 
B+-tree or hashmg pnmary mdex on the clustered atmbute. or the 
relation was physically sorted on it These altemauves were 
equlprobable The other attributes had a secondary mdex with 
probability l/2, and agam there was a random choice between a 
B’ -tree and hashmg secondary mdex 

Fmally. the JO~ methods that we consldered were ‘nested- 
loops’ and ‘merge-scan’ 

3.2. Experiment Profile 

We vnplemented all algonthms m C. and tested them on a 
Sun-4 workstation when no-one else was usmg the machme We 
allowed the query size to grow up to 100 JOT Twenty different 
queries were tested for each size up to 40 JOHIS, and five were 
tested for larger sizes For each query and relation catalog, SA 
and 2P0 were run five times. except for the cases where each run 
of SA would require more than two hours, for which no experl- 
ments were conducted with SA Thus, we have no results on SA 
for both types of quenes with more than 60 JOUIS for catalogs ‘rel- 
cat2’ and ‘relcat3’. and for star quenes with more than 40 moms 

for catalog ‘relcat3’ This declsmn was based on the expectation 
that the behavior of SA compared to II and 2P0 for the more 
expensive queries w111 be slmllar to that for the less expensive 
ones For each problem mstance. II was also run five tunes. each 
run havmg as much hme as the average Ume taken by a SA or 
2P0 run on the same query for the same catalog, dependmg on 
whether there were SA runs or not respectively 

3.3. Behavior as a Function of Time 

As part of the expenments, we recorded how the mmunum 
cost found changed over tune durmg the course of the algorithms 
execution The typical behavior IS shown m Figure 3 1 The par- 
ticular example 1s for a 40-Join tree query with the ‘relcatl’ cata- 
log The y-axis represents the raho of the strategy cost over the 
mlmmum strategy cost found for the query among all runs of all 
algonthms Clearly, there are slgmficant differences between SA 
and II On the one hand, after a few local optimlzatlons. II 

reaches a state of cost that IS close to the mmmum cost found by 
a complete run of SA The improvement that this cost represents 
over the uut~al random state cost IS several orders of magmtude, m 
general After that, II makes only small unprovements On the 
other hand, m the early stages, SA wanders around states of very 
high cost LIurmg the later stages. however, it reaches states of 
costs sunllar to those found by II after a few local optmuzatmns, 
and most often, It eventually finds a better state Tlus observatmn 
m&cates that SA 1s performmg useful work only after It reaches 
low cost states and the temperature 1s low, smce at Hugh tempera- 
ture, it only vlslts high cost states This fact 1s what mouvated the 
mtmducUon of 2P0 The iirst phase of 2P0 produces a low cost 
state from which the second phase can start with low temperature 
Indeed, we observe that m&ally DO mprovea as qmckly as II. 
but soon It surpasses it, and eventually converges to its final solu- 
tlon much more rapldly than SA 

260 
I 

0 180 360 540 720 900 
Tune (Seconds) 

Figure 3 1: Muumum cost found over tune 

3.4. Output Quality 

In general, we observed no slgmficant quahtative dlffer- 
ence m the relative output of the algonthms between tree and star 
quenes Because of thus and the lack of space, we only present 
the results for ‘relcat2’ for tree quenes, whereas we present the 
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complete set of results for star queries, smce they are the hardest 
tree queries to optimize [On0881 The cost of the output strategies 
produced by the algonthms for the various relatton catalogs as a 
function of query size IS shown m Rgures 3 2 for tree quenes and 
Figure 3 3 for star queries Agam. the y-axis represents scaled 
cost. i e , the ratio of the output strategy cost over the mmunum 
cost found for the query among all runs of all algonduns For 
each size, the average over all queries of that size. of the average 
scaled cost over all five runs of each query IS shown 

We discuss how the results change as we move along two 
dlmenslons of mterest query size and vanance m catalog parame- 
ters (1) Query size For small quertes. with 5 or 10 JOUS, there IS 

no difference among the three algonthms. regardless of the cata- 
log type Almost all runs of the three algonthms find states with 
the same cost In general, as query size grows, the output of 2P0 
improves compared to that of SA. whch unproves compared to 
that of II At the same hme. however, the average output strategy 
cost of all algorithms becomes less stable. 1 e , the average scaled 
cost moves farther from 1 This means that there are more cases 
m which algonthms miss the optunum Of the three algonthms, 
however, 2P0 1s the relatively most stable one (u) Vartance m 
catalog pummeters The output &fference between the algonthms 
mcreases with higher vanance m the relahon cardmahtles and the 
Join selectivihes, i e , as we move from ‘relcatl’ to ‘relcat3’ 
Interestmgly, there 1s not much &fference between ‘relcat2’ and 
‘relcat3’ In fact, occasionally, ‘relcat2’ gives rise to lugher 
dtfferences between 2P0 and lI/SA than ‘relcat3’ This shows 
that variance m relation size has a more slgmficant impact on the 
output of the two algorithms than vanance m selectivity factors + 

It IS also mterestmg to compare the best output found 
among the five runs of each algonthm for each problem mstance 
We show the average of that over all star queries of a given size m 
Figure 3 4 Clearly, when the best of five runs for each algorithm 
1s considered, 2P0 not only outperforms the other algonthms m 
all cases, but it also becomes very stable, 1 e , the best scaled cost 
of five runs of 2P0 is very close, if not equal, to 1 ns suggests 
that 2P0 1s the algorithm of choice for large queries, particularly 
If It 1s run a small number of hmes for stability We should also 
observe, however, that the performance of SA becomes very 
stable as well To the contrary, II 1s sttll not very stable, rarely 
outperformmg SA The effect of query size and vanance m cata- 
log parameters on the relative output quality of SA, II, and 2P0 m 
this case 1s sumlar to that for the average of five runs, and we ela- 
borate on it no more 

3.5. Query Optimization Time 

The average runnmg time of 2P0 and SA as a function of 
query size for vanous mterestmg cases 1s shown m Figure 3 5 
(Recall that II was given the same amount of ttme as SA or 2PO. 
depending on whether SA was run or not.) Agam due to lack of 
space, we only show some of the relevant graphs Those that 
correspond to the remammg cases are slmdar Below, we discuss 
the effect of query size, variance m catalog parameters, and query 
type on query opttmtzatlon time (1) Query size Clearly, 2P0 
needs less tune than SA m all cases As expected, the absolute 
difference m runnmg time mcreases with query size To the con- 
trary, the relauve difference increases with query size for tree 
queries (It reaches a factor of 4 for NO-Jam tree queries with 

’ Note that we used a different scale for the y-axis for ‘relcatl’ than 
for the other catalogs 

‘relcatl’). but decreases with query stze for star quenes The 
latter tend to be less regular than tree quenes. and therefore, tend 
to need more ttme m phase 2 of 2P0 (ii) Vurrmce m catalog 
pumneters The cost steadtly mcreases from ‘relcatl’ to ‘relcat3’, 
as expected Thus can be seen, for example, m Figures 3 5 (a) and 
3 5 (b). which correspond to tree quenes for ‘relcatl’ and ‘rel- 
cat2’ (m) Query rype As expected [OnoSS], star quenes took 
stgmficantly more optmuzanon tune than random tree quenes In 
addlhon, the improvement of 2P0 over SA for star quenes was 
much smaller than for star quenes Thts 1s shown m Its more 
dramattc mstanttatmn m Figures 3 5 (a) and 3 5 (c), which 
correspond to the two query types for ‘relcatl ’ 

4. STATE SPACE ANALYSIS * 

To understand the results of the performance evaluahon 
and the cause for the behavior of SA. II, and 2P0 that was 
presented m the previous section, we studied the shape of the cost 
function over the state space that the three algorithms had to 
search The outcome of 0~s study IS reported m this section 

4.1. Shape of Cost Function over the Strategy Space 

The size of the strategy space 1s prohibluve of any attempt 
of an exhaustive search of It Hence, m order to study the cost 
function shape, randomlzabon was employed agam, and the fol- 
lowmg types of expenments were performed 

(1) Random generation of 10000 strategies and calculahon of 
then costs 

(19 “Random” generation of 10000 local mmuna and calcula- 
bon of their costs ms was achieved by performmg a 
local optmnzahon from each strategy generated m expen- 
ment (1) 

(14 “Random” walks m areas of low cost strategies Our pur- 
pose was to get a feelmg for the number of good local 
mmuna that exst and then mutual distance For each 
query tested, we performed 5 random walks, each one of 
whch started from a low cost local mlmmum Each walk 
was a sequence of 2000 smaller parts Each part consisted 
of a senes of uphill moves followed by a series of downhdl 
moves Each senes of uphll moves ended when the s&a- 
tegy cost exceeded a prespeclfied hmlt, which ensured that 
the search remamed m areas of low cost strategies (The 
hmit was equal to 5 tunes the average local mmimum cost 
found m experunent (u)) Each senes of dotill moves 
ended m a local mmlfnum Thus, a total of 10000 local 
mmuna were visited in expenment (iii) also 

We tested ten 20-Jam and ten 40-Jam tree queries, and an 
equal number of the same sizes of star queries Each query was 
tested with all three relahon catalogs For experunents (u) and 
(m). we used a better approxunatton for a local mmunum than the 
r-local mmlTnum that we used m the Implementatmn of II. to 
improve the accuracy of the analysis In particular, we used the 
approxunatton of the p-local mmwnum, which 1s defined as a 

* The expenments reported m tius section for the state space 
analysis were conducted usmg Condor [LIIz~~] Condor IS a faahty for 
executmg UNIX fobs on a pool of cooperatmg workstatmns Jobs are 
queued and executed remotely on workstatIons at rimes when those works- 
tauons would otherwise be idle Our expemnents are very tune- 
consummg Without Condor It would be. very dtificult to collect all the 
necessary data m a reasonable ume 
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strategy none of whose neighbors has a lower cost Note that pla- 
teaux can stfi be nustaken as local mmuna with this defimtum 
Unless otherwise noted, any reference to a local muumum 111 dus 
subsection refers to a p-local muumum 

The results of expenmenta (I) and (u) are summarized m 
Figure 4 1 for star quenes We do not show the results of the ran- 
dom tree quenes tested, because they are very smular to those of 
Figure 4 1 Quenes 1 to 10 have 20 JOUIS and quenes 11 to 20 
have 40 moms There IS no sigmficance m the order of placement 
of the various quenes on the x-ax=, except that they are grouped 
mto those with 20 JOIIIS and those with 40 JOIIIS For each query, 
we show the scaled cost of the average strategy (expenment (I)) 
and the scaled cost of the average local mmmmm (experunent (II)) 
that corresponds to the query Agam, the scaled cost 1s the rabo 
of a strategy cost over the lowest local mmunum cost found m 
expenment (II) for the correspondmg query The average local 
muuma costs are several orders of magmtude lower than the aver- 
age state costs As the query size grows, the difference remams 
relatively stable for quenes with the same catalog, although the 
absolute scaled costs mcrease On the other hand. the &fference 
seems to mcrease as the catalog changes from ‘relcatl’ to ‘rel- 
cat3’ Fmally, compared to the average cost of random strategies, 
the average cost of local mmnna 1s relanvely close to the best 
local nummum cost The speck ratio of average vs best local 
nummum cost IS affected by the vanance m the catalog parsme- 
ters and by the pzutlcular query itself In some cases, It represents 
cost differences as high as two orders of magmtude (e g , do-JOIII 

queries with ‘relcat3’) Even m these cases, however, that cost 
difference 1s mslgmficant compared to the tiference between the 
average strategy cost and the best local mmmwm cost, whch 1s 
higher than five orders of magmtude Thus, we can conclude that 
most local mmuna are not only far better than the average random 
state, but there is also relatively small variance 111 their costs 

Durmg expenment (u), we also measured the number of 
downhdl moves taken by the local optumzat~ons Figure 4 2 
shows the average number of dotill moves for each star query 
Tlus number of downhrll moves IS higher for star queries than for 
tree quenes Moreover, It mcreases as the query size grows and as 
the catalog changes from ‘relcatl’ to ‘relcat3’, with a maxunum 

for ‘relcat2’ The general conclusion from the results m Figure 
4 2 1s that startmg at a random state many downlull moves are 
needed to reach a local mmunum 
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Figure 4.2: Number of downlull moves for star queries 

In expenment (III), for the same set of tree and star quenes 
as before, we counted the number of local mmuna vls~ted that had 
dstmct costs This only provides a lower bound on the number of 
dlstmct local numma In ad&tton, for each query, we measured 
the average &stance between two consecuttvely visited local 
mmuna Agam, smce there could be shorter paths between them, 
dus only provides an upper bound on their dstance These results 
are summarized m Table 4 1 where we show the range of values 
for both measured quantlhes for all quenes of both query types 
and alI three catalogs 

scaled 
cost 
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Figure 4 1: Cost dlstnbutlon of random states and local mmuna for star quenes 

318 



Table 4 1: Local rnma m the low cost area 

The general concluston from the results m Table 4 11s that, for aii 
queries, any connected area of relauvely low cost strategtes (due 
to the prespecrfied hmrt) contams many local numma Moreover, 
these local mmma are relattvely close to each other (the stze of 
the state space 1s several orders of magmtude higher than any drs- 
tance reported m Table 4 1) 

All the above observatrons can be summarized as follows 

(1) The average local mmtmum has relattvely low cost com- 
pared to the average state (from (1) and (u)) 

(2) The average distance from a random state to a local 
mmrmum is long (from (u)) 

(3) The number of local mmrma 1s large (from (ui)) 

(4) Many local mmuna are connected through low cost states 
wtthm short dtstance (from (m)) 

In addttton to the above, the overall behavior of the three algo- 
nthms described m Sectton 3 ts summanzed below 

(5) Searching among low cost states that are connected to each 
other produces better results than searchmg m multtple. 
(potenttally) unconnected, areas of states 

The above pomts (l)-(5) lead to the followmg coniecture 
regardmg the shape of the cost functton over the strategy space 

The shape of the cost functwn resembles a %up’, 
wtih some relatrvely small vanatrons at the bottom 

In other words, there is a small area of strategies with low costs, 
the cup bottom, surrounded by the remammg strategies wtth 
mcreasmgly htgher costs There 1s relatrvely small vanatton 
among the costs m the cup bottom, but enough to make explora- 
uon of that area worth whtle The space wtth which we deal 1s 
multrdunenstonal, so rt IS hard to vtsuaitze For a ldunenstonai 
cost functton. the correspondmg sttuauon 1s shown m Ftgure 4 3 

StSb 

Figure 4.3 Shape of wst funcuon 

Actually, the reported expenmental results do not exclude 
the case where the shape of the cost funchon 1s several cups 
whose bottoms are at smular cost levels Addmonai experrments, 
however, mdrcate that the exrstence of multtple cups 1s unhkely 
In partrcular, whenever the output strategies of two runs of 2P0 
on the same query differed stgmiicantiy m cost, we ran SA wtth 
low temperature startmg from one of the strateges The low tem- 
perature guaranteed that the algorithm dtd not move mto high cost 
states. t e , that it remamed m the same cup In aii cases tested, 
SA dtd vlsrt the other strategy, which mdrcates that the mabritty of 
2P0 to vrsit the best of the two strategies m both runs was most 
hkely due to the randomness of the algorithm and not due to 2P0 
searchmg m two different cups m the two runs 

4.2. Explanation of Behavior as a Function of Time 

Usmg the wmecture of the cup shaped cost functton, we 
are now m a posmon to explam the typical behavtor of SA, II, and 
2pO over ttme as shown m Figure 3 1 SA starts from a random 
state, which tends to be at the high wst area Whtle the tempera- 
ture remams htgh, due to the large number of uphill moves from 
states m the high and middle cost area, and the iugh probabthty of 
acceptmg uphrii moves, SA tends to spend much tune without 
tmprovement. After the temperature 1s reduced srgmficantly. SA 
reaches the cup bottom, which rt explores extensrvely, by takmg 
advantage of tts abtitty to vrstt many local muuma by acceptmg 
uphtll moves On the other hand, II can reach the cup bottom 
qmckiy by acceptmg only downhrll moves Smce most local 
mmuna are there, II can 6nd a relatrvely good one wnhm a few 
local opttmtzattons Thrs explams why II performs so well m the 
begummg stages, while SA performs so poorly As for 2F0, as 
expected, It reaches the cup bottom very qmckly (II phase) and 
then improves further by searchmg m that area (SA phase), fimsh- 
mg m less ttme than either of the other algonthms 

4.3. Explanation of Output Quality 

We can also explam why 2P0 (and usually SA also) out- 
performs II m terms of output quahty II vtsits relattvely few 
local mmuna, because 6ndmg one 1s expensive for the followmg 
reasons (a) for each local optrmtzahon, II has to generate a 
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random state and evaluate tts cost, both of which are expenstve 
operattons, (b) startmg at a random state, tt takes tune to find a 
local mtmmum, because the dtstance between the two IS long 
(pomt (2) and Figure 4 2). and (c) durmg a local opumtzatton. 
espectaily when m a low cost state, II tnes many neighbors before 
It finds a downlull move On the other hand, 2pO and SA spend a 
reasonable amount of ttme at the cup bottom (with low tempera- 
ture), and are able to explore rt much more thoroughly than II, 
thus mcreasmg the probabthty that they find the global mmtmum 
The above was also verified by measurmg the number of states 
vrstted by each aigortthm as a functron of the cost of the state 
We observed that, although overall II vrsrts more states than SA, 
whtch vtsns more states than 2PG, the last two vrstt more states of 
low costs than the first A typtcal sttuahon ts shown m Ftgure 4 4 
The example ts for a 40-Jam tree query with the ‘relcatl’ catalog 
Srmtlar behavtor was observed for other quenes 

5. INCLUDING HASH-JOIN, PIPELINING, AND 
BUFFERING 

As an extenston to the study described m the prevrous sec- 
uons, we have conducted a lmnted set of expertments wrth a stra- 
tegy space that mcluded ‘hash-join’ as an alternative Jam method 
(m addttton to ‘nested-loops’ and ‘merge-scan’) and wrth a wst 
funcuon that parhaily removed assumptrons (a) and (b) of Sectton 
2 2 3, t e , tt allowed prpelmmg for nested-loops and m several 
cases took advantage of arbitrary amounts of available buffer 
space We expenmented wrth twenty 20-Jam and twenty 40-Jam 
tree quenes with all three catalogs The set-up of these expen- 
ments was exactly the one described m the prevrous sectrons We 
studted both the behavror of ail three algonthms m the new settmg 
and the charactensttcs of the shape of the cost functmn The 
results are very smular to those of Sectton 3 and 4 2PG always 
outperforms II and SA m terms of both output quahty and runnmg 
ume In addttron, the conJecture of the ‘cup’-shaped cost functron 
remams vahd This lmphes that our wnclusmns m Sectron 3 and 
4 were not a result of our choice of Jam methods or the specrfic 
restrtcttons (a) and (b) on the cost functron As a pomt of refer- 
ence, m Tables 5 1 and 5 2. we show the average and best scaled 
cost of the output strategms of five runs for ail three aigonthms for 
all combmattons of query srze and catalog As before, the costs 
are scaled based on the lowest strategy cost found for each 
spectfic query and catalog, and averaged over ail quenes wtth the 
same charactensttcs 

relcatl relcat2 relcat3 
20 1 40 20 1 40 20 1 40 

II 101 I 101 125 ] 357 109 ] 142 
SA 100 100 1 12 136 102 111 
2P0 100 100 107 129 101 106 

Table 5.1. Average scaled cost of the output strategy 

relcatl relcat2 relcat3 
20 1 40 20 1 40 20 1 40 

II loo I100 113 ] 311 105 ] 132 

Table 5.2. Best scaled cost of the output strategy 

6. RELATED WORK 

Query optrmtzatton has been a very active area of research 
for relattonal database systems The reader 1s referred to the 

survey paper by Jarke and Koch [Jark84] and the book by Km, 
Remer. and Batory [Km861 Regardmg large JOT queries, thetr 
ophmtzauon was spectficaiiy addressed by Knshnamurthy et al 
[Kns86]. who proposed a quadrauc algorithm that took advantage 
of the form of the Mom cost formula. In thts section, we want to 
pnmanly compare our work wrth that of Swam1 and Gupta 
[Swam88], who conducted a performance evaluauon of SA and Ii 
that was srmtlar to our study reported m Sectron 3 There are 
several drstmct drfferences between the two stu~es Fust. Swarm 
and Gupta’s strategy space consrsts of left-deep trees only, 
whereas we mchtde ail strategms Second, they examme only one 
Mom algorithm.. namely hash-Jam, whereas we have expenmented 
wrth two of them, namely nested-loops and merge-scan Thud, 
they assumed a mam memory database and therefore used cpu- 
ttme as the cost of a strategy, whereas we used I/G ttme for that 
Fourth, they used an approxtmatton for a local mmmum m the 
rmplementatton of II that 1s different from the r-local mmmmm 
that we used Ftfth, the neighbors of a strategy are determmed by 
two transformatmn rules, namely cychc exchange of the posrtmn 
of two or three relations m the JOT tree that corresponds to the 
strategy, whereas most of our transformatron rules are based on 
algebrarc properues of moms There are also several other imple- 
mentatron dtfference between the two studies that seem uNleces- 
sary to pomt out here 

The results of our study presented m Sectton 3 contradtct 
those of Swami and Gupta [Swam88], whose conclusron was that 
SA was never supenor to II, mdependent of the amount of tune 
that was gtven to rt In prmcrple, any wmbmatton of the dtffer- 
ences menttoned above could be. the source for the difference m 
the results Inttuttvely. however, we beheve that the pnmary rea- 
son 1s the difference m the choice of nerghbors for the strategies m 
the strategy space, i e , the &fference m the transformatton rules 
that were used m the two studies Swarm and Gupta’s transforma- 
tion rules generate neighbors that have large differences m theta 
cost, which makes the shape of the cost functton much less 
smooth (not a cup) Therefore, SA does not have the opportuntty 
to spend much ume m a low cost area and performs poorly On 
the other hand II can move down to a local mmtmum m a few 
moves and therefore vtstts many of them m the same amount of 
trme Thus, the two aigonthms are ordered differently m terms of 
output quairty m the two studms Although we beheve that most 
ltkely the above ts the mam reason for the dtfference m wnclu- 
stons. further mvesttgatton ts required to understand the tssues 
preasely 

As a closmg wnunent, we should mentton that our work 
on mappmg the shape of the cost functton over the strategy space 
of a query 1s umque, Swami and Gupta included no such study m 
then work Moreover, the cup formatron gave the abrhty to use 
2pO as an opttmtzatton algonthm, which exiubtts supenor perfor- 
mance Gn the other hand, Swarm proposed and expenmented 
wtth a set of heunsttcs. which m general improved the perfor- 
mance of both II and SA [Swam891 

7. CONCLUSIONS AND FUTURE WORK 

We have adapted the well-known randomrzed opumtzatmn 
algonthms of Stmulated Anneaimg and Iterattve Improvement to 
opttmizatmn of large JOIII queries and stud& theu performance 
We observed that II performs better than SA mrttally, but rf 
enough tuue 1s given to SA, rt outperforms II We studted the 
shape of the wst funcuon over the state space of a query, and 
experunentaily venfied that rt resembles a cup wtth a non-smooth 
bottom Based on thrs observatton. we explained the behavior of 
the two aigonthms Fmaily, makmg use of the cup shape of the 
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cost funcbon, we proposed the Two Phase Opttmtzatmn algo- 
nthm, whose performance 1s supenor to that of the other algo- 
rithms with respect to both output qualrty and rumung ttme 

The work reported m dus paper s only the begmnmg m 
understandmg how randonuzed opmlzahon algonthms perform 
on complex quenes, and also what the shape of the wst funcuon 
1s over the space of equivalent strategies for queries There are 
several tssues that are mterestmg and on which we plan to work m 
the future First, we want to mveshgate the senslt~vvlty of dus 
study’s wncluslons to the spectfic choices that we made for van- 
ous parameters In particular, we would hke to complete our 
experiments with hash-Jam, ptpelmmg, and various degrees of 
buffer avalabtltty, which all affect the cost formulas for m&vi- 
dual JOISIS and the cost relatlonshlps between neighbors We 
would also hke to experunent wtth non-umformly dlstnbuted 
data Second, we want to tdentlfy the key properties that cause 
the cup formahon of the wst funchon tis will be helpful not 
only m understandmg the behavior of the algonthms. but also m 
provldmg us wtth cntena for the apphcablllty of Two Phase 
Ophmlzahon Such results wfi be very helpful m extensible 
query opttmlzers [Care861 md. we want to compare Two 
Phase Optumzatlon and the other randomtzed ophmlzation algo- 
nthms with the tradttlonal ones, e g , those of System-R [Sell791 
or Starburst [L&m881 tis should lead mto an understanding of 
the relative advantages between generatlon-based and 
transformation-based query optmuzatlon Fmally, we want to 
experiment with other types of relahonal quenes, i e, cyclic 
queries and queries that mvoive umon 
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